CN114621024B - 一种高纯增韧碳化硼泡沫陶瓷及其制备方法 - Google Patents

一种高纯增韧碳化硼泡沫陶瓷及其制备方法 Download PDF

Info

Publication number
CN114621024B
CN114621024B CN202210292965.7A CN202210292965A CN114621024B CN 114621024 B CN114621024 B CN 114621024B CN 202210292965 A CN202210292965 A CN 202210292965A CN 114621024 B CN114621024 B CN 114621024B
Authority
CN
China
Prior art keywords
boron carbide
micro powder
parts
silicon carbide
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210292965.7A
Other languages
English (en)
Other versions
CN114621024A (zh
Inventor
刘峻廷
李向明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Huayi Kechuang Nanomaterials Co ltd
Original Assignee
Shandong Huayi Kechuang Nanomaterials Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Huayi Kechuang Nanomaterials Co ltd filed Critical Shandong Huayi Kechuang Nanomaterials Co ltd
Priority to CN202210292965.7A priority Critical patent/CN114621024B/zh
Publication of CN114621024A publication Critical patent/CN114621024A/zh
Application granted granted Critical
Publication of CN114621024B publication Critical patent/CN114621024B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/563Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及碳化硼泡沫陶瓷技术领域,具体地说就是一种高纯增韧碳化硼泡沫陶瓷及其制备方法。一种高纯增韧碳化硼泡沫陶瓷及其制备方法,包括如下步骤:S1.粉料配制;S2.液料配制;S3.混料;S4.骨架挂浆;S5.骨架干燥;S6.煅烧。在配比中添加适当比例的碳化硅,使碳化硼:碳化硅的比例为(18~19):(1~2),提升了碳化硼泡沫陶瓷的断裂韧性,使其防震能力加强且更容易烧结。

Description

一种高纯增韧碳化硼泡沫陶瓷及其制备方法
技术领域
本发明涉及碳化硼泡沫陶瓷技术领域,具体地说就是一种高纯增韧碳化硼泡沫陶瓷及其制备方法。
背景技术
碳化硼材料具有较高的耐热性,并且天然硼(B)的10B的热中子吸收能力极高,截面高达3837靶,且吸收能谱宽,吸收中子后不产生强的二次辐射,易于后处理,在核工业中具有高效稳定吸收中子辐射、无二次辐射释放等优势。碳化硼陶瓷材料在保证了硼元素中子吸收能力的前提下,又具有高硬度、耐高温、耐辐照等优点,目前在核电领域已被广泛应用为中子屏蔽材料。
目前的碳化硼陶瓷密度在2.2-2.5g/cm3,是一种轻质的中子屏蔽材料,但如果要应用在核动力航空器的中子屏蔽防护上,密度还是较高,如果制得一种碳化硼泡沫陶瓷,既能作为一种密度极低的中子吸收材料,又能拥有保温隔热功能,则在核动力航空器中具有较大的应用优势。而碳化硼材料因其共价键强、塑性差、晶界移动阻力大、固态时表面张力小,导致碳化硼泡沫陶瓷烧结难度高,为解决这个问题,目前有方法引入大量烧结助剂和黏结剂,这样制得的碳化硼泡沫陶瓷纯度很低;此外碳化硼硬度高、韧性差,其泡沫陶瓷如果应用于航天领域,在高频率碰撞环境下下容易碎裂。因此如果能制作纯度足够高、韧性好的碳化硼泡沫陶瓷,同时充当核动力航天器的核动力堆的中子屏蔽层和隔热层,则可以大大促进核动力航天器的发展。
发明内容
为解决上述碳化硼泡沫陶瓷烧结难度高、密度高、纯度低、韧性差的问题,本发明提供了一种高纯增韧碳化硼泡沫陶瓷及其制备方法。
本发明解决其技术问题所采取的技术方案是:一种高纯增韧碳化硼泡沫陶瓷制备方法,包括如下步骤:
S1.粉料配制:将碳化硼微粉、碳化硅微粉和二氧化钛微粉进行搅拌混合,其中碳化硼:碳化硅为(18~19):(1~2),形成混合粉料100份,备用;
S2.液料配制:将去离子水、聚乙烯醇、酚醛树脂和正辛醇混合,形成混合溶液75份,备用;
S3.混料:将步骤S1得到的混合粉料与步骤S2得到的混合溶液加入锥形混料机中,并在锥形混料机中加入100份质量的碳化硅磨介球,碳化硅磨介球碳化硅含量大于95%,尺寸φ12mm柱球,充分混料24h,制得混合均匀的浆体;
S4.骨架挂浆:将聚氨酯海绵进入步骤S3所得浆体中浸泡、揉搓,使聚氨酯海绵充分挂浆,揉搓完成进行超声波振动,静置,等待挂浆完成;
S5.骨架干燥:将步骤S4挂浆完成的骨架从浆体中取出,沥干多余浆料,室温干燥得到骨架化碳化硼泡沫陶瓷素胚体,干燥时间24~30h;
S6.煅烧:将碳化硼泡沫陶瓷素胚体置于真空烧结炉中进行无压煅烧,按照特定升温曲线即得高纯增韧碳化硼泡沫陶瓷。
作为优化,步骤S6中无压煅烧包括如下步骤:
A1.在真空烧结炉初始升温过程中进行抽真空,保持真空度<20Pa;
A2.待真空烧结炉内部升温至1000℃,向真空烧结炉内部充入氩气保护,继续升温;
A3.真空烧结炉内部继续升温至1950-2000℃,保温2.5-3.5h;
A4.保温完成后,将炉体慢慢冷却至室温,得到碳化硼泡沫陶瓷。
作为优化,步骤S6中无压煅烧步骤中,真空烧结炉起始温度a~500℃时,升温速率为7-8℃/min,随后保温0.5h;
500~1000℃时,升温速率为5-6℃/min;
1000-2000℃时,升温速率为5℃/min。
作为优化,步骤S1中碳化硼微粉的D50粒径为0.5~2μm,碳化硼微粉的总硼+总碳含量>99%。
作为优化,步骤S1中碳化硅微粉的D50粒径为0.5~2μm,碳化硅微粉中碳化硅含量>99.5%。
作为优化,步骤S1中二氧化钛的D50粒径为1~5μm,二氧化钛纯度>99.9%。
作为优化,所述的步骤S1中按质量分数计,碳化硼微粉为89-94份、碳化硅微粉为5-10份,二氧化钛微粉为1份。
作为优化,所述的步骤S2中按质量分数计,去离子水为68-70份,聚乙烯醇为1-2份,酚醛树脂为2-4份,正辛醇为0.5-1。
一种高纯增韧碳化硼泡沫陶瓷,由上述一种高纯增韧碳化硼泡沫陶瓷制备方法制得。
作为优化,所述的碳化硼泡沫陶瓷的体积密度为0.34~0.38g/cm3,所述的碳化硼泡沫陶瓷的抗压强度为24.7~30.1MPa;所述碳化硼泡沫陶瓷的抗弯强度为64.3~78.2MPa;所述的碳化硼泡沫陶瓷的断裂韧性为1.8~2.4MPa·m1/2。
本方案的有益效果是:一种高纯增韧碳化硼泡沫陶瓷及其制备方法,具有以下有益之处:
本申请的碳化硼泡沫陶瓷不使用高密度高岭土、氧化铝等烧结助剂、黏合剂,主要成分为碳化硼且含量高达89%-94%,使产品体积密度低,且有效成分纯度高,单位重量的碳化硼泡沫陶瓷中子吸收能力强,特别适合在航空领域作为轻质、高效的中子吸收材料及隔热材料;
在配比中添加适当比例的碳化硅,使碳化硼:碳化硅的比例为(18~19):(1~2),提升了碳化硼泡沫陶瓷的断裂韧性,使其防震能力加强且更容易烧结;
采用真空无压烧结法对碳化硼材料进行烧结,聚氨酯海绵在烧结过程中碳化,形成一层碳骨架,煅烧出体积密度低、抗压强度高的碳化硼泡沫陶瓷,真空无压烧结的工艺使产品批量烧结,生产效率大幅提升,生产成本大幅度降低,有助于产业化的实现;
本申请的碳化硼泡沫陶瓷具有纯度高、强度高、韧性好的特点,并且体积密度低,较低纯度的碳化硼泡沫陶瓷具有更强吸收中子辐射能力,可作为航天器中核动力堆的外壳隔热材料以及中子屏蔽材料,合二为一,节省空间、减轻重量。
附图说明
附图1为本发明实施例1的碳化硼泡沫陶瓷电子扫描电镜图。
具体实施方式
实施例1:
一种高纯增韧碳化硼泡沫陶瓷制备方法,包括如下步骤:
S1.粉料配制:将碳化硼微粉、碳化硅微粉和二氧化钛微粉进行搅拌混合,其中碳化硼微粉为89份、碳化硅微粉为10份,二氧化钛微粉为1份,碳化硼:碳化硅为4:1,形成混合粉料100份,备用;
S2.液料配制:按质量分数计,将去离子水为68份,聚乙烯醇为2份,酚醛树脂为4份,正辛醇为1混合,形成混合溶液75份,备用;
S3.混料:将步骤S1得到的混合粉料与步骤S2得到的混合溶液加入锥形混料机中,并在锥形混料机中加入100份质量的碳化硅磨介球,充分混料24h,制得混合均匀的浆体;
S4.骨架挂浆:将尺寸为100*100*25mm的聚氨酯海绵进入步骤S3所得浆体中浸泡、揉搓,使聚氨酯海绵充分挂浆,揉搓完成进行超声波振动1min,静置3min,等待挂浆完成;
S5.骨架干燥:将步骤S4挂浆完成的骨架从浆体中取出,沥干多余浆料,室温干燥24h,得到骨架化碳化硼泡沫陶瓷素胚体;
S6.煅烧:将碳化硼泡沫陶瓷素胚体置于真空烧结炉中进行无压煅烧即得。
步骤S6中无压煅烧包括如下步骤:
A1.在真空烧结炉初始升温过程中进行抽真空,保持真空度<20Pa;
A2.待真空烧结炉内部升温至1000℃,向真空烧结炉内部充入氩气保护,继续升温;
A3.真空烧结炉内部继续升温至1970℃,保温3h;
A4.保温完成后,将炉体慢慢冷却至室温,得到碳化硼泡沫陶瓷。
步骤S6中无压煅烧步骤中,真空烧结炉起始温度a~500℃时,升温速率为7-8℃/min,随后保温0.5h;
500~1000℃时,升温速率为6℃/min;
1000-2000℃时,升温速率为5℃/min。
实施例2:
将碳化硼微粉、碳化硅微粉和二氧化钛微粉进行搅拌混合,按质量分数计,其中碳化硼微粉为90份、碳化硅微粉为8份,二氧化钛微粉为1份,碳化硼:碳化硅为11:2,形成混合粉料100份,去离子水为69份,聚乙烯醇为1份,酚醛树脂为4份,正辛醇为1混合,形成混合溶液75份,其他步骤与实施例1相同。
实施例3:
将碳化硼微粉、碳化硅微粉和二氧化钛微粉进行搅拌混合,按质量分数计,其中碳化硼微粉为89份、碳化硅微粉为5份,二氧化钛微粉为1份,碳化硼:碳化硅为9:1,形成混合粉料100份,去离子水为70份,聚乙烯醇为1份,酚醛树脂为2份,正辛醇为1混合,形成混合溶液75份,其他步骤与实施例1相同。
实施例4:
将碳化硼微粉、碳化硅微粉和二氧化钛微粉进行搅拌混合,按质量分数计,其中碳化硼微粉为94份、碳化硅微粉为5份,二氧化钛微粉为1份,碳化硼:碳化硅为19:1,形成混合粉料100份,去离子水为70份,聚乙烯醇为1份,酚醛树脂为3.5份,正辛醇为0.5混合,形成混合溶液75份,其他步骤与实施例1相同。
实施例5:
将碳化硼微粉、碳化硅微粉和二氧化钛微粉进行搅拌混合,按质量分数计,其中碳化硼微粉为94份、碳化硅微粉为10份,二氧化钛微粉为1份,碳化硼:碳化硅为11:2,形成混合粉料100份,去离子水为68份,聚乙烯醇为2份,酚醛树脂为4份,正辛醇为1混合,形成混合溶液75份,其他步骤与实施例1相同。
实施例1~5制得的碳化硼泡沫陶瓷测试数据如下表:
表1:
实施例1 实施例2 实施例3 实施例4 实施例5
<![CDATA[体积密度(g/cm<sup>3</sup>)]]> 0.38 0.37 0.36 0.34 0.38
抗压强度(Mpa) 28.7 29.6 25.9 24.7 30.1
抗弯强度(Mpa) 78.2 76.6 68.3 64.3 77.5
断裂韧性(MPa·m1/2) 2.4 2.1 1.8 1.8 2.3
本申请通过真空无压烧结法对碳化硼材料进行烧结,聚氨酯海绵在烧结过程中碳化,形成一层碳骨架,煅烧出的碳化硼陶瓷体积密度低、抗压强度高,大大提高了碳化硼泡沫陶瓷材料的断裂韧性和抗弯强度,使本申请的碳化硼陶瓷材料能够应用于核动力航天器中,同时作为核动力堆的中子屏蔽层和隔热层。
上述具体实施方式仅是本发明的具体个案,本发明的专利保护范围包括但不限于上述具体实施方式的产品形态和式样,任何符合本发明权利要求书的一种高纯增韧碳化硼泡沫陶瓷及其制备方法且任何所属技术领域的普通技术人员对其所做的适当变化或修饰,皆应落入本发明的专利保护范围。

Claims (1)

1.一种高纯增韧碳化硼泡沫陶瓷制备方法,其特征在于:包括如下步骤:S1.粉料配制:将碳化硼微粉、碳化硅微粉和二氧化钛微粉进行搅拌混合,其中碳化硼:碳化硅为(18~19):(1~2),形成混合粉料100份,备用;
S2.液料配制:将去离子水、聚乙烯醇、酚醛树脂和正辛醇混合,形成混合溶液75份,备用;
S3.混料:将步骤S1得到的混合粉料与步骤S2得到的混合溶液加入锥形混料机中,并在锥形混料机中加入100份质量的碳化硅磨介球,碳化硅磨介球碳化硅含量大于95%,尺寸φ12mm柱球,充分混料24h,制得混合均匀的浆体;
S4.骨架挂浆:将聚氨酯海绵进入步骤S3所得桨体中浸泡、揉搓,使聚氨酯海绵充分挂浆,揉搓完成进行超声波振动,静置,等待挂浆完成;
S5.骨架干燥:将步骤S4挂浆完成的骨架从浆体中取出,沥干多余浆料,室温干燥得到骨架化碳化硼泡沫陶瓷素胚体;
S6.煅烧:将碳化硼泡沫陶瓷素胚体置于真空烧结炉中进行无压煅烧即得;
无压煅烧包括如下步骤:
A1.在真空烧结炉初始升温过程中进行抽真空,保持真空度<20Pa;
A2.待真空烧结炉内部升温至1000℃,向真空烧结炉内部充入氩气保护,继续升温;
A3.真空烧结炉内部继续升温至1950-2000℃,保温2.5-3.5h;
A4.保温完成后,将炉体慢慢冷却至室温,得到碳化硼泡沫陶瓷;
真空烧结炉起始温度a~500℃时,升温速率为7-8℃/min,随后保温0.5h;
500~1000℃时,升温速率为5-6℃/min;
1000-2000℃时,升温速率为5℃/min;
步骤S1中碳化硼微粉的D50粒径为0.5~2μm,碳化硼微粉的总硼+总碳含量>99%,步骤S1中碳化硅微粉的D50粒径为0.5~2μm,碳化硅微粉中碳化硅含量>99.5%,步骤S1中二氧化钛的D50粒径为1~5μm,二氧化钛纯度>99.9%;
所述的步骤S1中按质量分数计,碳化硼微粉为89~94份、碳化硅微粉为5-10份,二氧化钛微粉为1份;
所述的步骤S2中按质量分数计,去离子水为68-70份,聚乙烯醇为1-2份,酚醛树脂为2-4份,正辛醇为0.5-1份。
CN202210292965.7A 2022-03-23 2022-03-23 一种高纯增韧碳化硼泡沫陶瓷及其制备方法 Active CN114621024B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210292965.7A CN114621024B (zh) 2022-03-23 2022-03-23 一种高纯增韧碳化硼泡沫陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210292965.7A CN114621024B (zh) 2022-03-23 2022-03-23 一种高纯增韧碳化硼泡沫陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN114621024A CN114621024A (zh) 2022-06-14
CN114621024B true CN114621024B (zh) 2023-05-12

Family

ID=81904316

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210292965.7A Active CN114621024B (zh) 2022-03-23 2022-03-23 一种高纯增韧碳化硼泡沫陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN114621024B (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102731093A (zh) * 2011-04-06 2012-10-17 鲁东大学 一种低温致密化烧结碳化硼基陶瓷材料的方法
CN104311136B (zh) * 2014-10-22 2016-02-24 山东理工大学 一种氮化硅、碳化硅结合碳化硼泡沫陶瓷的制备方法
CN104817325A (zh) * 2015-05-19 2015-08-05 中国兵器工业第五二研究所烟台分所 一种反应烧结碳化硼-碳化硅复合陶瓷材料的制备方法
CN108640687B (zh) * 2018-05-29 2021-02-05 北京理工大学 一种碳化硼/碳化硅复相陶瓷及其制备方法
KR102364295B1 (ko) * 2020-02-28 2022-02-21 한국과학기술연구원 탄화붕소 복합재료 및 그의 제조방법
CN113666750A (zh) * 2021-08-16 2021-11-19 中硼科技(威海)有限公司 一种轻质高性能碳化硼基防弹陶瓷及其制备方法
CN113999043A (zh) * 2021-10-29 2022-02-01 南京航空航天大学 一种互穿型莫来石/碳化硼泡沫陶瓷耐高温中子屏蔽材料及其制备方法

Also Published As

Publication number Publication date
CN114621024A (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
CN111233478B (zh) 一种碳化钛梯度多孔陶瓷的分层挂浆制备方法
CN106297904B (zh) UO2‑SiC燃料芯块的制备方法及采用该制备方法制成的UO2‑SiC燃料芯块
CN108569895B (zh) 一种新能源电动汽车用氧化铝陶瓷的制备方法
CN113666764B (zh) 一种短切碳纤维增强碳化硅陶瓷复合材料墨水直写成型方法
CN114853500B (zh) 一种氮化硅结合碳化硅复相陶瓷及其制备方法与应用
CN112830798B (zh) 一种无压烧结用碳化硼造粒粉的制备方法
CN106800420B (zh) 一种碳化硅晶须原位复合刚玉高温陶瓷材料及其制备方法
CN113121237B (zh) 一种碳化硼基复合陶瓷及其制备工艺
CN112939607A (zh) 一种高热导率氮化铝陶瓷及其制备方法
CN113511890B (zh) 一种基于发泡法的焦磷酸锆多孔陶瓷材料及其制备方法
CN113999043A (zh) 一种互穿型莫来石/碳化硼泡沫陶瓷耐高温中子屏蔽材料及其制备方法
CN112592188A (zh) 一种石墨烯复合碳化硅陶瓷材料的制备方法
CN104045349B (zh) 一种纳米氧化铝增强氮氧化铝陶瓷及其制备方法
CN114621024B (zh) 一种高纯增韧碳化硼泡沫陶瓷及其制备方法
CN104477977B (zh) 一种熔盐法合成Dy2TiO5粉体的方法
CN105185424A (zh) 一种核反应堆堆芯中子吸收材料钛酸铽芯块及其的制备方法
CN105499582A (zh) 一种高硼含量的硼不锈钢的制备方法
CN109513929B (zh) 壁厚均匀的金属空心球的批量制备方法
CN110627504A (zh) 碳化硼复合材料的无压烧结制备方法
CN116283251B (zh) 一种氧化铝陶瓷及其制备方法与应用
CN104844214B (zh) 致密化高强度碳化锆和碳化铪陶瓷材料及其低温制备方法
CN111235695B (zh) 一种多孔碳纤维电磁吸波剂的制备方法
CN111020264B (zh) 一种三维堆积体增强钛基复合材料及其制备方法
CN107935598B (zh) 一种高性能的碳化硅陶瓷材料低温烧结方法
CN109585090B (zh) 一种高附着低温固化导电浆料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant