CN114605046A - 壳聚糖增强酶诱导碳酸盐沉淀固化剂及其应用方法 - Google Patents

壳聚糖增强酶诱导碳酸盐沉淀固化剂及其应用方法 Download PDF

Info

Publication number
CN114605046A
CN114605046A CN202210070733.7A CN202210070733A CN114605046A CN 114605046 A CN114605046 A CN 114605046A CN 202210070733 A CN202210070733 A CN 202210070733A CN 114605046 A CN114605046 A CN 114605046A
Authority
CN
China
Prior art keywords
solution
chitosan
urease
curing agent
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210070733.7A
Other languages
English (en)
Other versions
CN114605046B (zh
Inventor
徐银龙
王琳
郑文杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Architecture and Technology
Original Assignee
Xian University of Architecture and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Architecture and Technology filed Critical Xian University of Architecture and Technology
Priority to CN202210070733.7A priority Critical patent/CN114605046B/zh
Publication of CN114605046A publication Critical patent/CN114605046A/zh
Application granted granted Critical
Publication of CN114605046B publication Critical patent/CN114605046B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/008Sludge treatment by fixation or solidification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • C12N9/80Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides (3.5.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/01Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in linear amides (3.5.1)
    • C12Y305/01005Urease (3.5.1.5)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Beans For Foods Or Fodder (AREA)

Abstract

本发明公开了一种壳聚糖增强酶诱导碳酸盐沉淀固化剂及其应用方法,该壳聚糖增强酶诱导碳酸盐沉淀固化剂,包括脲酶溶液、壳聚糖胶体溶液和尿素溶液;所述壳聚糖胶体溶液的体积为脲酶溶液体积的4倍~9倍,所述尿素溶液的体积为脲酶溶液体积的1.5倍~10倍;所述脲酶溶液的浓度为20g/L~100g/L;所述尿素溶液的浓度为0.5mol/L~4mol/L。该固化剂通过包含脲酶溶液、壳聚糖胶体溶液和尿素溶液的固化剂体系对重金属污染进行固化,以实现污染修复,通过壳聚糖保护下的脲酶体系所具有的高活性催化碳酸盐沉淀包裹重金属离子,可有效避免污染物运移扩散,修复效率最高可达99%。

Description

壳聚糖增强酶诱导碳酸盐沉淀固化剂及其应用方法
技术领域
本发明属于岩土工程技术领域,具体涉及壳聚糖增强酶诱导碳酸盐沉淀固化剂及其应用方法。
背景技术
随着社会工业化进程的快速发展,世界范围内的环境问题日益突出,各种各样的重金属污染物通过地下水、土壤孔隙水等途径四处迁移,造成不同程度的水、土壤污染,这些污染通过不同途径将对人体造成一定的伤害。在过去几十年中,各种处理重金属污染土壤的原位和非原位修复技术应运而生,通过固化、稳定、电动萃取、土壤冲洗和植物修复等方式实现污染脱除,其中的酶诱导碳酸盐沉淀技术无二次污染风险,且较为绿色环保,得到了广泛应用。
酶诱导碳酸盐沉淀技术的原理为利用脲酶催化尿素水解产生NH4 +和 CO3 2-,CO3 2-可以和重金属离子结合产生碳酸盐沉淀,从而固化重金属离子最终达到修复重金属污染的目的,通过测量NH4 +浓度可以得知脲酶的活性反映尿素水解的程度。酶诱导碳酸盐沉淀技术需要酶具有高的催化活性,目前常用精制脲酶,但精制脲酶存在成本高昂、脲酶的尺寸级别是纳米级的问题,纳米级别的脲酶通常以游离态存在于溶液中,无法为碳酸盐沉淀提供成核位点,另外,脲酶活性会受重金属离子毒性作用的影响,导致其失去活性而降低修复效率。提供一种强化重金属污染修复效率的酶诱导碳酸盐沉淀技术方法,十分必要。
发明内容
本发明所要解决的技术问题在于针对上述现有技术的不足,提供壳聚糖增强酶诱导碳酸盐沉淀固化剂及其应用方法。本发明的固化剂通过包含脲酶溶液、壳聚糖胶体溶液和尿素溶液的固化剂体系对重金属污染进行固化,以实现污染修复,通过壳聚糖保护下的脲酶体系所具有的高活性催化碳酸盐沉淀包裹重金属离子,可有效避免污染物运移扩散,修复效率最高可达99%。
为解决上述技术问题,本发明采用的技术方案是:一种壳聚糖增强酶诱导碳酸盐沉淀固化剂,其特征在于,包括脲酶溶液、壳聚糖胶体溶液和尿素溶液,所述壳聚糖胶体溶液的体积为脲酶溶液体积的4倍~9倍,所述尿素溶液的体积为脲酶溶液体积的1.5倍~10倍;所述脲酶溶液的浓度为 20g/L~100g/L;所述尿素溶液的浓度为0.5mol/L~4mol/L。
上述的壳聚糖增强酶诱导碳酸盐沉淀固化剂,其特征在于,所述脲酶溶液中脲酶的活性为342.7U/g。
上述的壳聚糖增强酶诱导碳酸盐沉淀固化剂,其特征在于,所述壳聚糖胶体溶液的制备方法包括以下步骤:
步骤一、磁力搅拌条件下,将壳聚糖加入乙酸溶液中,持续搅拌至无颗粒,得到胶液;
步骤二、磁力搅拌条件下,将氢氧化钠溶液加入步骤一所述胶液中,至pH为5.5~6.8,持续搅拌至体系澄清透明,得到壳聚糖胶体溶液。
上述的壳聚糖增强酶诱导碳酸盐沉淀固化剂,其特征在于,步骤一所述壳聚糖的脱乙酰度为75%~95%,所述乙酸溶液的体积为壳聚糖质量的 50倍~400倍,所述乙酸溶液的体积单位为mL,所述壳聚糖质量的单位为 g,所述乙酸溶液的质量百分浓度为1%~10%;步骤二所述氢氧化钠溶液的加入速率为0.5mL/min~2mL/min,所述氢氧化钠溶液的浓度为 1mol/L~4mol/L。
上述的壳聚糖增强酶诱导碳酸盐沉淀固化剂,其特征在于,所述脲酶溶液的制备方法包括以下步骤:
步骤一、将豆置于破壁机中粉碎,过筛,得到豆粉体;
步骤二、将步骤一所述豆粉体加入乙醇溶液中,搅拌10min~60min,得到混合体系A;
步骤三、将步骤二所述混合体系A离心,得到上清液,将所述上清液静置,得到混合体系B;
步骤四、将步骤三所述混合体系B离心除杂,去除上清液,冷冻,得到粗制脲酶;
步骤五、将步骤四所述粗制脲酶溶于水中,得到脲酶溶液。
上述的壳聚糖增强酶诱导碳酸盐沉淀固化剂,其特征在于,步骤一所述粉碎的转速为15000r/min~30000r/min,所述豆粉体的粒径为 0.15mm~4mm,所述豆为刀豆或大豆。
上述的壳聚糖增强酶诱导碳酸盐沉淀固化剂,其特征在于,步骤二所述乙醇溶液质量为豆粉体质量的5倍~10倍,所述乙醇溶液的质量百分浓度为10%~90%;步骤三所述离心具体包括:将所述混合体系A均分后置于6个离心管中,以1000r/min~10000r/min速率离心10min~60min;所述静置为在-20℃~20℃条件下静置0.5h~5h;步骤四所述离心除杂为在离心机中,以500r/min~8000r/min速率处理10min~60min。
此外,本发明还提供一种应用上述的壳聚糖增强酶诱导碳酸盐沉淀固化剂进行重金属污染修复的方法,包括:
步骤一、将含重金属的可溶性盐溶液和钙源溶液混匀,加入蒸馏水定容至5mL,得到体系A;
步骤二、将脲酶溶液和壳聚糖胶体溶液混合均匀,得到体系B;
步骤三、将步骤二所述体系B和尿素溶液混合均匀,得到体系C;
步骤四、将步骤三所述体系C加入步骤一所述体系A中,静置反应 12h~72h,完成重金属污染修复。
上述的方法,其特征在于,步骤一所述钙源溶液的体积为含重金属的可溶性盐溶液体积的20倍~40倍,所述含重金属的可溶性盐溶液的浓度为 250mmol/L~2000mmol/L,所述钙源溶液的浓度为0.25mol/L~2mol/L,所述含重金属的可溶性盐溶液包括硝酸铜溶液或硝酸铅溶液,所述钙源为氯化钙或醋酸钙。
上述的方法,其特征在于,步骤二所述脲酶溶液的体积为含重金属的可溶性盐溶液体积的10倍~20倍。
本发明与现有技术相比具有以下优点:
1、本发明的固化剂通过包含脲酶溶液、壳聚糖胶体溶液和尿素溶液的固化剂体系对重金属污染进行固化,以实现污染修复,通过壳聚糖保护下的脲酶体系所具有的高活性催化碳酸盐沉淀包裹重金属离子,可有效避免污染物运移扩散,修复效率可达到65%~99%。
2、作为优选,本发明的壳聚糖胶体溶液为以脱乙酰度为75%~95%的壳聚糖和乙酸溶液在pH为5.5~6.8获得的壳聚糖胶体溶液,可有效形成保护脲酶的分子结构。
2、本发明提供一种利用上述固化剂进行重金属污染修复的方法,包括先将脲酶溶液和壳聚糖胶体溶液混合均匀,然后与尿素溶液混合均匀后与含有重金属离子的溶液混合,无需氧源,具有修复效率高、修复时间短、修复次数少和节能环保的优势。
3、本发明可有效利用植物源低活性脲酶,可在保证修复效率的基础上减少脲酶成本,避免微生物脲酶培养或高活性脲酶的高人工和物力投入。
下面结合附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为实施例1的粗制脲酶活性测量结果。
图2为实施例1和对比例1的重金属污染修复过程中脲酶活性测量结果。
图3实施例1的重金属污染修复效果。
图4为实施例2的重金属污染修复过程中脲酶活性测量结果。
图5实施例2的重金属污染修复效果。
具体实施方式
本发明提供一种壳聚糖增强酶诱导碳酸盐沉淀固化剂,包括脲酶溶液、壳聚糖胶体溶液和尿素溶液;所述壳聚糖胶体溶液的体积为脲酶溶液体积的4倍~9倍,所述尿素溶液的体积为脲酶溶液体积的1.5倍~10倍;所述脲酶溶液的浓度为20g/L~100g/L;所述尿素溶液的浓度为 0.5mol/L~4mol/L。本发明通过包含脲酶溶液、壳聚糖胶体溶液和尿素溶液的固化剂体系对重金属污染进行固化,以实现污染修复,通过壳聚糖保护下的脲酶体系所具有的高活性催化碳酸盐沉淀包裹重金属离子,可有效避免污染物运移扩散,重金属离子修复效率最高可达99%。
本发明中,所述脲酶溶液中脲酶的活性为342.7U/g。
本发明中,所述壳聚糖胶体溶液的制备方法包括以下步骤:
步骤一、磁力搅拌条件下,将壳聚糖加入乙酸溶液中,持续搅拌至无颗粒,得到胶液;所述壳聚糖的脱乙酰度为75%~95%;所述乙酸溶液的体积为壳聚糖质量的50倍~400倍,所述乙酸溶液的体积单位为mL,所述壳聚糖质量的单位为g,所述乙酸溶液的质量百分浓度为1%~10%;
步骤二、磁力搅拌条件下,将氢氧化钠溶液加入步骤一所述胶液中,至pH为5.5~6.8,持续搅拌至无颗粒且体系澄清透明,得到壳聚糖胶体溶液;所述氢氧化钠溶液的加入速率为0.5mL/min~2mL/min;所述氢氧化钠溶液的浓度为1mol/L~4mol/L。
本发明中,所述脲酶溶液的制备方法包括以下步骤:
步骤一、将豆置于破壁机中粉碎1min~5min,过筛,得到豆粉体;所述粉碎的转速为15000r/min~30000r/min;所述豆粉体的粒径为0.15mm~4mm;所述豆为刀豆或大豆;
步骤二、将步骤一所述豆粉体加入乙醇溶液中,搅拌10min~60min,得到混合体系A;所述乙醇溶液质量为豆粉体质量的5倍~10倍,所述乙醇溶液的质量百分浓度为10%~90%;
步骤三、将步骤二所述混合体系A离心,得到上清液,将所述上清液静置,得到混合体系B;所述离心具体包括:将所述混合体系A均分后置于6个离心管中,以1000r/min~10000r/min速率离心10min~60min;所述静置为在-20℃~20℃条件下静置0.5h~5h;
步骤四、将步骤三所述混合体系B离心除杂,去除上清液,冷冻,得到粗制脲酶;所述离心除杂为在离心机中,以500r/min~8000r/min速率处理10min~60min;所述冷冻为在-20℃温度条件下冷冻;
步骤五、将步骤四所述粗制脲酶溶于水中,得到脲酶溶液。
本发明还提供一种应用上述壳聚糖增强酶诱导碳酸盐沉淀固化剂进行重金属污染修复的方法,包括:
步骤一、将含重金属的可溶性盐溶液和钙源溶液混匀,加入蒸馏水定容至5mL,得到体系A;所述钙源溶液的体积为含重金属的可溶性盐溶液体积的20倍~40倍;所述含重金属的可溶性盐溶液的浓度为 250mmol/L~2000mmol/L,所述钙源溶液的浓度为0.25mol/L~2mol/L;所述含重金属的可溶性盐溶液包括硝酸铜溶液或硝酸铅溶液;所述钙源为氯化钙或醋酸钙;
步骤二、将脲酶溶液和壳聚糖胶体溶液混合均匀,得到体系B;所述脲酶溶液的体积为含重金属的可溶性盐溶液体积的10倍~20倍;
步骤三、将步骤二所述体系B和尿素溶液混合均匀,得到体系C;
步骤四、将步骤三所述体系C加入步骤一所述体系A中,静置反应 12h~72h,完成重金属污染修复。
以下结合实施例具体说明本发明的内容,下列说明并非对本发明的限制。
按本发明的方法制备得到一系列壳聚糖增强酶诱导碳酸盐沉淀固化剂,具体如下。
实施例1
本实施例提供一种壳聚糖增强酶诱导碳酸盐沉淀固化剂,包括脲酶溶液、壳聚糖胶体溶液和尿素溶液;所述壳聚糖胶体溶液的体积为脲酶溶液体积的9倍,所述尿素溶液的体积为脲酶溶液体积的5倍;所述脲酶溶液的浓度为60g/L;所述尿素溶液的浓度为2mol/L。
本实施例中,所述脲酶溶液中脲酶的活性为342.7U/g。
本实施例中,所述壳聚糖胶体溶液的制备方法包括以下步骤:
步骤一、磁力搅拌条件下,将0.9g壳聚糖加入90mL乙酸溶液中,持续搅拌至无颗粒,得到胶液;所述壳聚糖的脱乙酰度为75%~95%;所述乙酸溶液的质量百分浓度为1%;
步骤二、磁力搅拌条件下,将氢氧化钠溶液加入步骤一所述胶液中,至pH为6~6.5,持续搅拌至无颗粒且体系澄清透明,得到壳聚糖胶体溶液;所述氢氧化钠溶液的加入速率为1mL/min;所述氢氧化钠溶液的浓度为 1mol/L。
本实施例中,所述脲酶溶液的制备方法包括以下步骤:
步骤一、将刀豆置于破壁机中粉碎3min,过筛,得到刀豆粉体;所述刀豆为成熟且烘干后的刀豆;所述粉碎的转速为20000r/min;所述刀豆粉体的粒径为0.15mm~1mm;
步骤二、将40g步骤一所述刀豆粉体加入400mL乙醇溶液中,搅拌 15min,得到混合体系A;所述乙醇溶液的质量百分浓度为30%;
步骤三、将步骤二所述混合体系A离心,得到上清液,将所述上清液静置,得到混合体系B;所述离心具体包括:将所述混合体系A均分后置于6个离心管中,以9000r/min速率离心20min;所述静置为在-20℃条件下静置4h;
步骤四、将步骤三所述混合体系B离心除杂,去除上清液,冷冻,得到粗制脲酶;所述离心除杂为在离心机中,以5000r/min速率处理50min;所述冷冻为在-20℃温度条件下冷冻;
步骤五、将步骤四所述粗制脲酶溶于水中,得到浓度为60g/L的脲酶溶液。
本实施例还提供一种应用上述壳聚糖增强酶诱导碳酸盐沉淀固化剂进行重金属污染修复的方法,包括:
步骤一、将0.1mL硝酸铜溶液和2.5mL氯化钙溶液混匀,加入蒸馏水定容至5mL,得到体系A;所述硝酸铜溶液的浓度为1000mmol/L,所述氯化钙溶液的浓度为2mol/L;
步骤二、将1mL脲酶溶液和9mL壳聚糖胶体溶液混合均匀,得到体系B;
步骤三、将步骤二所述体系B和5mL尿素溶液混合均匀,得到体系C;所述尿素溶液的浓度为2mol/L;
步骤四、将步骤三所述体系C加入步骤一所述体系A中,静置反应 48h,完成重金属污染修复;本实施例中重金属铜离子初始浓度为5mmol/L;性能测试中各样本重金属铜离子初始浓度为5mmol/L~50mmol/L,以在本实施例基础上调整硝酸铜溶液的浓度或用量制备而成。
对比例1
本对比例提供一种进行重金属污染修复的方法,包括:
步骤一、将0.1mL硝酸铜溶液和2.5mL氯化钙溶液混匀,加入蒸馏水定容至5mL,得到体系A;所述硝酸铜溶液和氯化钙溶液与实施例1相同;
步骤二、将1mL脲酶溶液和5mL尿素溶液混合均匀,得到体系B;所述脲酶溶液与实施例1的脲酶溶液相同;所述尿素溶液与实施例1相同;
步骤三、将步骤二所述体系B加入步骤一所述体系A中,静置反应48h,完成重金属污染修复。
实施例2
本实施例提供一种壳聚糖增强酶诱导碳酸盐沉淀固化剂,包括脲酶溶液、壳聚糖胶体溶液和尿素溶液;所述壳聚糖胶体溶液的体积为脲酶溶液体积的9倍,所述尿素溶液的体积为脲酶溶液体积的5倍;所述脲酶溶液的浓度为60g/L;所述尿素溶液的浓度为2mol/L。
本实施例中,所述脲酶溶液中脲酶的活性为342.7U/g。
本实施例中,所述壳聚糖胶体溶液的制备方法包括以下步骤:
步骤一、磁力搅拌条件下,将0.9g壳聚糖加入90mL乙酸溶液中,持续搅拌至无颗粒,得到胶液;所述壳聚糖的脱乙酰度为75%~95%;所述乙酸溶液的质量百分浓度为1%;
步骤二、磁力搅拌条件下,将氢氧化钠溶液加入步骤一所述胶液中,至pH为6~6.5,持续搅拌至无颗粒且体系澄清透明,得到壳聚糖胶体溶液;所述氢氧化钠溶液的加入速率为1mL/min;所述氢氧化钠溶液的浓度为 1mol/L。
本实施例中,所述脲酶溶液的制备方法包括以下步骤:
步骤一、将刀豆置于破壁机中粉碎3min,过筛,得到刀豆粉体;所述刀豆为成熟且烘干后的刀豆;所述粉碎的转速为20000r/min;所述刀豆粉体的粒径为0.15mm~1mm;
步骤二、将40g步骤一所述刀豆粉体加入400mL乙醇溶液中,搅拌 15min,得到混合体系A;所述乙醇溶液的质量百分浓度为30%;
步骤三、将步骤二所述混合体系A离心,得到上清液,将所述上清液静置,得到混合体系B;所述离心具体包括:将所述混合体系A均分后置于6个离心管中,以9000r/min速率离心20min;所述静置为在-20℃条件下静置4h;
步骤四、将步骤三所述混合体系B离心除杂,去除上清液,冷冻,得到粗制脲酶;所述离心除杂为在离心机中,以5000r/min速率处理50min;所述冷冻为在-20℃温度条件下冷冻;
步骤五、将步骤四所述粗制脲酶溶于水中,得到浓度为60g/L的脲酶溶液。
本实施例还提供一种应用上述壳聚糖增强酶诱导碳酸盐沉淀固化剂进行重金属污染修复的方法,包括:
步骤一、将0.1mL硝酸铅溶液和2.5mL氯化钙溶液混匀,加入蒸馏水定容至5mL,得到体系A;所述硝酸铅溶液的浓度为1000mmol/L,所述氯化钙溶液的浓度为2mol/L;
步骤二、将1mL脲酶溶液和9mL壳聚糖胶体溶液混合均匀,得到体系B;
步骤三、将步骤二所述体系B和5mL尿素溶液混合均匀,得到体系C;所述尿素溶液的浓度为2mol/L;
步骤四、将步骤三所述体系C加入步骤一所述体系A中,静置反应 48h,完成重金属污染修复;本实施例中重金属铅离子初始浓度为5mmol/L;性能测试中各样本重金属铅离子初始浓度为5mmol/L~50mmol/L,以在本实施例基础上调整硝酸铅溶液的浓度或用量制备而成。
实施例3
本实施例提供一种壳聚糖增强酶诱导碳酸盐沉淀固化剂,包括脲酶溶液、壳聚糖胶体溶液和尿素溶液;所述壳聚糖胶体溶液的体积为脲酶溶液体积的4倍,所述尿素溶液的体积为脲酶溶液体积的10倍;所述脲酶溶液的浓度为20g/L;所述尿素溶液的浓度为0.5mol/L。
本实施例中,所述脲酶溶液中脲酶的活性为342.7U/g。
本实施例中,所述壳聚糖胶体溶液的制备方法包括以下步骤:
步骤一、磁力搅拌条件下,将0.9g壳聚糖加入45mL乙酸溶液中,持续搅拌至无颗粒,得到胶液;所述壳聚糖的脱乙酰度为75%~95%;所述乙酸溶液的质量百分浓度为5%;
步骤二、磁力搅拌条件下,将氢氧化钠溶液加入步骤一所述胶液中,至pH为6.5~6.8,持续搅拌至无颗粒且体系澄清透明,得到壳聚糖胶体溶液;所述氢氧化钠溶液的加入速率为0.5mL/min;所述氢氧化钠溶液的浓度为2mol/L。
本实施例中,所述脲酶溶液的制备方法包括以下步骤:
步骤一、将刀豆置于破壁机中粉碎1min,过筛,得到刀豆粉体;所述刀豆为成熟且烘干后的刀豆;所述粉碎的转速为15000r/min;所述刀豆粉体的粒径为2mm~3mm;
步骤二、将40g步骤一所述刀豆粉体加入200mL乙醇溶液中,搅拌 10min,得到混合体系A;所述乙醇溶液的质量百分浓度为45%;
步骤三、将步骤二所述混合体系A离心,得到上清液,将所述上清液静置,得到混合体系B;所述离心具体包括:将所述混合体系A均分后置于6个离心管中,以1000r/min速率离心60min;所述静置为在20℃条件下静置0.5h;
步骤四、将步骤三所述混合体系B离心除杂,去除上清液,冷冻,得到粗制脲酶;所述离心除杂为在离心机中,以500r/min速率处理60min;所述冷冻为在-20℃温度条件下冷冻;
步骤五、将步骤四所述粗制脲酶溶于水中,得到浓度为20g/L的脲酶溶液。
本实施例还提供一种应用上述壳聚糖增强酶诱导碳酸盐沉淀固化剂进行重金属污染修复的方法,包括:
步骤一、将0.1mL硝酸铜溶液和2mL氯化钙溶液混匀,加入蒸馏水定容至5mL,得到体系A;所述硝酸铜溶液的浓度为2000mmol/L,所述氯化钙溶液的浓度为2mol/L;
步骤二、将1mL脲酶溶液和4mL壳聚糖胶体溶液混合均匀,得到体系B;
步骤三、将步骤二所述体系B和10mL尿素溶液混合均匀,得到体系 C;所述尿素溶液的浓度为0.5mol/L;
步骤四、将步骤三所述体系C加入步骤一所述体系A中,静置反应 12h,完成重金属污染修复。
本实施例的技术效果与实施例1基本一致。
实施例4
本实施例提供一种壳聚糖增强酶诱导碳酸盐沉淀固化剂,包括脲酶溶液、壳聚糖胶体溶液和尿素溶液;所述壳聚糖胶体溶液的体积为脲酶溶液体积的5倍,所述尿素溶液的体积为脲酶溶液体积的1.5倍;所述脲酶溶液的浓度为100g/L;所述尿素溶液的浓度为4mol/L。
本实施例中,所述脲酶溶液中脲酶的活性为342.7U/g。
本实施例中,所述壳聚糖胶体溶液的制备方法包括以下步骤:
步骤一、磁力搅拌条件下,将0.9g壳聚糖加入360mL乙酸溶液中,持续搅拌至无颗粒,得到胶液;所述壳聚糖的脱乙酰度为75%~95%;所述乙酸溶液的质量百分浓度为10%;
步骤二、磁力搅拌条件下,将氢氧化钠溶液加入步骤一所述胶液中,至pH为5.5~6,持续搅拌至无颗粒且体系澄清透明,得到壳聚糖胶体溶液;所述氢氧化钠溶液的加入速率为2mL/min;所述氢氧化钠溶液的浓度为 4mol/L。
本实施例中,所述脲酶溶液的制备方法包括以下步骤:
步骤一、将刀豆置于破壁机中粉碎5min,过筛,得到刀豆粉体;所述刀豆为成熟且烘干后的刀豆;所述粉碎的转速为30000r/min;所述刀豆粉体的粒径为3mm~4mm;
步骤二、将40g步骤一所述刀豆粉体加入200mL乙醇溶液中,搅拌 60min,得到混合体系A;所述乙醇溶液的质量百分浓度为10%;
步骤三、将步骤二所述混合体系A离心,得到上清液,将所述上清液静置,得到混合体系B;所述离心具体包括:将所述混合体系A均分后置于6个离心管中,以10000r/min速率离心10min;所述静置为在0℃条件下静置5h;
步骤四、将步骤三所述混合体系B离心除杂,去除上清液,冷冻,得到粗制脲酶;所述离心除杂为在离心机中,以8000r/min速率处理10min;所述冷冻为在-20℃温度条件下冷冻;
步骤五、将步骤四所述粗制脲酶溶于水中,得到浓度为100g/L的脲酶溶液。
本实施例还提供一种应用上述壳聚糖增强酶诱导碳酸盐沉淀固化剂进行重金属污染修复的方法,包括:
步骤一、将0.1mL硝酸铜溶液和4mL氯化钙溶液混匀,加入蒸馏水定容至5mL,得到体系A;所述硝酸铜溶液的浓度为250mmol/L,所述氯化钙溶液的浓度为0.25mol/L;
步骤二、将2mL脲酶溶液和10mL壳聚糖胶体溶液混合均匀,得到体系B;
步骤三、将步骤二所述体系B和3mL尿素溶液混合均匀,得到体系C;所述尿素溶液的浓度为4mol/L;
步骤四、将步骤三所述体系C加入步骤一所述体系A中,静置反应 72h,完成重金属污染修复。
本实施例的技术效果与实施例1基本一致。
实施例5
本实施例提供一种壳聚糖增强酶诱导碳酸盐沉淀固化剂,包括脲酶溶液、壳聚糖胶体溶液和尿素溶液;所述壳聚糖胶体溶液的体积为脲酶溶液体积的6倍,所述尿素溶液的体积为脲酶溶液体积的3倍;所述脲酶溶液的浓度为100g/L;所述尿素溶液的浓度为4mol/L。
本实施例中,所述脲酶溶液中脲酶的活性为342.7U/g。
本实施例中,所述壳聚糖胶体溶液的制备方法包括以下步骤:
步骤一、磁力搅拌条件下,将0.9g壳聚糖加入180mL乙酸溶液中,持续搅拌至无颗粒,得到胶液;所述壳聚糖的脱乙酰度为75%~95%;所述乙酸溶液的质量百分浓度为5%;
步骤二、磁力搅拌条件下,将氢氧化钠溶液加入步骤一所述胶液中,至pH为5.5~6,持续搅拌至无颗粒且体系澄清透明,得到壳聚糖胶体溶液;所述氢氧化钠溶液的加入速率为1mL/min;所述氢氧化钠溶液的浓度为 2mol/L。
本实施例中,所述脲酶溶液的制备方法包括以下步骤:
步骤一、将大豆置于破壁机中粉碎5min,过筛,得到大豆粉体;所述大豆为成熟且烘干后的大豆;所述粉碎的转速为30000r/min;所述大豆粉体的粒径为3mm~4mm;
步骤二、将40g步骤一所述大豆粉体加入240mL乙醇溶液中,搅拌 20min,得到混合体系A;所述乙醇溶液的质量百分浓度为90%;
步骤三、将步骤二所述混合体系A离心,得到上清液,将所述上清液静置,得到混合体系B;所述离心具体包括:将所述混合体系A均分后置于6个离心管中,以6000r/min速率离心40min;所述静置为在-10℃条件下静置5h;
步骤四、将步骤三所述混合体系B离心除杂,去除上清液,冷冻,得到粗制脲酶;所述离心除杂为在离心机中,以1000r/min速率处理20min;所述冷冻为在-20℃温度条件下冷冻;
步骤五、将步骤四所述粗制脲酶溶于水中,得到浓度为100g/L的脲酶溶液。
本实施例还提供一种应用上述壳聚糖增强酶诱导碳酸盐沉淀固化剂进行重金属污染修复的方法,包括:
步骤一、将0.1mL硝酸铜溶液和2mL醋酸钙溶液混匀,加入蒸馏水定容至5mL,得到体系A;所述硝酸铜溶液的浓度为1000mmol/L,所述醋酸钙溶液的浓度为1mol/L;
步骤二、将1.5mL脲酶溶液和9mL壳聚糖胶体溶液混合均匀,得到体系B;
步骤三、将步骤二所述体系B和4.5mL尿素溶液混合均匀,得到体系 C;所述尿素溶液的浓度为4mol/L;
步骤四、将步骤三所述体系C加入步骤一所述体系A中,静置反应 56h,完成重金属污染修复。
本实施例的技术效果与实施例1基本一致。
性能评价:
实施例1的粗制脲酶活性测量结果见图1,测量方法为纳氏试剂法。根据图1可知,实施例1的粗制脲酶活性为342.7U/g,为低活脲酶。
实施例1和对比例1的重金属污染修复过程中脲酶活性测量结果见图 2。根据图2可知,对比例1中未检出铵根离子,表明无脲酶活性,当改变硝酸铜溶液浓度时也未检出铵根离子,表明无脲酶活性,实施例1的体系在不同硝酸铜溶液浓度时均可检出铵根离子,表明壳聚糖胶体可有效保护脲酶使其避免铜离子毒性作用,可有效提高脲酶活性。
实施例1和对比例1的重金属污染修复效果见图3。图3中折线图表明剩余的重金属离子浓度,柱状图则表明修复效率,根据图3可知,采用本发明的方法进行铜离子修复后,修复效率均可达到65%以上,其中对比例1因无修复效果,图中未示出。其中修复效率的测试和计算方法包括:将完成重金属污染修复的溶液,以4000~10000r/min离心5~20min,取上清液,使用0.22μm的针式过滤器过滤,加入5%~30%的硝酸酸化,用原子吸收分光光度计测量Cu2+浓度。
根据下述公式计算修复效率:
铜修复效率=[(CI-CR)/CI]×100%
其中,CI为Cu2+初始浓度,CR为修复过后Cu2+剩余浓度。
实施例2的重金属污染修复过程中脲酶活性测量结果见图4。根据图 4可知,实施例2的体系在不同硝酸铅溶液浓度时均可检出铵根离子,表明壳聚糖胶体可有效保护脲酶使其避免铅离子毒性作用,可有效提高脲酶活性。
实施例2的重金属污染修复效果见图5。图5中折线图表明剩余的重金属离子浓度,柱状图则表明修复效率,根据图5可知,采用本发明的方法进行铅离子修复后,修复效率均最高可达到99%左右。修复效率的测试和计算方法与上述方法相同。
以上所述,仅是本发明的较佳实施例,并非对本发明做任何限制,凡是根据发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本发明技术方案的保护范围内。

Claims (10)

1.一种壳聚糖增强酶诱导碳酸盐沉淀固化剂,其特征在于,包括脲酶溶液、壳聚糖胶体溶液和尿素溶液,所述壳聚糖胶体溶液的体积为脲酶溶液体积的4倍~9倍,所述尿素溶液的体积为脲酶溶液体积的1.5倍~10倍;所述脲酶溶液的浓度为20g/L~100g/L;所述尿素溶液的浓度为0.5mol/L~4mol/L。
2.根据权利要求1所述的壳聚糖增强酶诱导碳酸盐沉淀固化剂,其特征在于,所述脲酶溶液中脲酶的活性为342.7U/g。
3.根据权利要求1所述的壳聚糖增强酶诱导碳酸盐沉淀固化剂,其特征在于,所述壳聚糖胶体溶液的制备方法包括以下步骤:
步骤一、磁力搅拌条件下,将壳聚糖加入乙酸溶液中,持续搅拌至无颗粒,得到胶液;
步骤二、磁力搅拌条件下,将氢氧化钠溶液加入步骤一所述胶液中,至pH为5.5~6.8,持续搅拌至体系澄清透明,得到壳聚糖胶体溶液。
4.根据权利要求3所述的壳聚糖增强酶诱导碳酸盐沉淀固化剂,其特征在于,步骤一所述壳聚糖的脱乙酰度为75%~95%,所述乙酸溶液的体积为壳聚糖质量的50倍~400倍,所述乙酸溶液的体积单位为mL,所述壳聚糖质量的单位为g,所述乙酸溶液的质量百分浓度为1%~10%;步骤二所述氢氧化钠溶液的加入速率为0.5mL/min~2mL/min,所述氢氧化钠溶液的浓度为1mol/L~4mol/L。
5.根据权利要求1所述的壳聚糖增强酶诱导碳酸盐沉淀固化剂,其特征在于,所述脲酶溶液的制备方法包括以下步骤:
步骤一、将豆置于破壁机中粉碎,过筛,得到豆粉体;
步骤二、将步骤一所述豆粉体加入乙醇溶液中,搅拌10min~60min,得到混合体系A;
步骤三、将步骤二所述混合体系A离心,得到上清液,将所述上清液静置,得到混合体系B;
步骤四、将步骤三所述混合体系B离心除杂,去除上清液,冷冻,得到粗制脲酶;
步骤五、将步骤四所述粗制脲酶溶于水中,得到脲酶溶液。
6.根据权利要求5所述的壳聚糖增强酶诱导碳酸盐沉淀固化剂,其特征在于,步骤一所述粉碎的转速为15000r/min~30000r/min,所述豆粉体的粒径为0.15mm~4mm,所述豆为刀豆或大豆。
7.根据权利要求5所述的壳聚糖增强酶诱导碳酸盐沉淀固化剂,其特征在于,步骤二所述乙醇溶液质量为豆粉体质量的5倍~10倍,所述乙醇溶液的质量百分浓度为10%~90%;步骤三所述离心具体包括:将所述混合体系A均分后置于6个离心管中,以1000r/min~10000r/min速率离心10min~60min;所述静置为在-20℃~20℃条件下静置0.5h~5h;步骤四所述离心除杂为在离心机中,以500r/min~8000r/min速率处理10min~60min。
8.一种应用如权利要求1所述的壳聚糖增强酶诱导碳酸盐沉淀固化剂进行重金属污染修复的方法,包括:
步骤一、将含重金属的可溶性盐溶液和钙源溶液混匀,加入蒸馏水定容至5mL,得到体系A;
步骤二、将脲酶溶液和壳聚糖胶体溶液混合均匀,得到体系B;
步骤三、将步骤二所述体系B和尿素溶液混合均匀,得到体系C;
步骤四、将步骤三所述体系C加入步骤一所述体系A中,静置反应12h~72h,完成重金属污染修复。
9.根据权利要求8所述的方法,其特征在于,步骤一所述钙源溶液的体积为含重金属的可溶性盐溶液体积的20倍~40倍,所述含重金属的可溶性盐溶液的浓度为250mmol/L~2000mmol/L,所述钙源溶液的浓度为0.25mol/L~2mol/L,所述含重金属的可溶性盐溶液包括硝酸铜溶液或硝酸铅溶液,所述钙源为氯化钙或醋酸钙。
10.根据权利要求8所述的方法,其特征在于,步骤二所述脲酶溶液的体积为含重金属的可溶性盐溶液体积的10倍~20倍。
CN202210070733.7A 2022-01-21 2022-01-21 壳聚糖增强酶诱导碳酸盐沉淀固化剂及其应用方法 Active CN114605046B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210070733.7A CN114605046B (zh) 2022-01-21 2022-01-21 壳聚糖增强酶诱导碳酸盐沉淀固化剂及其应用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210070733.7A CN114605046B (zh) 2022-01-21 2022-01-21 壳聚糖增强酶诱导碳酸盐沉淀固化剂及其应用方法

Publications (2)

Publication Number Publication Date
CN114605046A true CN114605046A (zh) 2022-06-10
CN114605046B CN114605046B (zh) 2023-06-16

Family

ID=81857586

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210070733.7A Active CN114605046B (zh) 2022-01-21 2022-01-21 壳聚糖增强酶诱导碳酸盐沉淀固化剂及其应用方法

Country Status (1)

Country Link
CN (1) CN114605046B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116251832A (zh) * 2023-01-14 2023-06-13 西安建筑科技大学 生物催化剂胶结强化电动修复重金属污染土的方法及系统
CN116637926A (zh) * 2023-01-10 2023-08-25 浙江大学 使用大豆脲酶诱导沉淀去除填埋场腐殖土重金属的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101705221A (zh) * 2009-11-23 2010-05-12 江南大学 一种固定化酒用酸性脲酶的制备方法及应用
CN103642786A (zh) * 2013-12-09 2014-03-19 天津市林业果树研究所 一种添加壳聚糖制备交联酶聚集体的方法
CN108490042A (zh) * 2016-05-20 2018-09-04 江苏出入境检验检疫局工业产品检测中心 一种脲酶生物传感器的用途
CN110192452A (zh) * 2019-05-08 2019-09-03 东南大学 一种植物脲酶催化与种草联合固沙方法
CN110527517A (zh) * 2019-09-19 2019-12-03 凃雨菲 一种用于土壤重金属污染的修复剂及其制备方法
CN112662708A (zh) * 2020-12-28 2021-04-16 河海大学 一种植物脲酶固化剂及其在垃圾填埋场防渗衬层中的应用
CN112877073A (zh) * 2020-12-31 2021-06-01 河海大学 一种含植物脲酶的土体固化剂及其零废生产工艺
CN113275374A (zh) * 2021-05-28 2021-08-20 安徽农业大学 一种碳酸盐矿化菌联合羟基磷灰石固化重金属的方法
CN113718751A (zh) * 2021-08-26 2021-11-30 中建四局第三建设有限公司 一种基于脲酶诱导碳酸钙沉积固化淤泥土的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101705221A (zh) * 2009-11-23 2010-05-12 江南大学 一种固定化酒用酸性脲酶的制备方法及应用
CN103642786A (zh) * 2013-12-09 2014-03-19 天津市林业果树研究所 一种添加壳聚糖制备交联酶聚集体的方法
CN108490042A (zh) * 2016-05-20 2018-09-04 江苏出入境检验检疫局工业产品检测中心 一种脲酶生物传感器的用途
CN110192452A (zh) * 2019-05-08 2019-09-03 东南大学 一种植物脲酶催化与种草联合固沙方法
CN110527517A (zh) * 2019-09-19 2019-12-03 凃雨菲 一种用于土壤重金属污染的修复剂及其制备方法
CN112662708A (zh) * 2020-12-28 2021-04-16 河海大学 一种植物脲酶固化剂及其在垃圾填埋场防渗衬层中的应用
CN112877073A (zh) * 2020-12-31 2021-06-01 河海大学 一种含植物脲酶的土体固化剂及其零废生产工艺
CN113275374A (zh) * 2021-05-28 2021-08-20 安徽农业大学 一种碳酸盐矿化菌联合羟基磷灰石固化重金属的方法
CN113718751A (zh) * 2021-08-26 2021-11-30 中建四局第三建设有限公司 一种基于脲酶诱导碳酸钙沉积固化淤泥土的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李博文: "成核剂对不同碳酸盐矿化菌诱导碳酸钙形成的影响", 《中国优秀硕士学位论文全文数据库 基础科学辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116637926A (zh) * 2023-01-10 2023-08-25 浙江大学 使用大豆脲酶诱导沉淀去除填埋场腐殖土重金属的方法
CN116251832A (zh) * 2023-01-14 2023-06-13 西安建筑科技大学 生物催化剂胶结强化电动修复重金属污染土的方法及系统
CN116251832B (zh) * 2023-01-14 2024-05-14 西安建筑科技大学 生物催化剂胶结强化电动修复重金属污染土的方法及系统

Also Published As

Publication number Publication date
CN114605046B (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
CN114605046A (zh) 壳聚糖增强酶诱导碳酸盐沉淀固化剂及其应用方法
Roosen et al. Adsorption and chromatographic separation of rare earths with EDTA-and DTPA-functionalized chitosan biopolymers
Konishi et al. Recovery of zinc, cadmium, and lanthanum by biopolymer gel particles of alginic acid
Xu et al. Is soil natural organic matter a sink or source for mobile radioiodine (129I) at the Savannah River Site?
Zhang et al. Grape pomace as a biosorbent for fluoride removal from groundwater
CN111544822A (zh) 一种钡渣稳定化处理方法
CN112877073B (zh) 一种含植物脲酶的土体固化剂及其零废生产工艺
Hongxia et al. Sorption of uranyl ions on silica: effects of contact time, pH, ionic strength, concentration and phosphate
CN115212713B (zh) 一种水泥厂湿磨窑灰固碳减排的方法
CN103495596A (zh) 一种土壤中重金属的洗脱方法
Zhang et al. Adsorption of uranium onto modified rice straw grafted with oxygen-containing groups
CN111826369A (zh) 一种植物脲酶保护剂及其使用方法
CN112605097A (zh) 一种焚烧飞灰或烧结灰的预处理方法及无害化处理工艺
CN110093165B (zh) 低品位凹凸棒石改性材料的制备方法及应用
CN116004569A (zh) 一种酶诱导磷酸盐沉淀固化剂及其应用方法
CN114345304A (zh) 一种负载零价铁的纤维素壳聚糖复合微球及其制备方法和应用
CN110219691B (zh) 一种防治煤自燃的环保型复合阻化剂及其制备方法
CN113481014A (zh) 一种镉污染土壤固废基钝化剂的制备和应用方法
CN112794622A (zh) 一种含重金属污泥脱水剂
CN112745052A (zh) 一种改善型助磨剂
CN110484269A (zh) 一种重金属污染土壤修复剂及其制备与使用方法
CN110899323A (zh) 一种用化学淋洗和植物修复联合修复农田重金属污染土壤的方法
CN101458985A (zh) 磁流体的制备方法和磁性壳聚糖微球的制备方法
CN116120941A (zh) 一种铅、砷复合污染土壤淋洗剂及使用方法
CN112028330A (zh) 一种以铁橄榄石为原位铁源处理含砷污酸的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant