CN114604858B - 一种三维还原氧化石墨烯rGO/ScFeO3复合吸波材料的制备方法 - Google Patents

一种三维还原氧化石墨烯rGO/ScFeO3复合吸波材料的制备方法 Download PDF

Info

Publication number
CN114604858B
CN114604858B CN202210328319.1A CN202210328319A CN114604858B CN 114604858 B CN114604858 B CN 114604858B CN 202210328319 A CN202210328319 A CN 202210328319A CN 114604858 B CN114604858 B CN 114604858B
Authority
CN
China
Prior art keywords
scfeo
solution
graphene oxide
rgo
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210328319.1A
Other languages
English (en)
Other versions
CN114604858A (zh
Inventor
魏汉军
赵峰
王清远
周春林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu University
Original Assignee
Chengdu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu University filed Critical Chengdu University
Priority to CN202210328319.1A priority Critical patent/CN114604858B/zh
Publication of CN114604858A publication Critical patent/CN114604858A/zh
Application granted granted Critical
Publication of CN114604858B publication Critical patent/CN114604858B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本发明涉及微波吸收材料技术领域,尤其涉及一种三维还原氧化石墨烯rGO/ScFeO3复合吸波材料的制备方法。本发明将Sc(NO3)3·6H2O与Fe(NO3)3·9H2O加入到去离子水中,搅拌溶解得到溶液A;将水性聚乙烯醇PVA溶解于Sc(NO3)3水溶液中得到溶液B;将溶液A和溶液B混合均匀并搅拌12~14h得到均质溶胶C;将均质溶胶C匀速升温至温度为200~300℃并保温6~8h,在匀速升温至温度为900~1000℃煅烧6~8h得到ScFeO3粉末;将氧化石墨烯GO加入至去离子水中,超声分散10~12h得到GO悬浮液;将ScFeO3粉末加入到GO悬浮液中混匀得到前驱体溶液;将前驱体溶液冷冻干燥,然后置于氩气氛围、温度为1000~1200℃下保温2~3h得到三维还原氧化石墨烯rGO/ScFeO3复合吸波材料。本发明ScFeO3颗粒嵌入rGO中可显著降低电导率,增加孔隙率,改善阻抗匹配特性和电导率损失。

Description

一种三维还原氧化石墨烯rGO/ScFeO3复合吸波材料的制备 方法
技术领域
本发明涉及微波吸收材料技术领域,尤其涉及一种三维还原氧化石墨烯rGO/ScFeO3复合吸波材料的制备方法。
背景技术
随着电磁波污染和电磁干扰在日常生活和军事领域日益突出,迫切需要解决电磁辐射污染问题。最近,解决这一问题需要创新新型高性能微波吸收材料。由于仅存在单损耗介质(如磁损耗或介电损耗),大多数传统微波吸收材料无法实现更好的阻抗匹配和耗散性能,这限制了其广泛的发展。
发明内容
本发明针对现有技术中微波吸收材料存在的问题,提供一种三维还原氧化石墨烯rGO/ScFeO3复合吸波材料的制备方法,采用溶胶-凝胶法制备ScFeO3粉末,再采用冷冻干燥和热处理合成三维还原氧化石墨烯rGO/ScFeO3复合吸波材料,通过控制复合材料中ScFeO3粉末的含量,从而调整电磁参数和微波吸收性能。
一种三维还原氧化石墨烯rGO/ScFeO3复合吸波材料的制备方法,具体步骤如下:
(1)将Sc(NO3)3·6H2O与Fe(NO3)3·9H2O加入到去离子水中,搅拌溶解得到溶液A;将水性聚乙烯醇PVA溶解于Sc(NO3)3水溶液中得到溶液B;
(2)将溶液A和溶液B混合均匀并搅拌12~14h得到均质溶胶C;
(3)将均质溶胶C匀速升温至温度为200~400℃并保温6~8h,在匀速升温至温度为900~1100℃煅烧6~8h得到ScFeO3粉末;
(4)将氧化石墨烯GO加入至去离子水中,超声分散10~12h得到GO悬浮液;将ScFeO3粉末加入到GO悬浮液中混匀得到前驱体溶液;
(5)将前驱体溶液冷冻干燥形成多孔泡沫结构,然后置于氩气氛围、温度为1000~1200℃下保温2~4h得到三维还原氧化石墨烯rGO/ScFeO3复合吸波材料。
所述均质溶胶C中Sc与Fe的摩尔比为1:1~1:1.5。
所述ScFeO3粉末占氧化石墨烯GO质量的1~3%。
本发明的有益效果是:
(1)本发明将ScFeO3颗粒嵌入rGO中显著降低了电导率,增加了孔隙率,从而改善了阻抗匹配特性和电导率损失;
(2)本发明三维还原氧化石墨烯rGO/ScFeO3复合吸波材料的3D网络为多次反射、散射微波和快速损耗微波能量提供了更多空间;
(3)本发明三维还原氧化石墨烯rGO/ScFeO3复合吸波材料中的大量的异质界面和缺陷也增强了极化损耗;
(4)本发明三维还原氧化石墨烯rGO/ScFeO3复合吸波材料由于高磁各向异性增强了磁损耗,具有自然共振效应;
(5)本发明方法操作过程简便,易于实施,适合于规模化工业生产应用。
附图说明
图1为不同ScFeO3含量的三维还原氧化石墨烯rGO/ScFeO3复合吸波材料的SEM图,(a)为0wt%,(b)为1wt%,(c)为2wt%,(d)为3wt%;
图2为不同ScFeO3含量的三维还原氧化石墨烯rGO/ScFeO3复合吸波材料的拉曼光谱图;
图3为高分辨透射的三维还原氧化石墨烯rGO/ScFeO3复合吸波材料的TEM图,(a)为rGO/ScFeO3的TEM成分,(b)为高分辨透射rGO/ScFeO3的TEM成分,(c)为高分辨透射rGO/ScFeO3的TEM成分。
具体实施方式
下面结合具体实施方式对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。
对比例:三维还原氧化石墨烯rGO吸波材料的制备方法,具体步骤如下:
(1)将氧化石墨烯GO加入至去离子水中,超声分散10h得到GO悬浮液;
(5)将GO悬浮液冷冻干燥形成多孔泡沫结构,然后置于氩气氛围、温度为1000℃下保温2h得到三维还原氧化石墨烯rGO吸波材料,即ScFeO3含量为0wt%。
实施例1:一种三维还原氧化石墨烯rGO/ScFeO3复合吸波材料的制备方法,具体步骤如下:
(1)将Sc(NO3)3·6H2O与Fe(NO3)3·9H2O加入到去离子水中,搅拌溶解得到溶液A;将水性聚乙烯醇PVA溶解于Sc(NO3)3水溶液中得到溶液B;
(2)将溶液A和溶液B混合均匀并搅拌12h得到均质溶胶C;其中均质溶胶C中Sc与Fe的摩尔比为1:1;
(3)将均质溶胶C匀速升温至温度为200℃并保温6h,在匀速升温至温度为900℃煅烧6h得到ScFeO3粉末;
(4)将氧化石墨烯GO加入至去离子水中,超声分散10h得到GO悬浮液;将ScFeO3粉末加入到GO悬浮液中混匀得到前驱体溶液;ScFeO3粉末占氧化石墨烯GO质量的1%;
(5)将前驱体溶液冷冻干燥形成多孔泡沫结构,然后置于氩气氛围、温度为1000℃下保温2h得到三维还原氧化石墨烯rGO/ScFeO3复合吸波材料,即ScFeO3含量为1wt%;
本实施例rGO/ScFeO3复合材料中ScFeO3颗粒附着在rGO上,阻碍了电子的运动,ScFeO3颗粒逐渐占据rGO的层状结构,嵌入rGO中的ScFeO3颗粒显着降低了rGO/ScFeO3复合材料的电导率,同时,rGO/ScFeO3复合材料阻抗匹配特性也得到了提高;因此其微波吸收性能得到了提高,也增加了微波损耗机制。
实施例2:一种三维还原氧化石墨烯rGO/ScFeO3复合吸波材料的制备方法,具体步骤如下:
(1)将Sc(NO3)3·6H2O与Fe(NO3)3·9H2O加入到去离子水中,搅拌溶解得到溶液A;将水性聚乙烯醇PVA溶解于Sc(NO3)3水溶液中得到溶液B;
(2)将溶液A和溶液B混合均匀并搅拌13h得到均质溶胶C;其中均质溶胶C中Sc与Fe的摩尔比为1:1.3;
(3)将均质溶胶C匀速升温至温度为300℃并保温7h,在匀速升温至温度为1000℃煅烧7h得到ScFeO3粉末;
(4)将氧化石墨烯GO加入至去离子水中,超声分散11h得到GO悬浮液;将ScFeO3粉末加入到GO悬浮液中混匀得到前驱体溶液;ScFeO3粉末占氧化石墨烯GO质量的2%;
(5)将前驱体溶液冷冻干燥形成多孔泡沫结构,然后置于氩气氛围、温度为1100℃下保温3h得到三维还原氧化石墨烯rGO/ScFeO3复合吸波材料,即ScFeO3含量为2wt%;
本实施例rGO/ScFeO3复合材料中ScFeO3颗粒附着在rGO上,阻碍了电子的运动,ScFeO3颗粒逐渐占据rGO的层状结构,嵌入rGO中的ScFeO3颗粒显着降低了rGO/ScFeO3复合材料的电导率,同时,rGO/ScFeO3复合材料阻抗匹配特性也得到了提高;因此其微波吸收性能得到了提高,也增加了微波损耗机制。
实施例3:一种三维还原氧化石墨烯rGO/ScFeO3复合吸波材料的制备方法,具体步骤如下:
(1)将Sc(NO3)3·6H2O与Fe(NO3)3·9H2O加入到去离子水中,搅拌溶解得到溶液A;将水性聚乙烯醇PVA溶解于Sc(NO3)3水溶液中得到溶液B;
(2)将溶液A和溶液B混合均匀并搅拌14h得到均质溶胶C;其中均质溶胶C中Sc与Fe的摩尔比为1:1.5;
(3)将均质溶胶C匀速升温至温度为400℃并保温8h,在匀速升温至温度为1100℃煅烧8h得到ScFeO3粉末;
(4)将氧化石墨烯GO加入至去离子水中,超声分散12h得到GO悬浮液;将ScFeO3粉末加入到GO悬浮液中混匀得到前驱体溶液;ScFeO3粉末占氧化石墨烯GO质量的3%;
(5)将前驱体溶液冷冻干燥形成多孔泡沫结构,然后置于氩气氛围、温度为1200℃下保温4h得到三维还原氧化石墨烯rGO/ScFeO3复合吸波材料,即ScFeO3含量为3wt%。
不同含量的ScFeO3粉末的CNT/SiCNWs复合材料的截面形貌见图1,图(a)显示了纯rGO具有大比表面积的层状结构,为ScFeO3颗粒的包裹提供了空间;图(b)显示ScFeO3颗粒附着在rGO上,并且阻碍了电子运动,嵌入RGO中的ScFeO3颗粒显著降低了rGO/ScFeO3复合材料的导电性;图(c)和(d)显示更多的ScFeO3颗粒附着在rGO上,随着ScFeO3颗粒含量的增加,ScFeO3颗粒逐渐占据rGO的层状结构,并形成3D结构,进一步阻碍了电子运动,同时增加了孔隙率,这不仅增加了阻抗匹配特性,而且丰富了损耗机制;
不同含量的ScFeO3粉末的CNT/SiCNWs复合材料的拉曼光谱图见图2,当ScFeO3粉末含量为0wt%时,ID/IG(rGO)值为0.89;当ScFeO3粉末含量为1wt%时,ID/IG(SC-1)值为0.91;当ScFeO3粉末含量为2wt%时,ID/IG(SC-2)值为0.98;当ScFeO3粉末含量为3wt%时,ID/IG(SC-3)值为0.95;石墨缺陷、无定形和无序碳有助于形成G峰,而sp2游离碳有助于形成D峰;由图可知,ID/IG随ScFeO3粉末含量变化而变化;
高分辨透射的ScFeO3粉末的CNT/SiCNWs复合材料的TEM图见图3,(a)显示rGO/ScFeO3复合材料的薄层结构,并且存在一些褶皱以增加比表面积,ScFeO3颗粒的大小约为100nm;(b)高分辨透射rGO/ScFeO3的TEM成分,(c)显示晶面间距为0的rGO/ScFeO3复合材料的HRTEM,rGO和ScFeO3颗粒之间的纳米界面约为5nm;纳米界面有利于微波的反射和散射,提高了微波吸收性能。
以上对本发明的具体实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (1)

1.一种三维还原氧化石墨烯rGO/ScFeO3复合吸波材料的制备方法,其特征在于,具体步骤如下:
(1)将Sc(NO3)3·6H2O与Fe(NO3)3·9H2O加入到去离子水中,搅拌溶解得到溶液A;将水性聚乙烯醇PVA溶解于Sc(NO3)3水溶液中得到溶液B;
(2)将溶液A和溶液B混合均匀并搅拌12~14 h得到均质溶胶C;均质溶胶C中Sc与Fe的摩尔比为1:1~1:1.5;
(3)将均质溶胶C匀速升温至温度为200~300℃并保温6~8h,在匀速升温至温度为900~1100℃煅烧6~ 8h得到ScFeO3粉末;
(4)将氧化石墨烯GO加入至去离子水中,超声分散10~12h得到GO悬浮液;将ScFeO3粉末加入到GO悬浮液中混匀得到前驱体溶液;ScFeO3粉末占氧化石墨烯GO质量的1~3%;
(5)将前驱体溶液冷冻干燥,然后置于氩气氛围、温度为1000~1200℃下保温2~4 h得到三维还原氧化石墨烯rGO/ScFeO3复合吸波材料。
CN202210328319.1A 2022-03-30 2022-03-30 一种三维还原氧化石墨烯rGO/ScFeO3复合吸波材料的制备方法 Active CN114604858B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210328319.1A CN114604858B (zh) 2022-03-30 2022-03-30 一种三维还原氧化石墨烯rGO/ScFeO3复合吸波材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210328319.1A CN114604858B (zh) 2022-03-30 2022-03-30 一种三维还原氧化石墨烯rGO/ScFeO3复合吸波材料的制备方法

Publications (2)

Publication Number Publication Date
CN114604858A CN114604858A (zh) 2022-06-10
CN114604858B true CN114604858B (zh) 2023-05-26

Family

ID=81866848

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210328319.1A Active CN114604858B (zh) 2022-03-30 2022-03-30 一种三维还原氧化石墨烯rGO/ScFeO3复合吸波材料的制备方法

Country Status (1)

Country Link
CN (1) CN114604858B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115377605B (zh) * 2022-08-22 2023-07-21 成都大学 一种中空金属氧化物-金属磷化物异质结材料及其制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5462009A (en) * 1992-11-06 1995-10-31 The Boeing Company Method and apparatus for producing perovskite compositions
CN101429617A (zh) * 2008-11-05 2009-05-13 四川大学 一种纳米晶结构的吸波复合材料及其制备方法
CN104449561B (zh) * 2014-11-19 2016-03-30 江苏悦达新材料科技有限公司 一种氧化石墨烯/铁酸钡吸波材料的制备方法
CN111171787B (zh) * 2020-01-15 2023-03-28 南京理工大学 一种BiFeO3/RGO复合吸波材料及制备方法
CN111892093B (zh) * 2020-08-12 2022-10-21 桂林电子科技大学 一种微波吸收材料及其制备方法
CN112456562B (zh) * 2020-12-03 2023-03-14 桂林电子科技大学 一种铁氧体基复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN114604858A (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
Wu et al. Alkali and ion exchange co-modulation strategies to design magnetic–dielectric synergistic nano-absorbers for tailoring microwave absorption
Lv et al. A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials
Ding et al. Investigation on the broadband electromagnetic wave absorption properties and mechanism of Co 3 O 4-nanosheets/reduced-graphene-oxide composite
CN108690556B (zh) 一种还原氧化石墨烯/多壁碳纳米管/镍铁氧体三元纳米复合吸波材料的制备方法
Gao et al. CoNi alloy with tunable magnetism encapsulated by N-doped carbon nanosheets toward high-performance microwave attenuation
Fan et al. Dielectric control of ultralight hollow porous carbon spheres and excellent microwave absorbing properties
Li et al. Porous Fe3O4/C microspheres for efficient broadband electromagnetic wave absorption
Fan et al. Facile fabrication hierarchical urchin-like C/NiCo2O4/ZnO composites as excellent microwave absorbers
Yu et al. Unique electromagnetic wave absorber for three-dimensional framework engineering with copious heterostructures
Zhu et al. In-situ growth of wafer-like Ti3C2/Carbon nanoparticle hybrids with excellent tunable electromagnetic absorption performance
CN115491177B (zh) 一种mof衍生的碳基磁性纳米复合电磁波吸收材料及其制备方法
Li et al. Lightweight three-dimensional Fe3O4/carbon micro-flowers with tunable microwave absorption properties
Peibo et al. The influence of MWCNTs on microwave absorption properties of Co/C and Ba-Hexaferrite hybrid nanocomposites
Peng et al. Synthesis and microwave absorption properties of Fe 3 O 4@ BaTiO 3/reduced graphene oxide nanocomposites
CN112375541A (zh) 氮掺杂石墨烯镍铁氧体复合吸波材料及其制备方法
CN114604858B (zh) 一种三维还原氧化石墨烯rGO/ScFeO3复合吸波材料的制备方法
Ge et al. MOFs-derived flaky carbonyl iron/Co@ C core-shell composites for thin thickness and broadband microwave absorption materials
CN114149786B (zh) 界面极化增强型TiO2/RGO吸波材料的制备方法
Ye et al. Mechanical and microwave absorbing properties of graphene/Mn–Zn ferrite/polylactic acid composites formed by fused deposition modeling
Cai et al. Facile and scalable preparation of ultralight cobalt@ graphene aerogel microspheres with strong and wide bandwidth microwave absorption
Ding et al. Nitrogen-doped carbon nanosheets homogeneously embedded with Co nanoparticles via biostructure confinement as highly efficient microwave absorbers
CN112897569B (zh) 一种镍/氧化锌/碳/还原氧化石墨烯超薄吸波剂的制备方法
Wang et al. Unique 3D ternary porous core-shell Ni@ MoS2/RGO composites for broadband electromagnetic wave absorption
Ashfaq et al. Growth of CoFe2O4 nanoparticles on graphite sheets for high-performance electromagnetic wave absorption in Ku-Band
Yin et al. Effect of nitric acid treatment on the final low-frequency microwave absorption performance of TiO 2/ZnFe 2 O 4/ZnTiO 3 nanocomposite

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant