CN114594258A - 用于小细胞肺癌nse检测的电化学适体传感器的制备方法及应用 - Google Patents

用于小细胞肺癌nse检测的电化学适体传感器的制备方法及应用 Download PDF

Info

Publication number
CN114594258A
CN114594258A CN202210303134.5A CN202210303134A CN114594258A CN 114594258 A CN114594258 A CN 114594258A CN 202210303134 A CN202210303134 A CN 202210303134A CN 114594258 A CN114594258 A CN 114594258A
Authority
CN
China
Prior art keywords
nse
mno
washing
stirring
pdda
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210303134.5A
Other languages
English (en)
Other versions
CN114594258B (zh
Inventor
白丽娟
吴丽萍
李悦媛
孙劭晨
王露露
李慧珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Medical University
Original Assignee
Chongqing Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Medical University filed Critical Chongqing Medical University
Priority to CN202210303134.5A priority Critical patent/CN114594258B/zh
Publication of CN114594258A publication Critical patent/CN114594258A/zh
Application granted granted Critical
Publication of CN114594258B publication Critical patent/CN114594258B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/573Immunoassay; Biospecific binding assay; Materials therefor for enzymes or isoenzymes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57423Specifically defined cancers of lung
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/988Lyases (4.), e.g. aldolases, heparinase, enolases, fumarase

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供一种用于肺癌NSE检测的电化学适体传感器。本发明先制备了碳材料乙炔黑和贵金属铂纳米粒子修饰的三元过渡金属氧化物材料,然后通过金属粒子与巯基的键合作用装载大量NSE适体链II,最终制备了Ni6MnO8@AB/PtNPs/NBA II的信号探针溶液。本发明以氧化锌‑聚二烯丙基二甲基氯化铵‑氮掺杂碳纳米管沉积金60S合成ZnO@PDDA/N‑CNTs/AuNPs材料作为传感界面,捕获大量生物素修饰的捕获探针进一步实现信号放大,所制备的电化学适体传感器成功的用于NSE的检测。本发明检测方法灵敏度高,特异性强,检测迅速,操作方便,设备材料价格低廉,无污染。

Description

用于小细胞肺癌NSE检测的电化学适体传感器的制备方法及 应用
技术领域
本发明涉及电化学检测技术领域,具体涉及一种用于小细胞肺癌NSE检测的电化学适体传感器的制备方法及应用
背景技术
原发性支气管肺癌(Primary bronchial lung cancer)简称肺癌(Lung Cancer),是 指原发于气管、支气管和肺的恶性肿瘤。据流行病学调查研究显示,肺癌是全球发病率和病死率最高的恶性肿瘤,多好发于男性,且发病率和病死率均居首位;而在女性人群 中,其发病率仅次于肺癌居第2位,病死率仍位居首位。肺癌根据其分化程度、形态特 征和生物学特点主要分为小细胞肺癌(Small Cell Lung Cancer,SCLC)和非小细胞肺癌 (Non-small Cell Lung Cancer,NSCLC)两种主要亚型。相较于其他类型的肺癌,虽然 SCLC有更好的化疗及放疗效果,但由于SCLC确诊时肿瘤很可能已经广泛扩散,往往 错过了最佳的治疗时间,致使漏诊率呈上升趋势。在所有SCLC患者中,早期的五年生 存率在诊断后仅为5-10%。因此,尽早诊断肺癌对临床疾病的预防和治疗均有重要的 临床意义。
目前,检测SCLC的方法主要包括胸部X线、计算机断层扫描(CT)、磁共振成 像(MRI)和正电子发射断层扫描(PET)。然而,这些方法通常不仅需要专门的大型仪 器、专业的操作人员、高费用和长时间的诊断报告,而且还需要可检测的肿瘤直径大小 ≥10mm。这限制了在初级医疗机构和发展中国家对SCLC的早期诊断。因此,需要寻 找一种快速、简便和经济的方法辅助诊断肺癌,提高肺癌的确诊率。
神经元特异性烯醇化酶(NSE)被广泛认为是SCLC早期诊断和后续治疗的特异性预测因子。在正常人血清中NSE水平为5-12ng/mL,>24ng/mL即可诊断为SCLC。 截至目前,已有许多方法应用于NSE的检测,包括荧光免疫分析、放射免疫分析、质 谱免疫分析、电泳、电化学检测、表面增强拉曼检测等,但上述方法仍在成本、时间和 操作上存在些许不足。故寻找一种简便、快速和经济的检测方法至关重要。
电化学核酸适配传感器是以将已知序列的核酸适配体作为识别元件,与靶分子高亲 合性和高特异性地结合,利用电化学信号变化检测生物大分子和活性小分子的含量,目前广泛用于生物标志物的检测和疾病标志物的预测及诊断于生物传感器构建中,得到的适体传感器具有高灵敏度、快响应、低成本的特点。
发明内容
为了解决现有技术中的问题,本发明提供一种用于肺癌NSE检测的电化学适体传感器,以ZnO@PDDA/N-CNTs/AuNPs为传感界面、Ni6MnO8@AB/PtNPs/NBA II为信 号探针,协同放大适体传感器的电化学信号实现了对NSE的超灵敏检测,为小细胞肺 癌患者早期诊断提供新的诊断途径。
除特殊说明外,本发明所述份数均为重量份,所述百分比均为质量百分比。
为实现上述目的,本发明的技术方案为:
一种用于肺癌NSE检测的电化学适体传感器,其特征在于:通过信号探针和基底材料构建用于肺癌NSE检测的电化学适体传感器。
所述构建用于肺癌NSE检测的电化学适体传感器的方法为:将基底材料 ZnO@PDDA/N-CNTs溶液滴加到玻碳电极表面上,室温干燥;然后将干燥的电极沉积 金60S,并滴加100μg/mL链霉亲和素于4℃孵育12h;将电极用DEPC水冲洗干净, 滴加BIO-NBAI,于4℃孵育2h;接着用DEPC水冲洗干净,滴加1%牛血清蛋白(BSA) 于室温孵育0.5-1h;然后又用DEPC水冲洗干净,滴加NSE于电极表面,于25-45℃下 孵育0.5-3h;最后用DEPC水冲洗干净,滴加Ni6MnO8@AB/PtNPs/NBA II信号探针溶 液于室温孵育2h,得到用于NSE检测的电化学适体传感器。
所述信号探针溶液的制备方法为:Ni6MnO8@AB粉末分散在超纯水中,加入1%K2PtCl6搅拌15min后再缓慢滴加4mg/mLNaBH4制得Ni6MnO8@AB/PtNPs分散液,向 Ni6MnO8@AB/PtNPs分散液中加入NSE结合适体II(NBA II),冰浴搅拌12h,离心, 水洗,将沉淀物重新分散于超纯水中,得到Ni6MnO8@AB/PtNPs/NBA II的信号探针溶 液。
所述Ni6MnO8@AB复合纳米材料的制备方法为:将Mn(CH3COO)2·4H2O和 Ni(NO3)2·6H2O溶于超纯水中,加入HMTA混合均匀,再加入活化的AB,于高压反应 釜中80℃反应12h,自然冷却至室温,水洗至中性,60℃烘干;然后将烘干的产物 在300℃下煅烧2h,升温速率为2℃min-1,得到Ni6MnO8@AB复合纳米材料。
活化AB的步骤为:将AB分散在浓硝酸中,然后80℃加热条件下搅拌24h,收集 浓硝酸处理后的AB,在冰水中冷却,水洗至中性,60℃烘干即得。
所述基底材料分散液的制备方法为:氮掺杂碳纳米管(N-CNTs)溶于无水乙醇溶液中,超声分散均匀,在室温下搅拌,然后加入ZnO@PDDA溶液,室温下磁力搅拌24h,离心、洗涤,再将沉淀物分散在超纯水中,得到ZnO@PDDA/N-CNTs的基底材 料分散液。
所述ZnO@PDDA溶液的制备方法为称取的氧化锌(ZnO)溶于无水乙醇溶液中, 超声分散均匀,在室温下搅拌,然后滴加1wt%聚二烯丙基二甲基氯化铵(PDDA), 磁力搅拌24h得到分散均匀的ZnO@PDDA溶液。
本发明用于检测肺癌NSE的电化学适体传感器,由以下方法制备得到,该方法包括以下步骤:
(1)信号探针的制备;
1)活化AB:将20mg AB分散在5mL浓硝酸中,然后80℃加热条件下搅拌24h, 收集浓硝酸处理后的AB,在冰水中冷却,水洗至中性,60℃烘干即得;
2)Ni6MnO8@AB:将174.5mg Ni(NO3)2·6H2O和Mn(CH3COO)2·4H2O溶于20mL 超纯水中搅拌5min,加入1.680g HMTA继续搅拌30min,加入16mg步骤1)制得的 活化AB加粉末,继续搅拌30min,将混合溶液转移至高压反应釜中80℃反应12h, 自然冷却至室温,水洗至中性,60℃烘干;烘干的产物在300℃下煅烧2h,升温速率为 2℃min-1,得到Ni6MnO8@AB复合纳米材料;
3)Ni6MnO8@AB/PtNPs:取1mg步骤2)制得的Ni6MnO8@AB粉末分散在1mL 超纯水中,加入750μL1%K2PtCl6搅拌15min后再缓慢滴加4mg/mLNaBH4,制得 Ni6MnO8@AB/PtNPs分散液,于4℃保存;
4)Ni6MnO8@AB/PtNPs/NBA II:向1mL步骤3)制得的Ni6MnO8@AB/PtNPs分散 液中加入2μM NSE结合适体II(NBA II)200μL,冰浴搅拌12h,离心,水洗,将沉 淀物重新分散于1mL超纯水中,即得到Ni6MnO8@AB/PtNPs/NBA II的信号探针溶液;
(2)基底材料的制备;
1)ZnO@PDDA:称取1mg的氧化锌(ZnO)溶于1mL无水乙醇溶液中,超声分 散均匀,在室温下搅拌,然后滴加1wt%聚二烯丙基二甲基氯化铵(PDDA)300μL, 磁力搅拌24h得到分散均匀的ZnO@PDDA溶液;
2)ZnO@PDDA/N-CNTs:称取1mg氮掺杂碳纳米管(N-CNTs)溶于1mL无水乙 醇溶液中,超声分散均匀,在室温下搅拌,然后加入1mL步骤1)制得的ZnO@PDDA 溶液,室温下磁力搅拌24h,离心、洗涤,再将沉淀物分散在1mL超纯水中,得到 ZnO@PDDA/N-CNTs的基底材料分散液;
(3)用于NSE检测的电化学适体传感器的构建
1)将10μL基底材料ZnO@PDDA/N-CNTs溶液滴加到清洁的玻碳电极表面上,室 温干燥;
2)将步骤1)制得的干燥电极沉积金60S,并滴加10μL的100μg/mL链霉亲和素 于4℃孵育12h;
3)将步骤2)获得的电极用DEPC水冲洗干净后,滴加20μL BIO-NBAI,于4℃ 孵育2h;
4)将步骤3)获得的电极用DEPC水冲洗干净后,滴加20μL 1%牛血清蛋白(BSA) 于室温孵育0.5-1h;
5)将步骤4)获得的电极用DEPC水冲洗干净后,滴加不同浓度NSE于电极表面, 于25-45℃下孵育0.5-3h;
6)将步骤5)获得的电极用DEPC水冲洗干净后,滴加10μL Ni6MnO8@AB/PtNPs/NBAII信号探针溶液于室温孵育2h,得用于NSE检测的电化学 适体传感器。
本发明还提供利用电化学适体传感器检测NSE的方法。
一种利用电化学适体传感器检测NSE的方法,其特征在于,包括如下步骤:
1)向上述传感器的电极上滴加不同浓度的目标物神经元特异性烯醇化酶(NSE);
2)将电极置于含有8mM H2O2的0.1M PBS(pH=7.4)溶液中进行表征,记录其 电流变化差值;
3)根据步骤2)所得电流变化差值与NSE浓度对数值的线性关系,绘制工作曲线;
4)将待测样品用所述传感器检测,将得到的电流变化差值通过步骤3)制得的工作曲线计算得到待测样品的NSE浓度。
与现有技术相比,本发明的一种检测NSE的电化学适体传感器的制备方法与应用,其突出的特点是:
本发明制备了碳材料乙炔黑(AB)和贵金属铂纳米粒子(PtNPs)修饰的三元过渡金属氧化物材料(Ni6MnO8),然后通过金属粒子与巯基的键合作用装载大量NSE适 体链II(NBA II),最终制备了Ni6MnO8@AB/PtNPs/NBA II的信号探针溶液。为避免 Ni6MnO8固有的弱电导率影响其电子转移性能,本发明利用了掺杂乙炔黑(AB)显著 提高其导电性;显著提高了Ni6MnO8对被分析物的电催化性能,实现信号放大从而提 高传感器的灵敏性。之后,通过原位还原贵金属铂纳米粒子(PtNPs),不仅提高了电 子转移的电活性表面积的可用性,而且作为NSE适体(NBA II)的活性结合位点,提 高NBA II负载量。另外,在本发明中以氧化锌-聚二烯丙基二甲基氯化铵-氮掺杂碳纳 米管(ZnO@PDDA/N-CNTs)沉积金60S合成ZnO@PDDA/N-CNTs/AuNPs材料作为 传感界面,捕获大量生物素修饰的捕获探针(BIO-NBAI)进一步实现信号放大,所制 备的电化学适体传感器成功的用于NSE的超灵敏检测。与传统的NSE检测方法相比, 本发明的优点在于灵敏度高,特异性强,检测迅速,操作方便,设备材料价格低廉,无 污染,从而为NSE的检测提供了新的分析方法。
本发明的有益效果是:
1)本发明首次利用一锅法成功合成了碳材料乙炔黑(AB)修饰三元过渡金属氧化物材料(Ni6MnO8)新型复合物Ni6MnO8@AB/PtNPs,并首次将用于生物传感器来检测 NSE,显示出较强的信号放大作用;
2)制备的新型复合物Ni6MnO8@AB/PtNPs与巯基标记的信号探针混合搅拌,通过Pt-S键结合制得示踪标记物,方法简单,且本发明采用新型复合物Ni6MnO8@AB/PtNPs 制备的示踪标记物可应用于各种不同生物传感器。
2)本发明生物传感器以ZnO@PDDA/N-CNTs/AuNPs为传感界面,一方面增加了 电极的导电性,另一方面能固载更多的捕获探针,与示踪标记物杂交协同放大传感器的 信号,进而提高电化学NSE适体传感器的灵敏度和检测范围。本发明制得的生物传感 器还具有线性范围宽、特异性强、分析时间短,稳定性和重现性好等优点。
3)适体用于目标物的识别具有高度的特异性,可提高传感器的选择性,从而为微量NSE的检测提供了新的研究方向和分析方法。
4)涉及的材料均可在实验室条件下合成,具有操作简单,原材料价格低廉,毒性低、环境友好,而且每次使用量极少,降低了实验成本。
5)整个检测分析方法步骤清晰简便,灵敏度高,信号响应迅速,检测限可达fg/mL。
6)本方法制备的电化学适体传感器可为NSE的检测提供新方法;该发明所制备的电化学适体传感器也可应用于其它生物样本测定、食品药品和环境的监测等方面。
附图说明
图1是不同浓度的NSE通过本发明传感器检测的结果,其中,图A为在8mM H2O2的0.1M PBS(pH 7.0)中传感器分别对0,0.00001,0.0001,0.001,0.01,0.1,1,10和 100ng/mL的NSE扫描的安培电流时间曲线法(i-t)图;图B为不同浓度NSE对数值 与传感器i-t响应值的校准曲线。
图2是传感器稳定性检测结果,具体为1ng/mLNSE孵育的传感器20天后得到的 时电流时间图;
图3是五支不同玻碳电极同时孵育1ng/mL NSE所得的传感器在相同条件下扫描后得到的重现性结果。
图4是不同修饰电极在5mM K3[Fe(CN)6]/K4[Fe(CN)6]溶液中电压范围从-0.2到0.6 V以100mV/s的扫描速率得到的循环伏安表征图。
图5是NSE适体传感器的特异性检测图,其中,干扰物为癌胚抗原(CEA,100 pg/mL),人血清蛋白(HSA,100pg/mL),细胞角蛋白19血清片段21-1(CYFRA21-1, 100pg/mL),前列腺特异性抗原(PSA,100pg/mL),循环肿瘤细胞DNA(ctDNA, 100pM),混合物(NSE+CEA+HSA+CYFRA21-1+PSA+ctDNA,100pg/mL)。
具体实施方式
下面通过具体实施例对本发明进行具体描述,在此指出以下实施例只用于对本发明 进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术熟练人员可以根据上述发明内容对本发明作出一些非本质的改进和调整。
本发明所用原料及试剂均为市售产品,其中神经元特异性烯醇化酶(NSE)抗原购自上海领潮生物科技有限公司(中国上海);乙炔黑(AB)购自艾维信化工科技有限公司 (天津,中国);硼酸和六水硝酸锌(Zn(NO3)2·6H2O)购自科隆试剂(中国成都);六 水硝酸镍(Ni(NO3)2·6H2O)、乌洛托品(HMTA)、三(2-羧乙基)膦盐酸盐(TCEP)、氯 金酸(HAuCl4)、氯铂酸钾(K2PtCl6)、链霉亲合素购自阿拉丁生化科技股份有限公 司(中国上海);四水乙酸锰(Mn(CH3COO)2·4H2O)购自Alfa Aesar(USA);聚二 烯丙基二甲基氯化铵(PDDA)购自Sigma(USA);过氧化氢(H2O2)购自重庆川东 化工集团有限公司(中国重庆);氮掺杂碳纳米管(N-CNTs)购自南京先锋纳米有限 公司(中国南京);牛血清蛋白(BSA)购自J&K ScientificLtd(中国北京);涉及到 的适体由上海生工有限公司合成,具体序列如下:
NSE结合适体链I(NBAI)的序列:
5'-Biotin-TCACACACGGACCTCTCCTACATTAATTGCGCATTTCGTT-3'
NSE结合适体链II(NBAII)的序列:
5'-SH-(CH2)6-CGGTAATACGGTTATCCACAGAATCAGGGG-3'
所用设备及技术参数:
仪器:在CHI 660E电化学工作站(上海辰华)中采用三电极系统进行安培电流时间曲 线法(i-t)、循环伏安法(CV)。其中三电极系统包括铂丝(对电极)、饱和甘汞电极(SCE,参比电极)和修饰后的玻碳电极(GCE,工作电极)。安培电流时间曲线图(i-t)是由三电 极系统在8mM H2O2的0.1M PBS(pH 7.0)中获得。pH计监测pH值(S210 SevenCompact, 梅特勒-托利多,中国上海)。电化学三电极系统在5mM K3[Fe(CN)6]/K4[Fe(CN)6]溶液 中以100mV/s扫描。
实施例1制备信号探针、基底材料。
按照如下步骤操作:
(1)信号探针的制备;
1)活化AB:将20mg AB首先分散在5mL浓硝酸中,然后80℃加热条件下搅拌 24h,使AB表面引入含氧官能团,增强AB与金属之间的界面附着力。收集酸处理后 的AB,在冰水中冷却,水洗至中性,60℃烘干即得;
2)Ni6MnO8@AB:将174.5mg Ni(NO3)2·6H2O和Mn(CH3COO)2·4H2O溶于20mL 超纯水中搅拌5min,加入1.680g HMTA继续搅拌30min,取16mg步骤1)制得的活 化AB加粉末加入上述均匀溶液中,继续搅拌30min,将混合溶液转移至高压反应釜中 80℃反应12h,自然冷却至室温,水洗至中性,60℃烘干。最后,产物在300℃下煅 烧2h,升温速率为2℃min-1,得到Ni6MnO8@AB复合纳米材料;
3)Ni6MnO8@AB/PtNPs:取1mg步骤2)制得的Ni6MnO8@AB粉末分散在1mL 超纯水中,加入750μL1%K2PtCl6搅拌15min后再缓慢滴加4mg/mLNaBH4即得到 Ni6MnO8@AB/PtNPs分散液,于4℃保存;
4)Ni6MnO8@AB/PtNPs/NBA II:向1mL步骤3)制得的Ni6MnO8@AB/PtNPs分散 液中加入2μM NSE结合适体II(NBA II)200μL,冰浴搅拌12h,离心,水洗,将沉 淀物重新分散于1mL超纯水中,即得到Ni6MnO8@AB/PtNPs/NBA II的信号探针溶液;
(2)基底材料的制备;
1)ZnO@PDDA:称取1mg的氧化锌(ZnO)溶于1mL无水乙醇溶液中,超声分 散均匀,在室温下搅拌,然后滴加1wt%聚二烯丙基二甲基氯化铵(PDDA)300μL上 述ZnO溶液中,磁力搅拌24h得到分散均匀的ZnO@PDDA溶液;
2)ZnO@PDDA/N-CNTs:称取1mg氮掺杂碳纳米管(N-CNTs)溶于1mL无水乙 醇溶液中,超声分散均匀,在室温下搅拌,然后加入1mL步骤1)制得的ZnO@PDDA 溶液,室温下磁力搅拌24h,离心、洗涤,再将沉淀物分散在1mL超纯水中,即得到 ZnO@PDDA/N-CNTs的基底材料分散液。
实施例2制备用于NSE检测的电化学适体传感器。
按照如下步骤操作:
1)用10mM TES(pH=7.4)缓冲液室温下处理NSE结合适体生物素修饰的适体I(BIO-NBAI)、三(2-羧乙基)膦盐酸盐(TCEP)处理巯基修饰的适体II(SH-NBA II), 储存备用;
2)将玻碳电极用食人鱼洗液(98%H2SO4/30%H2O2=3:1,v/v)浸泡30min后用 超纯水冲洗干净备用;
3)将步骤2)得到的电极分别用0.3μm和0.05μm的Al2O3粉末抛光呈镜面,然 后分别按超纯水、无水乙醇、超纯水的顺序超声处理电极,干燥备用;
4)将步骤3)得到的电极在0.5M H2SO4中进行电化学活化,然后用超纯水冲洗, 干燥;
5)将10μL基底材料ZnO@PDDA/N-CNTs溶液滴加到步骤4)清洁的玻碳电极表 面上,室温干燥;
6)将步骤5)制得的干燥电极沉积金60S,并滴加10μL的100μg/mL链霉亲和 素于4℃孵育12h;
7)将步骤6)获得的电极用DEPC水冲洗干净后,滴加20μL步骤1)制得的 BIO-NBAI,于4℃孵育2h;
8)将步骤7)获得的电极用DEPC水冲洗干净后,滴加20μL 1%牛血清蛋白(BSA) 于室温孵育0.5-1h;
9)将步骤8)获得的电极用DEPC水冲洗干净后,滴加不同浓度NSE于电极表面, 于25-45℃下孵育0.5-3h;
10)将步骤9)获得的电极用DEPC水冲洗干净后,滴加10μL Ni6MnO8@AB/PtNPs/NBAII信号探针溶液于室温孵育2h,即得到用于NSE检测的电 化学适体传感器。
采用实施例2构建的电化学适体传感器检测NSE,按照如下步骤操作
一、绘制标准曲线
1)将实施例2步骤4)至步骤10)的修饰电极置于含8mM H2O2的0.1M PBS(pH 7.0)中进行表征,测量其i-t响应信号,测量不同浓度NSE的i-t响应值。根据不同浓度NSE对 数值和i-t响应信号绘制标准曲线。
本发明传感器对不同浓度NSE的检测结果如图1A和图1B所示。图1A为在8mM H2O2的0.1M PBS(pH 7.0)中传感器对不同浓度NSE扫描的安培电流时间曲线(i-t)图 中,a至h分别对应0、10fg/mL、100fg/mL、1pg/mL、10pg/mL、100pg/mL、1ng/mL、10ng/mL 和100ng/mL不同浓度的NSE检测结果。图1B为不同浓度NSE的对数值与传感器i-t响应值 的校准曲线,检测结果表明NSE浓度对数值与传感器i-t响应值两者在10fg/mL-100ng/mL 浓度范围内呈良好的线性关系,线性相关系数为0.9989,检测限为0.15fg/mL。
2)将实施例2步骤4)至步骤10)的修饰电极分别置于5mM K3[Fe(CN)6]/K4[Fe(CN)6] 溶液中进行CV。测量其电流响应信号,结果如图4所示:(a)裸玻碳电极;(b)滴加ZnO@PDDA/N-CNTs复合材料;(c)滴加滴加ZnO@PDDA/N-CNTs复合材料并沉积金 60S;(d)孵育SA;(e)孵育NBAI;(f)BSA封闭;(g)孵育目标物。
二、传感器稳定性测试:
将实施例2制得的传感器在将制备好的传感器置于4℃储存20天,结果发现储存20天后电流为初始电流的91.61%,表明传感器具有良好的稳定性。
三、传感器重现性测试:
将实施例2采用五支不同玻碳电极孵育相同浓度NSE(1ng/mL)制得的传感器进行测量后(如图3所示),得到相对标准偏差(RSD)为3.42%,表明传感器重现性良好。
四、传感器特异性测试:
为了研究提出的适应传感器的特异性,将对不同干扰物:癌胚抗原(CEA,100 pg/mL),人血清蛋白(HSA,100pg/mL),细胞角蛋白19血清片段21-1(CYFRA21-1, 100pg/mL),前列腺特异性抗原(PSA,100pg/mL),循环肿瘤细胞DNA(ctDNA,100pM) 以及混合物(NSE+CEA+HSA+CYFRA21-1+PSA+ctDNA,100pg/mL)在相同浓度及条 件下测定的不同干扰物质在含8mMH2O2的0.1M PBS(pH=7.0)中电化学发光强度响 应值。结果表明(如图5所示),提出的基于NSE~NBA的高特异性反应的适体传感器具 有良好的特异性。

Claims (5)

1.一种用于肺癌NSE检测的电化学适体传感器,其特征在于:通过信号探针和基底材料构建用于肺癌NSE检测的电化学适体传感器;
所述构建用于肺癌NSE检测的电化学适体传感器的方法为:将基底材料ZnO@PDDA/N-CNTs溶液滴加到玻碳电极表面上,室温干燥;然后将干燥的电极沉积金60S,并滴加100μg/mL链霉亲和素于4℃孵育12h;将电极用DEPC水冲洗干净,滴加BIO-NBAI,于4℃孵育2h;接着用DEPC水冲洗干净,滴加1%牛血清蛋白(BSA)于室温孵育0.5-1h;然后又用DEPC水冲洗干净,滴加NSE于电极表面,于25-45℃下孵育0.5-3h;最后用DEPC水冲洗干净,滴加Ni6MnO8@AB/PtNPs/NBA II信号探针溶液于室温孵育2h,得到用于NSE检测的电化学适体传感器;
所述信号探针溶液的制备方法为:Ni6MnO8@AB粉末分散在超纯水中,加入1%K2PtCl6搅拌15min后再缓慢滴加4mg/mLNaBH4制得Ni6MnO8@AB/PtNPs分散液,向Ni6MnO8@AB/PtNPs分散液中加入NSE结合适体II(NBA II),冰浴搅拌12h,离心,水洗,将沉淀物重新分散于超纯水中,得到Ni6MnO8@AB/PtNPs/NBA II的信号探针溶液;所述Ni6MnO8@AB复合纳米材料的制备方法为:将Mn(CH3COO)2·4H2O和Ni(NO3)2·6H2O溶于超纯水中,加入HMTA混合均匀,再加入活化的AB,于高压反应釜中80℃反应12h,自然冷却至室温,水洗至中性,60℃烘干;然后将烘干的产物在300℃下煅烧2h,升温速率为2℃min-1,得到Ni6MnO8@AB复合纳米材料;
所述基底材料分散液的制备方法为:氮掺杂碳纳米管(N-CNTs)溶于无水乙醇溶液中,超声分散均匀,在室温下搅拌,然后加入ZnO@PDDA溶液,室温下磁力搅拌24h,离心、洗涤,再将沉淀物分散在超纯水中,得到ZnO@PDDA/N-CNTs的基底材料分散液。
2.如权利要求1所述的传感器,其特征在于,活化AB的步骤为:将AB分散在浓硝酸中,然后80℃加热条件下搅拌24h,收集浓硝酸处理后的AB,在冰水中冷却,水洗至中性,60℃烘干即得。
3.如权利要求1所述的传感器,其特征在于:所述ZnO@PDDA溶液的制备方法为称取的氧化锌(ZnO)溶于无水乙醇溶液中,超声分散均匀,在室温下搅拌,然后滴加1wt%聚二烯丙基二甲基氯化铵(PDDA),磁力搅拌24h得到分散均匀的ZnO@PDDA溶液。
4.如权利要求1-3任一项所述的传感器,由以下方法制备得到,包括以下步骤:
(1)信号探针的制备;
1)活化AB:将20mg AB分散在5mL浓硝酸中,然后80℃加热条件下搅拌24h,收集浓硝酸处理后的AB,在冰水中冷却,水洗至中性,60℃烘干即得;
2)Ni6MnO8@AB:将174.5mg Ni(NO3)2·6H2O和Mn(CH3COO)2·4H2O溶于20mL超纯水中搅拌5min,加入1.680g HMTA继续搅拌30min,加入16mg步骤1)制得的活化AB加粉末,继续搅拌30min,将混合溶液转移至高压反应釜中80℃反应12h,自然冷却至室温,水洗至中性,60℃烘干;烘干的产物在300℃下煅烧2h,升温速率为2℃min-1,得到Ni6MnO8@AB复合纳米材料;
3)Ni6MnO8@AB/PtNPs:取1mg步骤2)制得的Ni6MnO8@AB粉末分散在1mL超纯水中,加入750μL1%K2PtCl6搅拌15min后再缓慢滴加4mg/mLNaBH4,制得Ni6MnO8@AB/PtNPs分散液,于4℃保存;
4)Ni6MnO8@AB/PtNPs/NBA II:向1mL步骤3)制得的Ni6MnO8@AB/PtNPs分散液中加入2μMNSE结合适体II(NBA II)200μL,冰浴搅拌12h,离心,水洗,将沉淀物重新分散于1mL超纯水中,即得到Ni6MnO8@AB/PtNPs/NBA II的信号探针溶液;
(2)基底材料的制备;
1)ZnO@PDDA:称取1mg的氧化锌(ZnO)溶于1mL无水乙醇溶液中,超声分散均匀,在室温下搅拌,然后滴加1wt%聚二烯丙基二甲基氯化铵(PDDA)300μL,磁力搅拌24h得到分散均匀的ZnO@PDDA溶液;
2)ZnO@PDDA/N-CNTs:称取1mg氮掺杂碳纳米管(N-CNTs)溶于1mL无水乙醇溶液中,超声分散均匀,在室温下搅拌,然后加入1mL步骤1)制得的ZnO@PDDA溶液,室温下磁力搅拌24h,离心、洗涤,再将沉淀物分散在1mL超纯水中,得到ZnO@PDDA/N-CNTs的基底材料分散液;
(3)用于NSE检测的电化学适体传感器的构建
1)将10μL基底材料ZnO@PDDA/N-CNTs溶液滴加到清洁的玻碳电极表面上,室温干燥;
2)将步骤1)制得的干燥电极沉积金60S,并滴加10μL的100μg/mL链霉亲和素于4℃孵育12h;
3)将步骤2)获得的电极用DEPC水冲洗干净后,滴加20μL BIO-NBAI,于4℃孵育2h;
4)将步骤3)获得的电极用DEPC水冲洗干净后,滴加20μL 1%牛血清蛋白(BSA)于室温孵育0.5-1h;
5)将步骤4)获得的电极用DEPC水冲洗干净后,滴加不同浓度NSE于电极表面,于25-45℃下孵育0.5-3h;
6)将步骤5)获得的电极用DEPC水冲洗干净后,滴加10μLNi6MnO8@AB/PtNPs/NBA II信号探针溶液于室温孵育2h,得用于NSE检测的电化学适体传感器。
5.一种利用权利要求1-4任一项所述电化学适体传感器检测NSE的方法,其特征在于,包括如下步骤:
1)向传感器的电极上滴加不同浓度的目标物神经元特异性烯醇化酶(NSE);
2)将电极置于含有8mM H2O2的0.1M PBS(pH=7.4)溶液中进行表征,记录其电流变化差值;
3)根据步骤2)所得电流变化差值与NSE浓度对数值的线性关系,绘制工作曲线;
4)将待测样品用所述传感器检测,将得到的电流变化差值通过步骤3)制得的工作曲线计算得到待测样品的NSE浓度。
CN202210303134.5A 2022-03-25 2022-03-25 用于小细胞肺癌nse检测的电化学适体传感器的制备方法及应用 Active CN114594258B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210303134.5A CN114594258B (zh) 2022-03-25 2022-03-25 用于小细胞肺癌nse检测的电化学适体传感器的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210303134.5A CN114594258B (zh) 2022-03-25 2022-03-25 用于小细胞肺癌nse检测的电化学适体传感器的制备方法及应用

Publications (2)

Publication Number Publication Date
CN114594258A true CN114594258A (zh) 2022-06-07
CN114594258B CN114594258B (zh) 2024-07-12

Family

ID=81811042

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210303134.5A Active CN114594258B (zh) 2022-03-25 2022-03-25 用于小细胞肺癌nse检测的电化学适体传感器的制备方法及应用

Country Status (1)

Country Link
CN (1) CN114594258B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115932266A (zh) * 2022-12-01 2023-04-07 重庆医科大学 用于非小细胞肺癌cyfra21-1检测的电致化学发光免疫传感器及检测方法
CN117368169A (zh) * 2023-10-17 2024-01-09 天津大学 一种nse检测装置及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080082858A (ko) * 2007-03-09 2008-09-12 한국화학연구원 탄소나노튜브 트랜지스터 어레이를 이용한 미생물 검출센서및 이를 이용한 미생물 검출방법
CN103926293A (zh) * 2014-04-21 2014-07-16 大连大学 一种氧化锌/多壁碳纳米管修饰电极及其制备方法和应用
US20180305831A1 (en) * 2017-04-19 2018-10-25 California Institute Of Technology Oxygen evolution reaction catalysis
CN109741966A (zh) * 2019-02-27 2019-05-10 江西理工大学 一种具有核壳结构特征的Ni6MnO8@碳纳米管复合材料及其制备方法和应用
CN110749635A (zh) * 2019-10-31 2020-02-04 重庆医科大学 纳米复合材料、电化学microRNA生物传感器的制备方法及应用
CN112432979A (zh) * 2020-12-08 2021-03-02 重庆医科大学 纳米复合材料、esat-6电化学适体传感器及其制备与检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080082858A (ko) * 2007-03-09 2008-09-12 한국화학연구원 탄소나노튜브 트랜지스터 어레이를 이용한 미생물 검출센서및 이를 이용한 미생물 검출방법
CN103926293A (zh) * 2014-04-21 2014-07-16 大连大学 一种氧化锌/多壁碳纳米管修饰电极及其制备方法和应用
US20180305831A1 (en) * 2017-04-19 2018-10-25 California Institute Of Technology Oxygen evolution reaction catalysis
CN109741966A (zh) * 2019-02-27 2019-05-10 江西理工大学 一种具有核壳结构特征的Ni6MnO8@碳纳米管复合材料及其制备方法和应用
CN110749635A (zh) * 2019-10-31 2020-02-04 重庆医科大学 纳米复合材料、电化学microRNA生物传感器的制备方法及应用
CN112432979A (zh) * 2020-12-08 2021-03-02 重庆医科大学 纳米复合材料、esat-6电化学适体传感器及其制备与检测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GAN JIA 等: "Formation of Hierarchical Structure Composed of (Co/Ni)Mn-LDH Nanosheets on MWCNT Backbones for Efficient Electrocatalytic Water Oxidation", ACS APPL. MATER. INTERFACES, vol. 8, no. 23, 31 December 2016 (2016-12-31), pages 14527 *
ZUO, JL 等: "An efficient electrochemical assay for miR-3675-3p in human serum based on the nanohybrid of functionalized fullerene and metal-organic framework", ANALYTICA CHIMICA ACTA, vol. 1140, 15 December 2020 (2020-12-15), pages 78 - 88, XP086354666, DOI: 10.1016/j.aca.2020.10.017 *
林秋沙 等: "Ni6MnO8/HPC的制备及超级电容性能", 电池, vol. 49, no. 05, 31 December 2019 (2019-12-31), pages 368 - 372 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115932266A (zh) * 2022-12-01 2023-04-07 重庆医科大学 用于非小细胞肺癌cyfra21-1检测的电致化学发光免疫传感器及检测方法
CN117368169A (zh) * 2023-10-17 2024-01-09 天津大学 一种nse检测装置及系统

Also Published As

Publication number Publication date
CN114594258B (zh) 2024-07-12

Similar Documents

Publication Publication Date Title
Shao et al. Target-triggered signal-on ratiometric electrochemiluminescence sensing of PSA based on MOF/Au/G-quadruplex
Ravalli et al. A label-free electrochemical affisensor for cancer marker detection: The case of HER2
Rong et al. Metal ions doped chitosan–poly (acrylic acid) nanospheres: Synthesis and their application in simultaneously electrochemical detection of four markers of pancreatic cancer
Hasanzadeh et al. Immunosensing of breast cancer prognostic marker in adenocarcinoma cell lysates and unprocessed human plasma samples using gold nanostructure coated on organic substrate
CN114594258B (zh) 用于小细胞肺癌nse检测的电化学适体传感器的制备方法及应用
Huang et al. Highly sensitive luminol electrochemiluminescence immunosensor based on platinum-gold alloy hybrid functionalized zinc oxide nanocomposites for catalytic amplification
Ni et al. Enhanced performance of an electrochemical aptasensor for real-time detection of vascular endothelial growth factor (VEGF) by nanofabrication and ratiometric measurement
CN114235907B (zh) 用于非小细胞肺癌cyfra21-1检测的电化学发光免疫传感器及检测方法
CN112986348B (zh) 一种基于过渡金属硫化物的双模式电化学生物传感器的制备与应用
CN114295694A (zh) 一种用于乳腺癌her-2检测的电化学发光适体传感器及其检测方法
Hartati et al. Gold nanoparticles modified screen-printed immunosensor for cancer biomarker HER2 determination based on anti HER2 bioconjugates
Eshlaghi et al. A label-free electrochemical aptasensor based on screen printed carbon electrodes with gold nanoparticles-polypyrrole composite for detection of cardiac troponin I
Wang et al. Detection of two markers for pancreatic cancer (CEA, CA199) based on a nano-silicon sphere-cyclodextrin recognition platform
CN111060574B (zh) 一种基于双重信号放大策略检测唾液酸的核酸适配体电化学传感器
Li et al. Aptamer–gold nanoparticle-signal probe bioconjugates amplify electrochemical signal for the detection of prostate specific antigen
Huang et al. Simultaneous detection of two tumor markers using electrochemical immunosensor based on ultrathin metal–organic framework derived nanosheets as redox probes
CN112710709A (zh) 用于目标dna检测的硫化镉量子点玻碳电极及其制备方法、电化学发光传感器系统与应用
CN115932000B (zh) 一种用于检测EGFR-ctDNA电化学生物传感器及其制备方法与应用
CN114924074B (zh) 一种用于检测乳腺癌her2的电化学免疫传感器及其检测方法
CN109932409A (zh) 用于sCD40L检测的可再生电化学免疫传感器制备方法
CN113325060B (zh) 石墨烯磁性纳米电极、电化学免疫传感器及制备方法及应用
CN112322703B (zh) 基于dna自组装结构对两种循环肿瘤dna同时检测的方法
Xu et al. MXene Boosted Ultrasensitive Electrochemical Detection of 5‐Hydroxymethylcytosine in Genomic DNA from Complex Backgrounds
CN115436634B (zh) 用于非小细胞肺癌cyfra21-1检测的电化学免疫传感器及检测方法
Meng et al. Adriamycin coated silica microspheres as labels for cancer biomarker alpha-fetoprotein detection

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant