CN114588911B - 一种钴基催化剂催化丙烷二氧化碳制备合成气的方法 - Google Patents

一种钴基催化剂催化丙烷二氧化碳制备合成气的方法 Download PDF

Info

Publication number
CN114588911B
CN114588911B CN202210289645.6A CN202210289645A CN114588911B CN 114588911 B CN114588911 B CN 114588911B CN 202210289645 A CN202210289645 A CN 202210289645A CN 114588911 B CN114588911 B CN 114588911B
Authority
CN
China
Prior art keywords
carbon dioxide
cobalt
propane
based catalyst
synthesis gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210289645.6A
Other languages
English (en)
Other versions
CN114588911A (zh
Inventor
何德东
曾瑞明
罗永明
梅毅
陈定凯
张宜民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202210289645.6A priority Critical patent/CN114588911B/zh
Publication of CN114588911A publication Critical patent/CN114588911A/zh
Application granted granted Critical
Publication of CN114588911B publication Critical patent/CN114588911B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种钴基催化剂催化丙烷二氧化碳制备合成气的方法,具体是以钙钛矿LaCoO3为前驱体,将前驱体置于醋酸与H2O2的混合溶液中,静置,抽滤,干燥后,置于氮气气氛下升温至590‑690℃,通入含体积浓度10%氢气的氩气还原1h,制得钴基催化剂,然后在钴基催化剂催化、500‑650℃、常压下通入含二氧化碳、丙烷的混合气体,反应制备合成气;本发明方法简单,易操作,适用于工业化生产和市场推广应用。

Description

一种钴基催化剂催化丙烷二氧化碳制备合成气的方法
技术领域
本发明属于合成气制备技术领域,具体涉及一种钴基催化剂催化丙烷二氧化碳制备合成气的方法。
背景技术
CO2的排放主要来自化石燃料的消耗,被认为是气候变化和海洋酸化的主要原因。因此,缓解和利用二氧化碳至关重要。丙烷作为液化石油气(LPG)或生物质衍生的气体之一,可以安全可靠地压缩、运输和存储。这些特征是制合成气行业原料的理想特性。合成气的生产和应用在化学工业中具有极为重要的地位。丙烷二氧化碳重整能够制的合成气,不仅能够减缓气候变化及海洋酸化,还能使得CO2资源化,有望成为节能且环境友好行的合成工艺。但是CO2分子非常稳定,难以活化,且其氧化性较弱,所以导致催化剂活性较低,失活较快等难题
对丙烷二氧化碳重整反应,目前研究的催化剂主要是贵金属催化剂,如Rh、Re、Ru等。贵金属基催化剂表现出较高的活性和稳定性,但由于其有限的可获得性和高成本及在高温下易烧结团聚,对于大规模工艺而言经济性较低。钴基催化剂具有较高的活性,目前未见任何报道单金属Co基催化剂用于丙烷二氧化碳重整反应,同时价格低廉易获得,可以促进丙烷二氧化碳重整制合成气的实现经济可行的重整工艺。
发明内容
本发明提供了一种钴基催化剂催化丙烷二氧化碳制备合成气的方法,该方法采用酸性H2O2溶液处理钙钛矿LaCoO3前驱体,制备出的含有大量氧空位的LaCoO3催化剂,然后将LaCoO3催化剂应用在催化丙烷二氧化碳制备合成气中。
本发明方法具体是以钙钛矿LaCoO3为前驱体,将前驱体置于醋酸与H2O2的混合溶液中,静置,抽滤,干燥后,置于氮气气氛下升温至590-690℃,通入含体积浓度10%氢气的氩气还原1h,制得钴基催化剂,其中醋酸与H2O2的混合溶液是将体积浓度15-20%的醋酸溶液与H2O2按体积比1:1-3的比例混合制得;然后在钴基催化剂催化、500-650℃、常压下通入含二氧化碳、丙烷的混合气体,反应制备合成气。
所述钙钛矿LaCoO3为前驱体是在硝酸镧溶液中加入六水合硝酸钴,在75-85℃下水浴搅拌反应1-1.5h后,加入柠檬酸,继续搅拌反应1-1.5h,用氨水调节反应物pH为8后,在75-85℃下继续搅拌反应至溶液为凝胶状态,凝胶物置于加热板上加热直至自燃,然后放入700-800℃下煅烧5h制得,其中La:Co的摩尔比为1:1,柠檬酸与金属离子的摩尔比为1.5-3:1。所述含二氧化碳、丙烷的混合气体中丙烷体积浓度为10-25%,二氧化碳体积浓度为10-30%。
本发明钙钛矿LaCoO3前驱体采用酸性H2O2处理可以有效的提高催化剂的稳定性及活性,制得的催化剂含有大量氧空位以及溶出到钙钛矿表面的Co;将催化剂用于丙烷二氧化碳制备合成气,催化剂含有的氧空位诱导CO2活化耦合溶出到钙钛矿表面的Co诱导丙烷的活化,反应能够富产合成气,丙烷和二氧化碳转化率在550℃分别达到15%和35%;本发明方法简单,易操作,适用于工业化生产和市场推广应用。
附图说明
图1为实施例1制备的催化剂的XRD图;
图2为实施例1制备的催化剂的XPS图,其中a为催化剂 O 1s 光谱,b为催化剂中氧空位与晶格氧的比值;
图3为实施例1制备的催化剂对反应物C3H8的转化率图;
图4为实施例1制备的催化剂对反应物CO2的转化率图;
图5为实施例1制备的催化剂对产物CO的选择性图;
图6为实施例1制备的催化剂对产物H2的选择性图;
图7为实施例2制备的催化剂对反应物C3H8的转化率图;
图8为实施例2制备的催化剂对反应物CO2的转化率图。
具体实施方式
为了使本发明的技术方案更加清楚明白,下面将用实施例具体给予详细说明,但本发明的内容不局限于下列实施方式的范围,下述实施例中混合气体以N2为载气;
实施例1:本钴基催化剂催化丙烷二氧化碳制备合成气的方法如下:
(1)将3.1g硝酸镧溶于20mL去离子水中,将4.18g六水合硝酸钴加入硝酸镧溶液中,在80℃的水浴锅中搅拌反应1h后,加入2.76g柠檬酸,在80℃的水浴锅中继续搅拌1h,用氨水调节溶液pH为8后,在80℃的水浴锅中继续搅拌直至溶液成为凝胶状态,然后放在加热板上加热直至自燃,最后放在马弗炉700℃(升温速率10℃/min)煅烧5h,得到LaCoO3前驱体(LCO);
 (2)将2mL醋酸倒入8mL去离子水中,混匀后再加入10mL H2O2,搅拌5min;然后加入步骤(1)LaCoO3前驱体1g,静置1h,抽滤,固体在60℃烘箱中干燥5h,制得A-LCO催化剂;
 (3)将40-60目的A-LCO催化剂0.1g填入固定床反应器的6mm的石英管中,在氮气氛围中升温至590℃,向反应器中通入含体积浓度10%氢气的氩气(30mL/min),还原1h后,切换通入氮气0.5h后,通入含25%二氧化碳、25%丙烷的混合反应气,流速为40mL/min,在550℃下反应,每间隔20min取样,并用气相色谱仪器FID、TCD、FPD测量C3H8、CO2、H2以及CO的浓度并计算其转化率及选择性;
同时设置对照实验1:以步骤(1)制得的LaCoO3前驱体作为催化剂填入固定床反应器的6mm的石英管中,在氮气氛围中升温至690℃,向反应器中通入含体积浓度10%氢气的氩气(30mL/min),还原1h后,切换通入氮气0.5h后,通入含25%二氧化碳、25%丙烷的混合反应气,流速为40mL/min,在550℃下反应;其余检测方式同步骤(3);
同时设置对照实验2:将步骤(1)制得的LaCoO3前驱体1g放置于2mL去离子水中,然后加入0.0998g(0.52g、1.08g)六水合硝酸钴,搅拌5min后,置于60℃烘箱中干燥5h,制得负载1%(5%、10%)Co的催化剂1Co-LCO(5Co-LCO、10Co-LCO),分别将催化剂1Co-LCO、5Co-LCO、10Co-LCO填入固定床反应器的6mm的石英管中,在氮气氛围中升温至590℃,向反应器中通入含体积浓度10%氢气的氩气(30mL/min),还原1h后,切换通入氮气0.5h后,通入含25%二氧化碳、25%丙烷的混合反应气,流速为40mL/min,在550℃下反应;其余检测方式同步骤(3);
本实施例制得的催化剂的XRD图见图1,从图中可以看出A-LCO催化剂未观察到衍射峰,表明溶出的到钙钛矿表面的Co材料分散性好,从而未被检测到,普通浸渍法负载Co制得的催化剂(1Co-LCO、5Co-LCO、10Co-LCO)和LCO催化剂未观察到LaCoO3衍射峰,是由于表面的的Co3O4的消晶效应导致的,但LCO观察到La2O3的衍射峰,表明高温还原不能保存钙钛矿结构易坍塌。
本实施例制得的催化剂的XPS图见图2,从图中可以看出A-LCO催化剂观察到氧空位与晶格氧的比值远远高于普通浸渍法负载Co制得的催化剂(10Co-LCO)和LCO催化剂的比值,表明LCO催化剂经过酸性H2O2可以获得更多的氧空位。
本实施例制得的催化剂的对反应物C3H8、CO2的转化率结果见图3、4,从图中可以看出LaCoO3前驱体作为催化剂、采用普通浸渍法负载Co制得的催化剂(1Co-LCO、5Co-LCO、10Co-LCO)对丙烷二氧化碳制备合成气几乎没有催化活性,而本实施例方法制得的A-LCO催化剂对反应物CO2的初始转化率35%,对反应物C3H8的初始转化率15%,具有较高的活性和稳定性;
本实施例制得的催化剂的对产物CO、H2的选择性结果见图5、6,从图中可以看出LaCoO3前驱体作为催化剂、采用普通浸渍法负载Co制得的催化剂(1Co-LCO、5Co-LCO、10Co-LCO)对丙烷二氧化碳制备合成气几乎没有催化活性,没有CO和H2产生,而本实施例方法制得的A-LCO催化剂对CO的选择性为52.5%、H2的选择性为30%,具有较好的选择性。
实施例2:本钴基催化剂催化丙烷二氧化碳制备合成气的方法如下:
 (1)将3.1g硝酸镧溶于20mL去离子水中,将4.18g六水合硝酸钴加入硝酸镧溶液中,在80℃的水浴锅中搅拌反应1h后,加入2.76g柠檬酸,在80℃的水浴锅中继续搅拌1h,用氨水调节溶液pH为8后,在80℃的水浴锅中继续搅拌直至溶液成为凝胶状态,然后放在加热板上加热直至自燃,最后放在马弗炉700℃(升温速率10℃/min)煅烧5h,得到LaCoO3前驱体;
 (2)将2mL醋酸倒入8mL去离子水中,混匀后再加入10mL H2O2,搅拌5min;然后加入步骤(1)LaCoO3前驱体1g,静置1h,抽滤,固体在60℃烘箱中干燥5h,制得A-LCO催化剂;
 (3)将40-60目的A-LCO催化剂0.1g填入固定床反应器的6mm的石英管中,在氮气氛围中升温至690℃,向反应器中通入含体积浓度10%氢气的氩气(30mL/min),还原1h后,切换通入氮气0.5h后,通入含25%二氧化碳、25%丙烷的混合反应气,流速为40mL/min,在550℃下反应,每间隔20min取样,并用气相色谱仪器FID、TCD、FPD测量C3H8、CO2、H2以及CO的浓度并计算其转化率及选择性;
本实施例制得的催化剂的对反应物C3H8、CO2的转化率结果见图7、8,本实施例方法制得的A-LCO-690℃催化剂对反应物CO2的初始转化率32%,对反应物C3H8的转化率19%,具有较高的活性和稳定性。
总之,本发明采用酸性H2O2处理可以有效的提高催化剂的稳定性及活性;该催化剂用于丙烷二氧化碳重整制合成气方面,丙烷与二氧化碳转化率分别可达15%和30%以上,H2和CO具有较高的选择性,具有良好的应用前景。
以上所述者,仅为本发明的较佳实施例而已,当不能以此限定本发明实施的范围,即大凡依本发明申请专利范围及发明说明内容所作的简单等效变化与修饰,皆仍属本发明专利涵盖的范围内。

Claims (3)

1.一种钴基催化剂催化丙烷二氧化碳制备合成气的方法,其特征在于:含二氧化碳、丙烷的混合气体,在钴基催化剂催化、500-650℃下反应制备合成气;
所述钴基催化剂是以钙钛矿LaCoO3为前驱体,将前驱体置于醋酸与H2O2的混合溶液中,静置,抽滤,干燥后,置于氮气气氛下升温至590-690℃,通入含体积浓度10%氢气的氩气还原1h制得,其中醋酸与H2O2的混合溶液是将体积浓度15-20%的醋酸溶液与H2O2按体积比1:1-3的比例混合制得。
2.根据权利要求1所述的钴基催化剂催化丙烷二氧化碳制备合成气的方法,其特征在于:钙钛矿LaCoO3前驱体是在硝酸镧溶液中加入六水合硝酸钴,在75-85℃下水浴搅拌反应1-1.5h后,加入柠檬酸,继续搅拌反应1-1.5h,用氨水调节反应物pH为8后,在75-85℃下继续搅拌反应至溶液为凝胶状态,凝胶物置于加热板上加热直至自燃,然后放入700-800℃下煅烧5h制得,其中La:Co的摩尔比为1:1,柠檬酸与金属离子的摩尔比为2-4:1。
3.根据权利要求1所述的钴基催化剂催化丙烷二氧化碳制备合成气的方法,其特征在于:含二氧化碳、丙烷的混合气体中丙烷体积浓度为10-25%,二氧化碳体积浓度为10-30%。
CN202210289645.6A 2022-03-23 2022-03-23 一种钴基催化剂催化丙烷二氧化碳制备合成气的方法 Active CN114588911B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210289645.6A CN114588911B (zh) 2022-03-23 2022-03-23 一种钴基催化剂催化丙烷二氧化碳制备合成气的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210289645.6A CN114588911B (zh) 2022-03-23 2022-03-23 一种钴基催化剂催化丙烷二氧化碳制备合成气的方法

Publications (2)

Publication Number Publication Date
CN114588911A CN114588911A (zh) 2022-06-07
CN114588911B true CN114588911B (zh) 2023-04-14

Family

ID=81811363

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210289645.6A Active CN114588911B (zh) 2022-03-23 2022-03-23 一种钴基催化剂催化丙烷二氧化碳制备合成气的方法

Country Status (1)

Country Link
CN (1) CN114588911B (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5149516A (en) * 1990-10-15 1992-09-22 Mobil Oil Corp. Partial oxidation of methane over perovskite catalyst
EA029026B1 (ru) * 2012-06-27 2018-01-31 Сауди Бейсик Индастриз Корпорейшн Катализатор и способ селективного получения низших углеводородов с1-с5 из синтез-газа с низким выходом метана и co
KR101447683B1 (ko) * 2012-11-27 2014-10-07 한국과학기술연구원 철로 개선된 니켈-베이스 페롭스카이트계 촉매, 이의 제조방법 및 이를 이용한 동시 개질 반응에 의한 합성 가스 제조 방법
CN110721705B (zh) * 2019-10-28 2023-09-19 西安凯立新材料股份有限公司 一种固定床丙烷脱氢制丙烯的铂基催化剂和方法
CN111589449B (zh) * 2020-06-18 2022-05-03 南京工业大学 用于丙烷脱氢钴基催化剂、制备方法及用途
CN113996301A (zh) * 2020-07-28 2022-02-01 中国科学院大连化学物理研究所 一种碳材料负载钴基催化剂及其制备与应用
CN112808295B (zh) * 2021-01-15 2022-03-22 昆明理工大学 一种单位点Co(Ⅱ)催化剂的制备方法及其应用

Also Published As

Publication number Publication date
CN114588911A (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
Chai et al. Total oxidation of propane over Co3O4-based catalysts: Elucidating the influence of Zr dopant
CN101462058B (zh) 天然气-二氧化碳重整制合成气的工业用催化剂
CN101637726A (zh) 一种甲烷-二氧化碳重整制备合成气催化剂的制备方法
CN109833877B (zh) 一种化学链部分氧化甲烷制合成气催化剂及其制备和应用
CN115254100A (zh) 一种用于co2加氢制乙醇的金属氧化物掺杂型单原子催化剂的制备与应用
Zamani et al. The investigation of Ru/Mn/Cu–Al2O3 oxide catalysts for CO2/H2 methanation in natural gas
CN113292411B (zh) 一种钙钛矿催化剂在催化二氧化碳加氢制甲酸中的应用及制备方法
CN111992213B (zh) 用于催化愈创木酚加氢脱氧制备环己醇的核壳型催化剂的制备方法
CN111389405B (zh) 一种预活化甲烷水蒸气制氢催化剂的方法
Yan et al. Nickel and oxygen-containing functional groups co-decorated graphene-like shells as catalytic sites with excellent selective hydrogenation activity and robust stability
CN115837275A (zh) 一种钙钛矿型高熵氧化物及其制备方法和应用
Jin et al. The role of modified manganese perovskite oxide for selective oxidative dehydrogenation of ethane: Not only selective H2 combustion but also ethane activation
CN114192180A (zh) 一种改性氮化硼负载的镍基甲烷干重整催化剂、其制备方法及其应用
CN114588911B (zh) 一种钴基催化剂催化丙烷二氧化碳制备合成气的方法
CN113145122B (zh) 一种复合金属氧化物催化剂及其制备方法和在催化氮氧化物直接分解中的应用
CN110871075B (zh) 负载铁钴钾的二氧化锆催化剂、制备方法及其应用
CN116809070A (zh) 一种低温逆水汽变换的单原子催化剂及其制备方法
KR101245484B1 (ko) 수성가스 전환 반응용 촉매와 이 촉매를 이용하여 수성가스전환 반응에 의한 합성가스의 제조방법
CN115069267B (zh) 一种钙钛矿基甲酸制氢催化剂及其制备方法与应用
KR100891903B1 (ko) 알루미나-지르코니아 복합산화물 담체에 담지된액화천연가스의 수증기 개질반응용 니켈 촉매 및 그제조방법
CN115228468A (zh) 一种金属复合氧化物催化剂及其制备方法及在二氧化碳加氢制乙醇中的应用
CN1318134C (zh) 一种用于氨分解的镍基催化剂的制备方法
Wang et al. Zirconia promoted metallic nickel catalysts for the partial oxidation of methane to synthesis gas
CN112387285A (zh) 一种镍基甲烷二氧化碳重整催化剂的制备方法
CN116060020B (zh) 乙酸自热重整制氢用钙铬基褐铁矿型镍基催化剂

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant