CN114573792B - 一种动态交联可降解环氧树脂及其制备方法与高温堵漏应用 - Google Patents

一种动态交联可降解环氧树脂及其制备方法与高温堵漏应用 Download PDF

Info

Publication number
CN114573792B
CN114573792B CN202210317472.4A CN202210317472A CN114573792B CN 114573792 B CN114573792 B CN 114573792B CN 202210317472 A CN202210317472 A CN 202210317472A CN 114573792 B CN114573792 B CN 114573792B
Authority
CN
China
Prior art keywords
plugging
epoxy resin
temperature
curing
curing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210317472.4A
Other languages
English (en)
Other versions
CN114573792A (zh
Inventor
范白涛
邢希金
刘莲英
周长所
冯桓榰
何松
王超
周定照
谷林
秦玮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Research Center of CNOOC China Ltd
CNOOC China Ltd
Original Assignee
Beijing Research Center of CNOOC China Ltd
CNOOC China Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Research Center of CNOOC China Ltd, CNOOC China Ltd filed Critical Beijing Research Center of CNOOC China Ltd
Priority to CN202210317472.4A priority Critical patent/CN114573792B/zh
Publication of CN114573792A publication Critical patent/CN114573792A/zh
Application granted granted Critical
Publication of CN114573792B publication Critical patent/CN114573792B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4215Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/38Epoxy compounds containing three or more epoxy groups together with di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/423Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof containing an atom other than oxygen belonging to a functional groups to C08G59/42, carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5006Amines aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5006Amines aliphatic
    • C08G59/502Polyalkylene polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5033Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/504Amines containing an atom other than nitrogen belonging to the amine group, carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/56Amines together with other curing agents
    • C08G59/58Amines together with other curing agents with polycarboxylic acids or with anhydrides, halides, or low-molecular-weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/426Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells for plugging
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • C09K8/467Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement containing additives for specific purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种动态交联可降解环氧树脂及其制备方法与高温堵漏应用。所述动态交联可降解环氧树脂的制备方法包括如下步骤:将环氧单体、固化剂和助剂经加热后进行混合、升温固化,得到固体产物,其中,环氧单体为包含2~4个环氧基团的单体,固化剂为酸酐、多元胺和/或含有二硫键的固化剂,助剂为醋酸锌、乙酰丙酮、1,8‑二氮杂双环[5.4.0]十一碳‑7‑烯、二苯二硫醚、苯酚、2‑氨基‑2‑甲基‑1‑丙醇和乙二醇胺中至少一种。本发明通过制备动态交联(动态硫‑硫键、动态酯交换键交联)的环氧树脂,制备可用于150~210℃高温堵漏材料,所得材料可在高温下逐渐降解、丧失承压堵漏能力,达到自行解堵、保护漏层目的。

Description

一种动态交联可降解环氧树脂及其制备方法与高温堵漏应用
技术领域
本发明涉及一种动态交联可降解环氧树脂及其制备方法与高温堵漏应用,属于钻井智能堵漏技术领域。
背景技术
储层裂缝发育易引起钻井液漏失,造成储层损害。储层漏失控制要求钻完井过程中能够高效封堵,同时要求钻完井后可有效解除封堵,以便后期恢复裂缝通道渗流能力,满足储层保护需求。
常用桥接堵漏(通过惰性颗粒堵漏材料架桥封堵裂缝)、凝胶堵漏和水泥浆堵漏等技术实现漏失控制,通过前期屏蔽暂堵、后期酸化解堵和生物酶解堵技术等实现解堵,如:储层段使用碳酸钙颗粒等桥堵材料,通常可采用强酸酸溶的方法解堵。目前的储层保护及解堵技术大多需要外界辅助才能解堵,且工艺复杂,因此需要综合考虑储层钻井过程中的防漏堵漏与储层保护,研究开发新型可自降解、自解堵的封堵材料及技术。
目前,可在堵漏凝胶中加入可吸水膨胀、且在一定温度下自动水化降解的聚合物材料,可形成自降解防漏堵漏体系,在漏失层快速形成封堵屏障,有效减少钻井液漏失;采用温度响应型自降解暂堵剂、利用降解催化剂如2-氨基-2-甲基-1-丙醇或乙二醇胺来催化降解聚乙二醇二丙烯酸酯交联的聚合物(包括聚丙烯酰胺类聚合物),由此实现解堵;在聚丙烯酰胺类聚合物暂堵剂中加入耐温抗盐组份,可在90℃储层条件下48h自行降解,降解率达90%以上;使用一种包含羧甲基瓜尔胶的可降解“液体胶塞”,后期泵入过硫酸铵溶液可进行破胶解堵。水泥中添加聚乳酸、聚氯乙烯和羧甲基淀粉等可制备一种自降解的低密度暂堵水泥。
聚乳酸(PLA)是一种具有良好生物可降解性的聚合物,其分子链结构中含有酯键,易发生水解断裂;高于熔融温度(180℃)时,易发生分子内酯交换而导致热降解。聚乳酸的优良降解性在新型自降解、自解堵储层封堵材料研发中受到了重点关注,如以聚乳酸为原料制备的新型堵漏剂,120℃、48h的降解率大于80%。
然而,随着油气资源勘探走向陆地深层、超深层以及海洋深水深层等复杂高温地层(地层温度超过150℃,部分甚至超过200℃),对堵漏材料在抗/耐温能力、堵漏承压强度和承压时间等性能提出了更高的要求,而常规防漏堵漏材料与储层保护材料易在深层高温作用下失效,需要研发针对深井高温地层堵漏的材料和技术。为此,考虑聚乳酸的降解性能及耐温性能,在聚乳酸类聚合物中添加有机络合促进剂进行复合改性,制备了一种自降解聚合物复合材料,但该材料仅可适用于60~110℃,70℃下6~7天、95℃下5~6天降解率超过15%,不满足150℃以上高温地层更长时间承压防漏堵漏需求。
环氧树脂具有高强机械性能、优异化学稳定性以及耐腐蚀性等,应用广泛。环氧结构中引入易于断裂的酯键、氨基甲酸酯键、碳酸酯、缩醛基团等,可使其在较低温度下降解,但同时也降低了机械性能,不能满足高温堵漏应用要求,因此,需要对此进行改进。
发明内容
本发明针对高温地层承压防漏堵漏以及自解堵的技术需求以及目前所用材料在高温承压及降解方面存在的问题,提供一种动态交联(动态硫-硫键、动态酯交换键)的可降解环氧树脂的制备方法及其作为堵漏剂在高温堵漏方面的应用。
本发明所提供的动态交联可降解环氧树脂的制备方法,包括如下步骤:
将环氧单体、固化剂和助剂经加热后进行混合,进行升温固化,得到固体产物,即为所述动态交联可降解环氧树脂。
上述的制备方法中,所述环氧单体为包含2~4个环氧基团的单体,为下述单体中至少一种:
双酚A二缩水甘油醚、三羟甲基丙烷三缩水甘油醚、4.4-二氨基二苯甲烷四缩水甘油胺、二(4-缩水甘油氧基苯基醚)二硫化物。
上述的制备方法中,所述固化剂为酸酐、多元胺和/或含有二硫键的固化剂;
所述酸酐为甲基六氢苯酐(MHHPA);
所述多元胺为二乙烯基三胺(DETA)、三乙烯基四胺(TETA)、聚醚胺(如D230,D400)、二氨基二苯甲烷(DDM)、4,4-二氨基二苯砜(DDS)和超支化聚胺(PA)中至少一种;
所述含有二硫键的固化剂为4,4-二硫代二丙酸(DTDA)、2,2’-二硫代二苯甲酸(DTBA)、4,4’-二羟基二苯二硫醚(TBP)、胱胺(CTA)和二硫代二苯胺(APD)中至少一种。
上述的制备方法中,固化体系中,所述环氧单体的质量百分含量为50~75%,余量为所述固化剂;
所述固化体系为所述环氧单体与所述固化剂的混合物。
上述的制备方法中,所述助剂为醋酸锌(ZnAD)、乙酰丙酮锌(Zn(acac)2,)、1,8-二氮杂双环[5.4.0]十一碳-7-烯(DBU)、二苯二硫醚(DPDS)、苯酚、2-氨基-2-甲基-1-丙醇(AMP)和乙二醇胺中至少一种,起催化或促进降解的作用;
所述助剂的质量为固化体系质量的2~10%,所述固化体系为所述环氧单体与所述固化剂的混合物。
上述的制备方法中,所述升温固化的条件如下:
在60~90℃固化1~2h,100~120℃固化1~2h,130~150℃固化2~4h。
本发明制备的动态交联可降解环氧树脂的玻璃化转变温度为150~210℃,热失重5%的温度为300~400℃。
经本发明动态交联可降解环氧树脂浸泡于油中,在180℃烘箱中老化10天,测试质量损失为1.5~8.5%,老化30天,测试质量损失70~80%。
将本发明动态交联可降解环氧树脂粉碎成固体颗粒物能够作为堵漏剂,与碳酸钙颗粒、纤维和弹性石墨组合,作为堵漏组合物,用于高温堵漏,高温指的是150~210℃的温度。
所述高温堵漏组合物中各组分的质量比为:
动态交联可降解环氧树脂4~8,碳酸钙颗粒8~15,纤维材料0.2~0.4,弹性石墨4~6;
所述碳酸钙颗粒的粒径可为10~20目、20~40目或40~80目。
所述纤维材料可为玄武岩纤维或碳纤维,纤维长度为3~5mm。。
本发明具有如下有益效果:
本发明通过制备动态交联(动态硫-硫键、动态酯交换键交联)的环氧树脂,制备可用于150~210℃高温堵漏材料,所得材料可在高温下逐渐降解、丧失承压堵漏能力,达到自行解堵、保护漏层目的。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
下述实施例中,按照下述方法测定实验浆的漏失量:
采用长裂缝封堵实验装置测试含堵漏剂实验浆在老化10天、30天的封堵性能,裂缝为开度为3×2mm、4×3mm的狭长裂缝,180℃测试未老化、老化10天实验浆承压8~12MPa,漏失量小于100~200ml;180℃测试老化30天实验浆,完全漏失。
实施例1、
在烧杯中分别称取环氧单体E51(50%)、固化剂甲基六氢苯酐-MHHPA(50%)和助剂乙酰丙酮锌-Zn(acac)2(10%),分别在100℃油浴中加热、搅拌,然后混合、倒入模具中,放入烘箱于100℃固化2h,130℃固化2h,150℃固化2h;所得固体产物的玻璃化转变温度为150℃,热失重5%的温度为300℃;将固体产物样品浸泡于油中,在180℃烘箱老化10天,质量损失8.5%,老化30天,质量损失80%。
将固体产物在烘箱中于180℃老化10天、30天;将未老化固体样品、老化样品粉碎成颗粒物作为堵漏剂,将该堵漏剂(8%)与碳酸钙颗粒(15%,其中,10~20目碳酸钙7%、20~40目碳酸钙4%,40~80目碳酸钙4%)、纤维(0.4%,3~5mm,玄武岩纤维)和弹性石墨(6%)组合,加入到4%膨润土基础浆液中,形成实验浆;采用长裂缝(4×3mm)封堵实验装置测试堵漏剂在180℃的封堵性能,未老化实验浆承压12MPa、漏失量100ml;老化10天实验浆承压8MPa、漏失量200ml;老化30天实验浆,完全漏失。
实施例2、
与实施例1相同,不同之处在于:采用的环氧单体(57%)为E44和4.4-二氨基二苯甲烷四缩水甘油胺-TGDOM,固化剂为甲基六氢苯酐-MHHPA(43%),助剂为醋酸锌-ZnAD(10%)。升温固化过程为:60℃固化1h,100℃固化1h,130℃固化2h,150℃固化2h。
本实施例所得固体产物的玻璃化转变温度为179℃,热失重5%的温度为320℃;将固体产物样品浸泡于油中,在180℃烘箱老化10天,质量损失4.5%,老化30天,质量损失73%。
将未老化、老化10天、30天样品的颗粒堵漏剂(4%)与碳酸钙颗粒(8%)、纤维(0.2%,3~5mm,碳纤维)和弹性石墨(4%)组合,加入到4%膨润土基础浆液中,形成实验浆;采用长裂缝(3×2mm)封堵实验装置测试堵漏剂在180℃的封堵性能,未老化实验浆承压12MPa、漏失量55ml;老化10天实验浆承压12MPa、漏失量125ml;老化30天实验浆,完全漏失。
实施例3、
与实施例1相同,不同之处在于:采用的环氧单体(50%)为E51和三羟甲基丙烷三缩水甘油醚-TMTGE,助剂为乙酰丙酮锌-Zn(acac)2(2%)。升温固化过程为:90℃固化2h,120℃固化1h,150℃固化4h。
本实施例所得固体产物的玻璃化转变温度为176℃,热失重5%的温度为300℃;将固体产物样品浸泡于油中,在180℃烘箱老化10天,质量损失5.5%,老化30天,质量损失76%。
将未老化、老化10天、30天样品的颗粒堵漏剂(4%)与碳酸钙颗粒(12%)、纤维(0.2%)和弹性石墨(6%)组合,加入到4%膨润土基础浆液中,形成实验浆;采用长裂缝(3×2mm)封堵实验装置测试堵漏剂在180℃的封堵性能,未老化实验浆承压10MPa、漏失量75ml;老化10天实验浆承压12MPa、漏失量150ml;老化30天实验浆,完全漏失。
实施例4、
与实施例1相同,不同之处在于:采用的固化剂为二乙烯基三胺-DETA和聚醚胺D400,助剂1,8-二氮杂双环[5.4.0]十一碳-7-烯(DBU)(5%)。
本实施例所得固体产物的玻璃化转变温度为166℃,热失重5%的温度为302℃;将固体产物样品浸泡于油中,在180℃烘箱老化10天,质量损失7.5%,老化30天,质量损失77%。
将未老化、老化10天、30天样品的颗粒堵漏剂(6%)与碳酸钙颗粒(12%)、纤维(0.3%)和弹性石墨(6%)组合,加入到4%膨润土基础浆液中,形成实验浆;采用长裂缝(3×2mm)封堵实验装置测试堵漏剂在180℃的封堵性能,未老化实验浆承压10MPa、漏失量115ml;老化10天实验浆承压12MPa、漏失量170ml;老化30天实验浆,完全漏失。
实施例5、
与实施例1相同,不同之处在于:采用的固化剂为四乙烯基五胺-TETA和聚醚胺D230,助剂(10%)为2-氨基-2-甲基-1-丙醇-AMP和乙二醇胺。
本实施例所得固体产物的玻璃化转变温度为153℃,热失重5%的温度为301℃;将固体产物样品浸泡于油中,在180℃烘箱老化10天,质量损失8.5%,老化30天,质量损失80%。
将未老化、老化10天、30天样品的颗粒堵漏剂(6%)与碳酸钙颗粒(15%)、纤维(0.4%)和弹性石墨(6%)组合,加入到4%膨润土基础浆液中,形成实验浆;采用长裂缝(4×3mm)封堵实验装置测试堵漏剂在180℃的封堵性能,未老化实验浆承压10MPa、漏失量173ml;老化10天实验浆承压12MPa、漏失量200ml;老化30天实验浆,完全漏失。
实施例6、
与实施例1相同,不同之处在于:采用的环氧单体为E51(75%),固化剂(25%)为二氨基二苯甲烷-DDM和二硫代二苯胺-APD,助剂为二苯二硫醚-DPDS(2%)。
本实施例所得固体产物的玻璃化转变温度为150℃,热失重5%的温度为375℃;将固体产物样品浸泡于油中,在180℃烘箱老化10天,质量损失1.5%,老化30天,质量损失70%。
将未老化、老化10天、30天样品的颗粒堵漏剂(4%)与碳酸钙颗粒(10%)、纤维(0.2%)和弹性石墨(4%)组合,加入到4%膨润土基础浆液中,形成实验浆;采用长裂缝(4×3mm)封堵实验装置测试堵漏剂在180℃的封堵性能,未老化实验浆承压10MPa、漏失量103ml;老化10天实验浆承压11MPa、漏失量155ml;老化30天实验浆,完全漏失。
实施例7、
与实施例1相同,不同之处在于:采用的环氧单体为E51(75%),固化剂(25%)为4,4-二氨基二苯砜-DDS和4,4-二硫代二丙酸-DTDA,助剂(4%)为二苯二硫醚-DPDS和苯酚。
本实施例所得固体产物的玻璃化转变温度为161℃,热失重5%的温度为375℃;将固体产物样品浸泡于油中,在180℃烘箱老化10天,质量损失2.3%,老化30天,质量损失70%。
将未老化、老化10天、30天样品的颗粒堵漏剂(4%)与碳酸钙颗粒(8%)、纤维(0.2%)和弹性石墨(4%)组合,加入到4%膨润土基础浆液中,形成实验浆;采用长裂缝(3×2mm)封堵实验装置测试堵漏剂在180℃的封堵性能,未老化实验浆承压10MPa、漏失量75ml;老化10天实验浆承压12MPa、漏失量105ml;老化30天实验浆,完全漏失。
实施例8、
与实施例1相同,不同之处在于:采用的环氧单体为E51(75%),固化剂(25%)为超支化聚胺-PA、光胺-CTA和2,2’-二硫代二苯甲酸-DTBA,助剂(6%)为二苯二硫醚-DPDS和苯酚。
本实施例所得固体产物的玻璃化转变温度为150℃,热失重5%的温度为345℃;将固体产物样品浸泡于油中,在180℃烘箱老化10天,质量损失8.5%,老化30天,质量损失80%。
将未老化、老化10天、30天样品的颗粒堵漏剂(6%)与碳酸钙颗粒(12%)、纤维(0.4%)和弹性石墨(6%)组合,加入到4%膨润土基础浆液中,形成实验浆;采用长裂缝(3×2mm)封堵实验装置测试堵漏剂在180℃的封堵性能,未老化实验浆承压10MPa、漏失量130ml;老化10天实验浆承压10MPa、漏失量175ml;老化30天实验浆,完全漏失。
实施例9、
与实施例1相同,不同之处在于:采用的环氧单体(75%)为E51和4.4-二氨基二苯甲烷四缩水甘油胺-TGDOM、固化剂(25%)为二氨基二苯甲烷-DDM和4,4’-二羟基二苯二硫醚-TBP、助剂(6%)为二苯二硫醚-DPDS和苯酚。
本实施例所得固体产物的玻璃化转变温度为210℃,热失重5%的温度为400℃;将固体产物样品浸泡于油中,在180℃烘箱老化10天,质量损失4.8%,老化30天,质量损失80%。
将未老化、老化10天、30天样品的颗粒堵漏剂(4%)与碳酸钙颗粒(10%)、纤维(0.3%)和弹性石墨(4%)组合,加入到4%膨润土基础浆液中,形成实验浆;采用长裂缝(3×2mm)封堵实验装置测试堵漏剂在180℃的封堵性能,未老化实验浆承压10MPa、漏失量95ml;老化10天实验浆承压10MPa、漏失量183ml;老化30天实验浆,完全漏失。
实施例10、
与实施例1相同,不同之处在于:采用的环氧单体(75%)为E51和二(4-缩水甘油氧基苯基醚)二硫化物BGPDS,固化剂(25%)为二氨基二苯甲烷-DDM,助剂(2%)为二苯二硫醚-DPDS。
本实施例所得固体产物的玻璃化转变温度为183℃,热失重5%的温度为388℃;将固体产物样品浸泡于油中,在180℃烘箱老化10天,质量损失8.5%,老化30天,质量损失80%。
将未老化、老化10天、30天样品的颗粒堵漏剂(6%)与碳酸钙颗粒(12%)、纤维(0.4%)和弹性石墨(6%)组合,加入到4%膨润土基础浆液中,形成实验浆;采用长裂缝(4×3mm)封堵实验装置测试堵漏剂在180℃的封堵性能,未老化实验浆承压10MPa、漏失量150ml;老化10天实验浆承压10MPa、漏失量200ml;老化30天实验浆,完全漏失。

Claims (6)

1.一种动态交联可降解环氧树脂的制备方法,包括如下步骤:
将环氧单体、固化剂和助剂经加热后进行混合、升温固化,得到固体产物,即为所述动态交联可降解环氧树脂;
所述环氧单体为包含2~4个环氧基团的单体,为下述单体中至少一种:
双酚A二缩水甘油醚、三羟甲基丙烷三缩水甘油醚、4.4-二氨基二苯甲烷四缩水甘油胺、二(4-缩水甘油氧基苯基醚)二硫化物;
所述固化剂为酸酐、多元胺和/或含有二硫键的固化剂;
所述酸酐为甲基六氢苯酐;
所述多元胺为二乙烯基三胺、三乙烯四胺、聚醚胺、二氨基二苯甲烷、4,4-二氨基二苯砜和超支化聚胺中至少一种;
所述含有二硫键的固化剂为4,4-二硫代二丙酸、2,2’-二硫代二苯甲酸、4,4’-二羟基二苯二硫醚、胱胺和二硫代二苯胺中至少一种;
固化体系中,所述环氧单体的质量百分含量为50~75%,余量为所述固化剂;
所述固化体系为所述环氧单体与所述固化剂的混合物;
所述助剂为醋酸锌、乙酰丙酮锌、1,8-二氮杂双环[5.4.0]十一碳-7-烯、二苯二硫醚、苯酚、2-氨基-2-甲基-1-丙醇和乙二醇胺中至少一种;
所述助剂的质量为固化体系质量的2~10%,所述固化体系为所述环氧单体与所述固化剂的混合物。
2.根据权利要求1所述的制备方法,其特征在于:所述升温固化的条件如下:
在60~90℃固化1~2h,100~120℃固化1~2h,130~150℃固化2~4h。
3.权利要求1或2所述方法制备的动态交联可降解环氧树脂。
4.权利要求3所述动态交联可降解环氧树脂在制备高温堵漏剂中的应用。
5.一种高温堵漏组合物,包括权利要求3所述动态交联可降解环氧树脂、碳酸钙颗粒、纤维和弹性石墨。
6.根据权利要求5所述的高温堵漏组合物,其特征在于:所述高温堵漏组合物中各组分的质量比为:
动态交联可降解环氧树脂 4~8,碳酸钙颗粒 8~15,纤维材料 0.2~0.4,弹性石墨 4~6。
CN202210317472.4A 2022-03-29 2022-03-29 一种动态交联可降解环氧树脂及其制备方法与高温堵漏应用 Active CN114573792B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210317472.4A CN114573792B (zh) 2022-03-29 2022-03-29 一种动态交联可降解环氧树脂及其制备方法与高温堵漏应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210317472.4A CN114573792B (zh) 2022-03-29 2022-03-29 一种动态交联可降解环氧树脂及其制备方法与高温堵漏应用

Publications (2)

Publication Number Publication Date
CN114573792A CN114573792A (zh) 2022-06-03
CN114573792B true CN114573792B (zh) 2023-07-18

Family

ID=81783518

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210317472.4A Active CN114573792B (zh) 2022-03-29 2022-03-29 一种动态交联可降解环氧树脂及其制备方法与高温堵漏应用

Country Status (1)

Country Link
CN (1) CN114573792B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4882399A (en) * 1987-08-21 1989-11-21 Polytechnic University Epoxy resins having reversible crosslinks
US5560934A (en) * 1991-09-05 1996-10-01 International Business Machines Corporation Cleavable diepoxide for removable epoxy compositions
RU2015151436A (ru) * 2015-12-01 2017-06-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Композиция для получения нанокомпозитов с перестраиваемой полимерной матрицей
CN107400255A (zh) * 2017-08-31 2017-11-28 江苏中信世纪新材料有限公司 有机盐作为催化剂化学降解环氧树脂的方法
CN108892929A (zh) * 2018-07-13 2018-11-27 江南大学 一种增韧增强型环氧树脂组合物
WO2019206199A1 (zh) * 2018-04-26 2019-10-31 中南民族大学 一种可降解超支化环氧树脂及其制备方法
CN111647137A (zh) * 2020-05-12 2020-09-11 武汉工程大学 一种生物基可降解超支化环氧树脂及其制备方法
CN112694871A (zh) * 2020-12-25 2021-04-23 中煤地一七三勘探队涿州有限责任公司 一种绿色环保钻探堵漏剂及其使用方法
CN114163467A (zh) * 2021-11-05 2022-03-11 中国石油大学(华东) 一种适用于裂缝性漏失地层的水基凝胶固结型堵漏体系及其制备方法及应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10696815B2 (en) * 2017-06-09 2020-06-30 Washington State University Methods for chemical degradation of epoxies using organic salts as catalysts
CN111961452B (zh) * 2020-08-04 2021-05-07 中国石油大学(华东) 耐高温高强度触变型凝胶堵漏剂及其制备方法与应用
WO2022060366A1 (en) * 2020-09-20 2022-03-24 Halliburton Energy Services, Inc. Polymer networks as lost-circulation material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4882399A (en) * 1987-08-21 1989-11-21 Polytechnic University Epoxy resins having reversible crosslinks
US5560934A (en) * 1991-09-05 1996-10-01 International Business Machines Corporation Cleavable diepoxide for removable epoxy compositions
RU2015151436A (ru) * 2015-12-01 2017-06-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Композиция для получения нанокомпозитов с перестраиваемой полимерной матрицей
CN107400255A (zh) * 2017-08-31 2017-11-28 江苏中信世纪新材料有限公司 有机盐作为催化剂化学降解环氧树脂的方法
WO2019206199A1 (zh) * 2018-04-26 2019-10-31 中南民族大学 一种可降解超支化环氧树脂及其制备方法
CN108892929A (zh) * 2018-07-13 2018-11-27 江南大学 一种增韧增强型环氧树脂组合物
CN111647137A (zh) * 2020-05-12 2020-09-11 武汉工程大学 一种生物基可降解超支化环氧树脂及其制备方法
CN112694871A (zh) * 2020-12-25 2021-04-23 中煤地一七三勘探队涿州有限责任公司 一种绿色环保钻探堵漏剂及其使用方法
CN114163467A (zh) * 2021-11-05 2022-03-11 中国石油大学(华东) 一种适用于裂缝性漏失地层的水基凝胶固结型堵漏体系及其制备方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Synthesis and Properties of Epoxy Networks with a Tunable Matrix;Barabanova, A. I.等;Polymer Science, Series A: Polymer Physics;第61卷(第3期);375-381 *
热致形状记忆"智能"型堵漏剂的制备与特性实验;暴丹;邱正松;叶链;钟汉毅;赵欣;邱维清;王宝田;郭保雨;;石油学报(01);第106-115页 *

Also Published As

Publication number Publication date
CN114573792A (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
CN104261765B (zh) 一种环氧树脂聚合物砂浆及其生产工艺
CN102827567B (zh) 沥青混凝土路面裂缝修补材料
CN114560996B (zh) 一种利用单宁酸固化制备的可降解生物环氧树脂及其高温堵漏应用
CN111995994B (zh) 一种采油套管用高承压堵漏剂及其加工工艺
CN110079286B (zh) 一种堵漏用延迟交联凝胶组合物及其制备方法
CN109735315A (zh) 一种环保型采油用延迟交联调剖剂及制备方法和用途
CN109705827A (zh) 石油钻井用堵漏承压剂及其制备方法
CN113355071B (zh) 一种可降解高强度树脂堵水剂及其制备方法和应用
CN103911134A (zh) 复合型调剖堵水剂
CN102604327A (zh) 无溶剂环氧树脂堵漏材料及其制备方法与应用
CN114573792B (zh) 一种动态交联可降解环氧树脂及其制备方法与高温堵漏应用
CN112876813A (zh) 一种阻燃型无溶剂环氧灌浆材料及其制备方法
CN103554842B (zh) 一种无收缩环氧灌浆材料及其制备方法
CN108947457B (zh) 一种有机无机复合光引发潜伏性土壤固化剂及其制备方法
CN111925780B (zh) 一种油气井堵漏堵水用耐高温高强度堵剂的制备方法
Wang et al. Preparation and characterization of self-healing polymeric materials with microencapsulated epoxy and imidazoline derivatives curing agent
CN114921148B (zh) 一种混凝土防护用微波固化环氧树脂材料及其制备方法
CN108585617B (zh) 一种抗冻融水性环氧砂浆及其制备方法
CN113651590B (zh) 一种建筑堵漏复合材料及其使用方法
CN112094629B (zh) 适用于裂缝性油藏的堵剂
CN112442354B (zh) 一种自支撑压裂体系及其制备方法和应用
CN111574181B (zh) 一种酸性水玻璃注浆材料及其制备方法
KR100559150B1 (ko) 나노 합성 무기질 폴리머를 함유하는 콘크리트 및건축구조물의 균열보수 · 보강재 조성물
CN111205837A (zh) 一种单组分环空堵漏剂及应用方法
CN106350044B (zh) 一种调剖用低毒环保聚合物交联剂

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant