CN114540840A - 一种FeCo/N-C纳米复合材料及其制备方法和应用 - Google Patents

一种FeCo/N-C纳米复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN114540840A
CN114540840A CN202111101456.3A CN202111101456A CN114540840A CN 114540840 A CN114540840 A CN 114540840A CN 202111101456 A CN202111101456 A CN 202111101456A CN 114540840 A CN114540840 A CN 114540840A
Authority
CN
China
Prior art keywords
feco
composite material
nano composite
reaction
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111101456.3A
Other languages
English (en)
Other versions
CN114540840B (zh
Inventor
高鹏
邓苹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Normal University
Original Assignee
Hangzhou Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Normal University filed Critical Hangzhou Normal University
Priority to CN202111101456.3A priority Critical patent/CN114540840B/zh
Publication of CN114540840A publication Critical patent/CN114540840A/zh
Application granted granted Critical
Publication of CN114540840B publication Critical patent/CN114540840B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/27Ammonia
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

本发明涉及催化剂领域,针对现有合成氨催化剂反应条件严苛的问题,提供一种FeCo/N‑C纳米复合材料,呈棒状,且具有多孔结构,催化效率高。本发明还提供所述催化剂的制备方法,a.将Fe盐、Co盐和配体溶解在溶剂中,升温反应,反应结束后分离出沉淀得到前驱体;b.将前驱体煅烧得到FeCo/N‑C纳米复合材料。制备方法简单,制得的催化剂纯度高。本发明还提供所述催化剂在电催化固氮合成氨中的应用。

Description

一种FeCo/N-C纳米复合材料及其制备方法和应用
技术领域
本发明涉及催化剂领域,尤其是涉及一种FeCo/N-C纳米复合材料及其制备方法和应用。
背景技术
氨作为塑料工业、制碱工业、化肥工业等领域的重要材料,有着广阔的应用范围。传统的哈伯法制氨使工业化的氨生产成为可能。但是由于反应条件以及对设备和动力的要求都比较苛刻,而且转化率较低,生产过程能耗高、污染重,成本高,因此长期以来,如何在较为温和的条件下实现固氮作用,一直是化学研究的热门领域。而另一方面随着工业快速发展,大量硝酸盐流入环境,污染地下水,威胁人们的健康,破坏了自然氮循环。
电催化技术由于具有环境友好、化学能高等优点,被认为是解决环境污染和能源危机的重要技术手段。电催化技术能够极大地实现电能向化学能地转变,同时电能又可以由风能,太阳能,潮汐能等多元能量转化而来,因此电催化有为人类解决环境和能源提供良好方案的潜力。然而,单一金属所制备的电催化剂材料多存在吸附脱附反应物困难、电子传输速率较慢且比表面积较小导致活性中心较少等缺点,多数传统单一金属电催化剂多存在稳定性不高、导电性不好且催化速率较慢等缺点,其对电能的利用效率较低,从而降低了其电催化效率,这阻碍了此类电催化剂在电催化技术领域的大规模应用;这也是目前多数电催化剂的一个主要缺点。针对上述存在的问题,人们对电催化剂做了改性处理,如贵金属负载改性、金属氧化物掺杂改性、半导体复合改性、离子掺杂改性等。然而,它们还存在许多缺点与不足,如昂贵的价格、不可控的含量和破坏性的共轭体系等缺点限制了它们的应用。因此,需要寻找合适的电催化剂来提高其电催化性能。
中国专利公开号CN112266002A,公开了一种常压下催化合成氨的方法,其特征在于:氢气和氮气在反应器中以液态合金为催化剂在常压下合成氨,反应中采用熔融盐,熔融盐的密度小于液态合金的密度,熔融盐用于提供反应界面并用于隔离液态合金避免引入反应环境中杂质。其不足之处在于:使用过程中需要将金属盐熔融,反应温度较高,熔融盐与氮源的接触面积有限,导致合成氨的速率偏低。
中国专利公开号CN106881132B,公开了一种合成氨的催化剂,其特征在于:催化剂由主体和添加剂组成;主体是FexN中的一种或者两种以上,x=1,2,3或4;添加剂为主族元素的含氢化合物的一种或者两种以上;所述催化剂主体与添加剂的质量比范围为200:1至1:100;主族元素的含氢化合物包括两类,第一类的分子式为MHx,其中M为IA、IIA、IIIA族元素中的一种以及两种以上的组合,x与M的化学价态一致,x为1,2或3;第二类为双金属的复合氢化物中的一种或者两种以上,复合氢化物的分子式为MxM'yHax+3y,其中M为IA、IIA族元素,M'为IIIA族元素中的一种以及两种以上,a为金属M的化合价态,a为2或3,x为1、2或3,y为1、2或3。其不足之处在于:该催化剂由活泼的主族元素的含氢化合物制得,对保存环境要求极高,反应过程中需严格控制水分含量,反应条件严苛,实用价值有限;该催化剂在催化化学反应前需要数小时甚至数天的活化过程;催化反应过程中,仍需要升温加压。据此需要一种理想的解决方法。
发明内容
本发明为了克服现有合成氨催化剂反应条件严苛的问题,提供一种FeCo/N-C纳米复合材料,呈多孔棒状,纯度高、性状好。本发明还提供所述FeCo/N-C纳米复合材料的制备方法,反应条件温和,制得的产物纯度高。本发明还提供所述FeCo/N-C纳米复合材料在电催化固氮合成氨中的应用,FeCo/N-C纳米复合材料无需活化,催化效率高、可重复利用性强。
为了实现上述目的,本发明采用以下技术方案:
一种FeCo/N-C纳米复合材料,呈棒状,且具有多孔结构,孔径分布为9-11nm,优选为10nm。催化剂与底物的接触面积是影响催化剂催化效率的一个重要元素,本发明的FeCo/N-C纳米复合材料具有多孔结构,大大增加了棒状FeCo/N-C纳米复合材料的比表面积,使其具有高密度的催化活性中心;同时,用作电催化反应的催化剂,多孔结构还使入射光在孔道内部多次反射和散射,提高了光利用率,因此本发明的FeCo/N-C纳米复合材料具有很大的催化潜力。
一种所述FeCo/N-C纳米复合材料的制备方法,包括以下步骤:
a.前驱体的制备:将Fe盐、Co盐和配体溶解在溶剂中,升温反应,反应结束后分离出沉淀得到前驱体;
b.FeCo/N-C纳米复合材料的制备:将步骤a得到的前驱体煅烧得到FeCo/N-C纳米复合材料。
作为优选,步骤a中,Fe盐为FeCl2的水合物,Co盐为Co(NO3)2的水合物,配体为NTA(氨三乙酸),溶剂为去离子水与异丙醇的混合溶剂。
作为优选,步骤a中各原料的摩尔比为,配体:Fe盐:Co盐=(3-9):(1-2):1。
作为优选,步骤a中反应温度为170~190℃,反应时间为5~7小时。
作为优选,步骤b中煅烧温度为450~550℃,煅烧时间为2~3小时。
一种所述FeCo/N-C纳米复合材料的应用,将其应用于电催化固氮合成氨,具体步骤为:将所述FeCo/N-C纳米复合材料负载在碳纸上,向电解池中倒入硝酸钾溶液,在电解池内完成电催化固氮合成氨的反应。
作为优选,电催化固氮合成氨反应中,将FeCo/N-C纳米复合材料20μg负载在碳纸上,向电解池中倒入0.1mol/L的硝酸钾溶液40ml,-0.7V电压下在电解池内完成反应。
作为优选,电催化固氮合成氨反应中的反应温度为25~40℃。
本发明的FeCo/N-C纳米复合材料因为具有较大的比表面积和多孔结构,具有很强的催化活性,在-0.7V电压下进行还原硝酸根合成氨反应,同时由于多孔FeCo/N-C纳米复合材料具有较大的比表面积和较好的导电性及稳定性,能够有效提升反应物吸附和脱附的效率,即可得到良好的催化效果;由于催化条件温和,又有碳层作为保护层,催化剂不易产生性状的改变,对FeCo/N-C纳米复合材料的损耗较低,可重复利用性强。
因此,本发明的有益效果为:制备的FeCo/N-C纳米复合材料纯度高;性状好;应用在电催化硝酸根合成氨反应中,FeCo/N-C纳米复合材料无需活化;对反应物稳定,方便保存和使用;比表面积大,导电性较好,能够有效吸附脱附反应物;活性中心密度高,催化效率高;可重复利用性强;具有多孔结构,能量利用率高;催化反应条件温和;不需高温高压;催化效率高。
附图说明
图1是实施例1的FeCo/N-C纳米复合材料的X射线衍射图。
图2是实施例1的FeCo/N-C纳米复合材料的扫描电镜微观形貌图。
图3为实施例1的FeCo/N-C纳米复合材料的透射电镜微观形貌图。
具体实施方式
下面通过具体实施例,对本发明的技术方案做进一步说明。
本发明中,若非特指,所采用的原料和设备等均可从市场购得或是本领域常用的,实施例中的方法,如无特别说明,均为本领域的常规方法。
一种FeCo/N-C纳米复合材料,呈棒状且具有多孔结构,孔径分布为10nm。
实施例1
一种FeCo/N-C纳米复合材料的制备方法,步骤为:
a.前驱体的制备
将0.12g的FeCl2·4H2O粉末分散到20mL去离子水中,加入0.12g的Co(NO3)2·6H2O粉末,常温下搅拌10分钟,分散完成后再加入0.25g的NTA和20mL异丙醇,常温下搅拌半小时,搅拌均匀后将其移至高压反应釜中,170℃下反应7小时;反应液在4000rpm的转速离心后滤出沉淀,水洗沉淀至中性后用无水乙醇洗涤3次;将所得固体样品放置于真空烘箱内,在60℃干燥12小时得0.30g前驱体。
b.FeCo/N-C纳米复合材料的制备
在氩气保护条件下将0.30g前驱体用管式炉煅烧,控制升温速度为5℃/min,升温至550℃,煅烧2小时,再经自然降温,得到FeCo/N-C纳米复合材料0.28g。
性能表征
如图1所示,实施例1制得FeCo/N-C纳米复合材料的X射线衍射图,与标准卡片对比,可见与单质Fe,Co拟合明显,纳米复合材料具有良好的结晶度并且没有生成其他杂质,纯度较高;如图2所示,实施例1制得FeCo/N-C纳米复合材料的扫描电镜微观形貌图,FeCo/N-C纳米复合材料为整体成簇的棒状,且具有良好的微观形貌,分布并结合较好;如图3所示,实施例1制得FeCo/N-C纳米复合材料的透射电镜微观形貌图,图中棒状FeCo/N-C纳米复合材料上的亮点处即为多孔结构所在,所得FeCo/N-C纳米复合材料具有良好的微观形貌,分布均匀且多孔特征明显。
应用
将制得的FeCo/N-C纳米复合材料用于催化硝酸根合成氨反应,步骤为:
离子色谱检测确认去离子水中不存在铵污染,将20μg的FeCo/N-C纳米复合材料负载在碳纸上,在装有0.1mol/L硝酸钾盐溶液40mL,电压为-0.7V的电解池中进行反应。1小时后,离子色谱测得反应体系FeCo/N-C纳米复合材料的催化效率为27600μg.mg-1.h-1
实施例2
一种FeCo/N-C纳米复合材料的制备方法,步骤为:
a.前驱体的制备
将0.12g的FeCl2·4H2O粉末分散到20mL去离子水中,加入0.12g的Co(NO3)2·6H2O粉末,常温下搅拌10分钟,分散完成后再加入0.35g的NTA和20mL异丙醇,常温下搅拌半小时,搅拌均匀后将其移至高压反应釜中,190℃下反应5小时;反应液在4000rpm的转速离心后滤出沉淀,水洗沉淀至中性后用无水乙醇洗涤3次;将所得固体样品放置于真空烘箱内,在60℃干燥12小时得0.37g前驱体。
b.FeCo/N-C纳米复合材料的制备
在氩气保护条件下将0.37g前驱体用管式炉煅烧,控制升温速度为5℃/min,升温至450℃,煅烧3小时,再经自然降温,得到FeCo/N-C纳米复合材料0.32g。
应用
将制得的FeCo/N-C纳米复合材料用于催化硝酸根合成氨反应,步骤同实施例1,测得反应体系FeCo/N-C纳米复合材料的催化效率为46800μg.mg-1.h-1
实施例3
一种FeCo/N-C纳米复合材料的制备方法,步骤为:
a.前驱体的制备
将0.12g的FeCl2·4H2O粉末分散到20mL去离子水中,加入0.12g的Co(NO3)2·6H2O粉末,常温下搅拌10分钟,分散完成后再加入0.45g的NTA和20mL异丙醇,常温下搅拌半小时,搅拌均匀后将其移至高压反应釜中,180℃下反应6小时;反应液在4000rpm的转速离心后滤出沉淀,水洗沉淀至中性后用无水乙醇洗涤3次;将所得固体样品放置于真空烘箱内,在60℃干燥12小时得0.43g前驱体。
b.FeCo/N-C纳米复合材料的制备
在氩气保护条件下将0.43g前驱体用管式炉煅烧,控制升温速度为5℃/min,升温至450℃,煅烧3小时,再经自然降温,得到FeCo/N-C纳米复合材料0.40g。
应用
将制得的FeCo/N-C纳米复合材料用于催化硝酸根合成氨反应,步骤同实施例1,测得反应体系FeCo/N-C纳米复合材料的催化效率为55500μg.mg-1.h-1
实施例4
与实施例3的区别在于步骤a中NTA的用量为0.65g,导致的结果差异是:步骤a得到0.53g前驱体,步骤b得到FeCo/N-C纳米复合材料0.49g,应用中催化效率为36200μg.mg-1.h-1
实施例5
与实施例3的区别在于步骤a中各试剂的用量为:0.08g FeCl2·4H2O、20mL去离子水、0.12g的Co(NO3)2·6H2O、0.23g的NTA和20mL异丙醇。
实施例6
与实施例3的区别在于步骤a中各试剂的用量为:0.16g FeCl2·4H2O、20mL去离子水、0.12g的Co(NO3)2·6H2O、0.69g的NTA和20mL异丙醇。
对比例1
与实施例3的区别在于,未使用Co(NO3)2·6H2O,最后制得的是Fe/C复合材料。将制得的Fe/C复合材料用于催化硝酸根合成氨反应,步骤同实施例1,测得反应体系Fe/C复合材料的催化效率为226μg.mg-1.h-1,远低于实施例3的55500μg.mg-1.h-1
对比例2
与实施例3的区别在于,未使用FeCl2·4H2O,最后制得的是Co/C复合材料。将制得的Co/C复合材料用于催化硝酸根合成氨反应,步骤同实施例1,测得反应体系Co/C复合材料的催化效率为616μg.mg-1.h-1,同样远低于实施例3的55500μg.mg-1.h-1
性能测试
一、催化固氮合成氨反应催化效率
将上述各实施例和对比例的应用结果汇总到表1,
表1实施例1~4与对比例1~2的催化固氮合成氨反应催化效率(时间:1h)
实施例1 实施例2 实施例3 实施例4 对比例1 对比例2
NTA用量(g) 0.25 0.35 0.45 0.65 0.45 0.45
催化效率(μg.mg<sup>-1</sup>.h<sup>-1</sup>) 27600 46800 55500 36200 226 616
从表中可以看出:①对比例1及对比例2表明,仅使用Co(NO3)2·6H2O作为原料制备纳米材料,表现出较低催化可忽略不计,这是由于没有双金属吸附位点,反应物的吸附和生成物的脱附效率变低,导致催化效率降低,而仅使用FeCl2·4H2O作为原料制备纳米材料,与上述原因相同,没有有利于反应物吸附和脱附及提供化氢的双金属位点,导致催化反应速率降低,表现出催化硝酸根还原为氨的催化活性大幅度降低,表现出了微弱的催化活性。而实施例1~4表现出较好的催化活性,说明在煅烧过程中,形成了理想的异核双金属位点的FeCo/N-C纳米复合材料。
②实施例1~4表明,在FeCl2·4H2O和Co(NO3)2·6H2O的投料量均为0.10g时,NTA用量逐渐增大,得到的FeCo/N-C纳米复合材料的催化活性逐渐增强,但在NTA用量达到一定值之后,催化活性又开始逐渐下降,这是由于随着NTA的用量增加,FeCo/N-C复合单元在棒状结构中的分散更加均匀,增加了有效异核双金属活性中心,形成的独立催化活性中心逐渐增加,FeCo/N-C纳米复合材料的催化活性逐渐增强,在NTA用量达到0.45g左右时,单位体积上催化活性中心数量达到最大,催化活性最强,催化效果最好,继续增大NTA的投料量,得到的单位质量的FeCo/N-C纳米复合材料上的C含量增大,催化活性中心逐渐减少,且催化活性中心容易被C载体包覆,降低了单位质量催化剂的催化活性。
二、重复利用率测试测试方法:将实施例1~4所得FeCo/N-C纳米复合材料应用于催化硝酸根合成氨反应循环数次后,将负载有复合材料FeCo/N-C的碳纸在相同条件下再应用于催化硝酸根还原合成氨反应,如此循环9次,检测FeCo/N-C纳米复合材料在多次重复利用后的催化活性改变情况,结果如表2所示。
表2实施例1~4的FeCo/N-C纳米复合材料循环催化十次硝酸根还原合成氨反应的催化效率
Figure BDA0003271083030000071
由表2可知,实施例1~4的FeCo/N-C纳米复合材料在循环催化硝酸根还原合成氨反应十小时后,FeCo/N-C纳米复合材料的催化效率仅发生了微小的改变。在循环使用十次后,实施例1的FeCo/N-C纳米复合材料仍保留有初始状态99.6%的催化效率;实施例2的FeCo/N-C纳米复合材料仍保留有初始状态99.3%的催化效率;实施例3的FeCo/N-C纳米复合材料仍保留有初始状态99.9%的催化效率;实施例4的FeCo/N-C纳米复合材料仍保留有初始状态99.5%的催化效率。因为催化反应的条件温和,也没有强酸性、强碱性、强氧化性物质参与催化反应或生成,FeCo/N-C纳米复合材料在循环使用后,催化活性没有发生较大改变,因此本发明的FeCo/N-C纳米复合材料具有很强的可重复利用性,实用性强。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (8)

1.一种FeCo/N-C纳米复合材料,其特征在于,呈棒状,且具有多孔结构。
2.一种权利要求1所述FeCo/N-C纳米复合材料的制备方法,其特征在于,包括以下步骤:
a.前驱体的制备:将Fe盐、Co盐和配体溶解在溶剂中,升温反应,反应结束后分离出沉淀得到前驱体;
b.FeCo/N-C纳米复合材料的制备:将步骤a得到的前驱体煅烧得到FeCo/N-C纳米复合材料。
3.根据权利要求2所述的一种FeCo/N-C纳米复合材料的制备方法,其特征在于,步骤a中,Fe盐为FeCl2的水合物,Co盐为Co(NO3)2的水合物,配体为氨三乙酸,溶剂为去离子水与异丙醇的混合溶剂。
4.根据权利要求2或3所述的一种FeCo/N-C纳米复合材料的制备方法,其特征在于,步骤a中各原料的摩尔比为,配体:Fe盐:Co盐=(3-9):(1-2):1。
5.根据权利要求2所述的一种FeCo/N-C纳米复合材料的制备方法,其特征在于,步骤a中反应温度为170~190℃,反应时间为5~7小时。
6.根据权利要求2所述的一种FeCo/N-C纳米复合材料的制备方法,其特征在于,步骤b中煅烧温度为450~550℃,煅烧时间为2~3小时。
7.一种权利要求1所述FeCo/N-C纳米复合材料的应用,其特征在于,将其应用于电催化固氮合成氨,具体步骤为:将所述FeCo/N-C纳米复合材料负载在碳纸上,向电解池中倒入硝酸钾溶液,在电解池内完成电催化固氮合成氨的反应。
8.根据权利要求7所述的一种FeCo/N-C纳米复合材料的应用,其特征在于,电催化固氮合成氨反应的反应温度为25~40℃。
CN202111101456.3A 2021-09-18 2021-09-18 一种FeCo/N-C纳米复合材料及其制备方法和应用 Active CN114540840B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111101456.3A CN114540840B (zh) 2021-09-18 2021-09-18 一种FeCo/N-C纳米复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111101456.3A CN114540840B (zh) 2021-09-18 2021-09-18 一种FeCo/N-C纳米复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114540840A true CN114540840A (zh) 2022-05-27
CN114540840B CN114540840B (zh) 2023-04-18

Family

ID=81668825

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111101456.3A Active CN114540840B (zh) 2021-09-18 2021-09-18 一种FeCo/N-C纳米复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114540840B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113718275A (zh) * 2021-07-13 2021-11-30 杭州师范大学 一种多孔棒状Co/C纳米棒复合材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109675640A (zh) * 2019-02-12 2019-04-26 济南大学 一种碳氮基铁钴氧化物纳米簇mof催化剂的制备方法和应用
CN110302825A (zh) * 2019-08-21 2019-10-08 河南师范大学 一种过渡金属-n-c复合电催化材料的制备方法
CN112786906A (zh) * 2021-01-28 2021-05-11 安徽理工大学 一种多孔Fe-Co-N掺杂多孔碳催化剂及其制备方法和应用
CN113398934A (zh) * 2021-05-25 2021-09-17 杭州师范大学 一种C/FeNi纳米复合材料及其制备方法以及在催化固氮合成氨中的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109675640A (zh) * 2019-02-12 2019-04-26 济南大学 一种碳氮基铁钴氧化物纳米簇mof催化剂的制备方法和应用
CN110302825A (zh) * 2019-08-21 2019-10-08 河南师范大学 一种过渡金属-n-c复合电催化材料的制备方法
CN112786906A (zh) * 2021-01-28 2021-05-11 安徽理工大学 一种多孔Fe-Co-N掺杂多孔碳催化剂及其制备方法和应用
CN113398934A (zh) * 2021-05-25 2021-09-17 杭州师范大学 一种C/FeNi纳米复合材料及其制备方法以及在催化固氮合成氨中的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TONG HU等: ""FeCo bimetallic nanoparticles embedded in MOF-derived nitrogen-doped porous carbon rods as efficient heterogeneous electro-Fenton catalysts for degradation of organic pollutants"", 《APPLIED MATERIALS TODAY》 *
ZHEN-YU WU等: ""Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst"", 《NATURE COMMUNICATIONS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113718275A (zh) * 2021-07-13 2021-11-30 杭州师范大学 一种多孔棒状Co/C纳米棒复合材料的制备方法

Also Published As

Publication number Publication date
CN114540840B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
Liu et al. Porous graphdiyne loading CoOx quantum dots for fixation nitrogen reaction
CN112647095B (zh) 原子级分散的双金属位点锚定的氮掺杂碳材料及其制备和应用
CN111672521A (zh) 一种过渡金属单原子材料及其制备方法和应用
CN112791730B (zh) 一种z型纳米钒酸铜基复合光催化剂及其制备方法和应用
CN113540476B (zh) 一种燃料电池非贵金属阴极催化剂的制备方法及应用
CN111790394A (zh) 羟基氧化铁助催化剂选择性修饰钒酸铋光催化材料的合成方法
CN114669299B (zh) 一种介孔碳负载铜铁双金属催化剂及其制备方法与应用
CN113373471A (zh) 一种用于电催化还原co2制低碳醇的铟基催化剂的制备方法及应用
CN114540840B (zh) 一种FeCo/N-C纳米复合材料及其制备方法和应用
CN111330620A (zh) 插层型类石墨氮化碳复合材料、其制备方法及其应用
Zhao et al. A two-dimensional MXene-supported CuRu catalyst for efficient electrochemical nitrate reduction to ammonia
CN111167443B (zh) 一种新型钌基催化剂及其制备方法和应用
CN108948366A (zh) 一种具有丰富Lewis酸性位的Fe-MOF催化剂的制备及其脱硫应用
CN110508324B (zh) 一种Co-Zn双金属有机骨架电催化析氧材料及其制法
CN115475641B (zh) 一种金属原子锚定的硼氮共掺杂碳材料及其制备方法
CN113398934B (zh) 一种C/FeNi纳米复合材料及其制备方法以及在催化固氮合成氨中的应用
CN107978763B (zh) 一种用于燃料电池的银-铁-氮-碳氧还原催化剂及其制备方法与应用
CN114797857B (zh) 一种纳米花状铜基材料及其制备方法和应用
CN113463119B (zh) 一种铋基-银基复合材料及其制备方法、应用
CN113755874B (zh) 一种CoNi/C纳米复合材料及其制备方法以及在电催化固氮合成氨的应用
CN115354346A (zh) 一种P诱导掺杂CoFe-LDH/多孔碳电解水析氢电极材料及其制备和应用
CN112774700B (zh) 一种抑制卤氧化铋光腐蚀的方法
CN113751037B (zh) 一种结合有机金属框架的金属碳化物Fe3C/Mo2C的制备和应用
CN114381758A (zh) 一种镍掺杂勃姆石与还原氧化石墨烯复合型电催化剂及其制备与应用
CN111215098B (zh) 硒化表面修饰二氧化钌纳米颗粒催化剂、制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant