CN114537391A - 一种基于预报观测器的车辆跟驰伺服控制方法及系统 - Google Patents

一种基于预报观测器的车辆跟驰伺服控制方法及系统 Download PDF

Info

Publication number
CN114537391A
CN114537391A CN202210172148.8A CN202210172148A CN114537391A CN 114537391 A CN114537391 A CN 114537391A CN 202210172148 A CN202210172148 A CN 202210172148A CN 114537391 A CN114537391 A CN 114537391A
Authority
CN
China
Prior art keywords
vehicle
following
observer
forecasting
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210172148.8A
Other languages
English (en)
Inventor
潘登
陆润芝
袁洪良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN202210172148.8A priority Critical patent/CN114537391A/zh
Publication of CN114537391A publication Critical patent/CN114537391A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0004In digital systems, e.g. discrete-time systems involving sampling
    • B60W2050/0005Processor details or data handling, e.g. memory registers or chip architecture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Databases & Information Systems (AREA)
  • Computing Systems (AREA)
  • Algebra (AREA)
  • Human Computer Interaction (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明涉及一种基于预报观测器的车辆跟驰伺服控制方法及系统,从动力学和运动学的角度构建了一种基于预报观测器的、完全线性化的伺服控制模型,用于车辆跟驰行为控制。与现有技术相比,本发明将动态安全车距实时跟踪与系统状态的渐近收敛有机结合起来,后车能够根据实际车距与动态安全车距的误差,以及前车的行为变化,合理调整自身行为,实现安全、高效和平稳跟驰运行,解决了跟驰行为与实际车距实时连续调整的同步控制问题,可显著增强车辆跟驰系统的自主智能和自主适应能力,有效提升跟驰行为与实际车距的控制水平和控制质量。

Description

一种基于预报观测器的车辆跟驰伺服控制方法及系统
技术领域
本发明涉及交通系统跟驰控制领域,尤其是涉及一种基于预报观测器的、完全线性化的车辆跟驰伺服控制模型,并基于该模型实施得到的车辆跟驰伺服控制方法及系统。
背景技术
车辆跟驰控制距今已有几十年的研究历史,早期研究主要侧重于揭示车辆跟驰和交通流量的行为规律。现有的模型,例如GM(General Motors)模型、Gipps模型、OV(OptimalVelocity)模型、IDM(Intelligent Driver Model)模型等,注重车辆跟驰行为的动态特征研究以及车辆跟驰行为参数的稳定性和趋同性分析,旨在揭示车辆跟驰运行的机理,在此基础上,后续又先后建立了汽车安全距离跟踪、双边控制等模型以进一步提高车辆跟驰行为的质量,为更深入地研究车辆跟驰控制问题奠定了坚实的理论基础。
随着科学技术的发展,自适应巡航控制(ACC)和无人驾驶等新的研究热点不断涌现,许多研究人员致力于将ACC和其他先进的功能引入车辆控制系统以改善性能。目前,尚未解决在动态交通环境中安全跟驰车距的实时标定与跟踪问题,一般采取固定安全车距来实现自适应巡航控制和无人驾驶,显然不符合交通控制与管理的实际需求,不利于道路甚至整个路网安全通行能力的充分利用。模型预测控制(MPC)对于跟驰系统状态具有很好的预知处理能力,所以自适应巡航控制经常会使用到模型预测控制的理论与方法。
车辆跟随系统具有多变量耦合、非线性和不确定性等复杂系统特征,研究车辆跟驰行为质量的进一步提高必须考虑到这些因素,实践表明经典PID控制器和一些传统控制算法效果不是很好。为了克服上述缺陷,近年来无人驾驶、自治车辆的研究思想兴起,一种结合了机器学习和基于经典运动学的跟驰控制模型常用于车辆跟驰性能的改进。事实上,AI车辆不仅需要学习优秀驾驶员的行为,而且需要学习车辆基于动力学和运动学的运动规律来提升自身性能。因此,在人工智能和无人驾驶等现代理论、方法和技术飞速发展的同时,进一步加强基于动力学和运动学理论的车辆跟驰控制研究仍然有其必要性和重大现实意义。现有研究中,有不少关于自适应模型预测控制的车辆跟驰控制研究,但是传统跟驰模型对非线性模型进行线性化处理,必然会产生模型误差,跟驰行为的质量较低。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种基于预报观测器的车辆跟驰伺服控制方法及系统,主要从动力学和运动学的角度研究车辆跟驰问题,建立了一种基于预报观测器的线性化伺服控制模型,并提出将该模型付诸工程实施的具体应用方法,自主智能和高效跟踪控制能力显著提高,使后车能够跟随前车安全、高效、平稳(舒适)地运行。
本发明的目的可以通过以下技术方案来实现:
一种基于预报观测器的车辆跟驰伺服控制方法,车辆跟踪控制可以被完全简化成线性跟踪系统的控制问题来研究,具体过程包括以下步骤:
S1、设置车辆跟驰系统的状态变量,建立车辆跟驰系统的差分模型;
S11、以前、后车的速度差和跟驰车距作为状态变量x,以前、后车的加速度差为控制变量u,以前、后车的实际车距为输出变量y,即:
Figure BDA0003518681930000021
其中,vp、vf分别表示前、后车的速度,sp、sf分别表示前、后车的位置,ap表示前车的加速度,af表示后车的加速度,y为前、后车辆的实际车距dActual
S12、假定采样周期为T,车辆跟驰系统的差分模型为;
Figure BDA0003518681930000022
其中,k表示第k个采样周期,
Figure BDA0003518681930000023
C=[1 0];
S2、建立车辆跟驰系统预报观测器模型以及车辆跟驰伺服控制模型;
S21、建立车辆跟驰系统预报观测器模型:
将第k个采样周期的安全跟驰车距记为dsafe(k),参考输入r(k)=dsafe(k),e(k)=r(k)-y(k),设计车辆跟驰系统基于状态重构的预报观测器:
Figure BDA0003518681930000031
其中,K表示预估状态
Figure BDA0003518681930000032
的误差补偿矩阵;
S22、构建基于预报观测器的车辆跟驰伺服控制模型:
Figure BDA0003518681930000033
其中,L是预报观测器的反馈矩阵,M为伺服矩阵;
传统跟驰模型对非线性模型进行线性化处理,必然会产生模型误差。本发明所建模型,无论是式(2)所示的车辆跟驰系统模型,还是式(4)所示的基于预报观测器的车辆跟驰运行伺服控制模型,均属于线性离散模型,克服了传统跟驰模型非线性特征无法屏蔽的问题,可显著提高车辆跟驰控制水平,并改善车辆跟驰行为的质量。另一方面,控制律u(k)通过矩阵L和M将预报观测器的状态反馈与动态安全车距实时跟踪有机结合起来,有利于安全、高效跟驰稳态的建立。
S3、根据建立的模型设计车辆跟驰伺服控制算法并实施。
S31、计算矩阵K、L、M:
由式(3)可得,跟踪方程如下所示:
Figure BDA0003518681930000034
Figure BDA0003518681930000035
由式(5)至(7)可得:
Figure BDA0003518681930000036
其中
Figure BDA0003518681930000041
Figure BDA0003518681930000042
车辆跟驰系统第一个优化性能指标可以表示为:
Figure BDA0003518681930000043
由式(9)可得:
Figure BDA0003518681930000044
车辆跟驰系统第二个优化性能指标可以表示为:
Figure BDA0003518681930000045
如果J1、J2为最小值,则预报观测器的误差补偿矩阵K、预报观测器反馈矩阵L,以及伺服矩阵M可根据下述条件加以确定:
Figure BDA0003518681930000046
S32、车辆跟驰控制策略的计算公式为:
Figure BDA0003518681930000047
将矩阵K、L、M的值代入式(13),计算得到当前状态下后车因应前车行为变化所应采取的加速度的值af(k),后车按照af(k)确定第k个采样周期的牵引力或制动力,并实施以实现后车的跟驰行为控制。即可通过合理的行为调整过程,因应前车的行为变化,实现安全、高效和平稳跟驰运行。
S33、确定车辆跟驰系统伺服控制的算法流程并实施:
Step1:根据式(3)所示的状态预报观测器模型,建立式(8)所示的预报观测器的状态增广模型;
Step2:根据式(10)、(11)所示的优化目标,按照式(12)所示的极值条件求解出当前状态下车辆跟驰系统预报观测器的误差补偿矩阵K、预报观测器反馈矩阵L,以及伺服矩阵M;
Step3:将矩阵K、L、M的值代入车辆跟驰控制策略计算公式(13),计算得到当前状态下后车因应前车行为变化所应采取的加速度的值;
Step4:根据加速度的值af(k),计算后车应采取的牵引力或制动力,并实施以实现后车的跟驰行为控制。
实施过程中,获取前、后车的数据,基于模型计算出当前状态下后车应采取的加速度af,然后,根据af的值计算得到后车当前应采取的合力FRf,结合后车跟驰运行中的阻力ff计算得到后车实际应采取的牵引力或制动力Ff;后车跟驰运行中的阻力ff可以由Davis公式计算得到。
一种基于预报观测器的车辆跟驰伺服控制系统,包括处理器和存储器,所述存储器中存储有可执行程序,所述处理器读取存储器中存储的可执行程序并运行,运行时实现如下步骤:
S1、设置车辆跟驰系统的状态变量,建立车辆跟驰系统的差分模型;
S11、以前、后车的速度差和跟驰车距作为状态变量x,以前、后车的加速度差为控制变量u,以前、后车的实际车距为输出变量y,即:
Figure BDA0003518681930000051
其中,vp、vf分别表示前、后车的速度,sp、sf分别表示前、后车的位置,ap表示前车的加速度,af表示后车的加速度,y为前、后车辆的实际车距dActual
S12、假定采样周期为T,车辆跟驰系统的差分模型为;
Figure BDA0003518681930000052
其中,k表示第k个采样周期,
Figure BDA0003518681930000053
C=[1 0];
S2、建立车辆跟驰系统预报观测器模型以及车辆跟驰伺服控制模型;
S21、建立车辆跟驰系统预报观测器模型:
将第k个采样周期的安全跟驰车距记为dsafe(k),参考输入r(k)=dsafe(k),e(k)=r(k)-y(k),设计车辆跟驰系统基于状态重构的预报观测器:
Figure BDA0003518681930000061
其中,K表示预估状态
Figure BDA0003518681930000062
的误差补偿矩阵;
S22、构建基于预报观测器的车辆跟驰伺服控制模型:
Figure BDA0003518681930000063
其中,L是预报观测器的反馈矩阵,M为伺服矩阵;
S3、根据建立的模型设计车辆跟驰伺服控制算法并实施。
进一步的,步骤S3具体为:
Step1:根据式(3)所示的状态预报观测器模型,建立预报观测器的状态增广模型;
Step2:根据优化目标,按照极值条件求解出当前状态下车辆跟驰系统预报观测器的误差补偿矩阵K、预报观测器反馈矩阵L,以及伺服矩阵M;
Step3:将矩阵K、L、M的值代入车辆跟驰控制策略计算公式,计算得到当前状态下后车因应前车行为变化所应采取的加速度的值;
Step4:根据加速度的值,计算后车应采取的牵引力或制动力,并实施以实现后车的跟驰行为控制。
与现有技术相比,本发明具有以下有益效果:
(1)针对具有复杂非线性特征的车辆跟驰系统,构建了一种基于预报观测器的、完全线性化的伺服控制模型,用于车辆跟驰行为控制;后车能够根据实际车距与动态安全车距的误差,以及前车的行为变化,合理调整自身行为,实现车辆安全、高效和平稳跟驰运行。
(2)建立的车辆跟驰系统模型和基于预报观测器的车辆跟驰运行伺服控制模型均属于线性离散模型,克服了传统跟驰模型非线性特征无法屏蔽的问题,可显著提高车辆跟驰控制水平,并改善车辆跟驰行为的质量;控制律u(k)通过矩阵L和M将预报观测器的状态反馈与动态安全车距实时跟踪有机结合起来,有利于安全、高效跟驰稳态的建立。
(3)为了将非线性车辆跟踪系统转换为线性系统进行研究,设计基于预估观测器的离散控制模型进行车辆跟踪控制,然后提出具体控制算法,仿真结果证明,本发明能够显著提高车辆跟踪系统的自主智能和高效跟踪控制能力。
附图说明
图1为基于预报观测器的车辆跟驰伺服控制框图;
图2为基于预测伺服控制的前、后车速度曲线;
图3为前、后车的位置--时间曲线和车距--时间曲线;
图4为后车的加速度—时间曲线;
图5为后车冲动值—时间曲线;
图6为实车应用中基于预报观测器的车辆跟驰伺服控制模型及控制算法的实施方案。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1:
以下面的假定条件,具体描述本发明专利的具体实施步骤。
假定:
(1)车辆跟驰系统的初始状态参数为:vp(0)=10m/s,vf(0)=5.5m/s,sp(0)=1000m,sf(0)=0m,dActual(0)=1000m,dSafe(0)=849.80m。
(2)动态安全车距的计算公式为:
Figure BDA0003518681930000071
计算动态安全车距dSafe的数学模型可根据前、后车的性能确定或由交通管理的行业部门统一制定,
(3)前车速度-时间曲线为:
Figure BDA0003518681930000072
式中,t表示时间,单位为秒(s,second),vp(t)为前车速度,单位为米/秒(m/s);前车的位置sp、速度vp和控制策略ap可由前车采集后通过无线通信传递给后车,后车的位置sf和速度vf由后车自行采集。
一种基于预报观测器的车辆跟驰伺服控制方法,如下:
S1、设置车辆跟驰系统的状态变量,建立车辆跟驰系统的差分模型;
S11、设置车辆跟驰系统的状态变量:
以前、后车的速度差和跟驰车距作为状态变量x,以前、后车的加速度差为控制变量u,以前、后车的实际车距为输出变量y,即:
Figure BDA0003518681930000081
其中,vp、vf分别表示前、后车的速度,sp、sf分别表示前、后车的位置,ap表示前车的加速度,af表示后车的加速度,y为前、后车辆的实际车距dActual
S12、建立车辆跟驰系统的差分模型:
假定采样周期为T,车辆跟驰系统的差分模型为;
Figure BDA0003518681930000082
其中,k表示第k个采样周期,
Figure BDA0003518681930000083
C=[1 0];
S2、建立车辆跟驰系统预报观测器模型以及车辆跟驰伺服控制模型;
S21、建立车辆跟驰系统预报观测器模型:
令dsafe(k)为第k个采样周期的安全跟驰车距,参考输入r(k)=dsafe(k),e(k)=r(k)-y(k),其中,dsafe(k)可以根据式(14)令t=kT计算得到。
车辆跟驰系统基于状态重构的预报观测器可设计为:
Figure BDA0003518681930000084
其中,K表示预估状态
Figure BDA0003518681930000085
的误差补偿矩阵;
S22、构建基于预报观测器的车辆跟驰伺服控制模型:
基于预报观测器的车辆跟驰伺服控制模型可设计为:
Figure BDA0003518681930000086
其中,L是预报观测器的反馈矩阵,M为伺服矩阵;
基于预报观测器的车辆跟驰系统伺服控制框图如图1所示,参考输入r(k)=dsafe(k),e(k)=r(k)-y(k),式(2)所示的车辆跟驰系统模型,式(4)所示的基于预报观测器的车辆跟驰运行伺服控制模型,图中的误差e(k)实为dsafe(k)-dActual(k)。前车的行为变换见式(15)所描述,当前车行为变化致e(k)≠0时,预报观测器将对状态估计进行实时修正,以保证基于预报观测器的控制律保证后车能够实时因应前车行为变化,以实现后车对动态安全车距的实时跟踪。
传统跟驰模型对非线性模型进行线性化处理,必然会产生模型误差。本发明所建模型,无论是式(2)所示的车辆跟驰系统模型,还是式(4)所示的基于预报观测器的车辆跟驰运行伺服控制模型,均属于线性离散模型,克服了传统跟驰模型非线性特征无法屏蔽的问题,可显著提高车辆跟驰控制水平,并改善车辆跟驰行为的质量。另一方面,控制律u(k)通过矩阵L和M将预报观测器的状态反馈与动态安全车距实时跟踪有机结合起来,有利于安全、高效跟驰稳态的建立。
S3、根据建立的模型设计车辆跟驰伺服控制算法并实施。
S31、计算矩阵K、L、M:
由式(3)可得,跟踪方程如下所示:
Figure BDA0003518681930000091
Figure BDA0003518681930000092
由式(5)至(7)可得:
Figure BDA0003518681930000093
其中
Figure BDA0003518681930000101
Figure BDA0003518681930000102
车辆跟驰系统第一个优化性能指标可以表示为:
Figure BDA0003518681930000103
由式(9)可得:
Figure BDA0003518681930000104
车辆跟驰系统第二个优化性能指标可以表示为:
Figure BDA0003518681930000105
如果J1、J2为最小值,则预报观测器的误差补偿矩阵K、预报观测器反馈矩阵L,以及伺服矩阵M可根据下述条件加以确定:
Figure BDA0003518681930000106
S32、车辆跟驰控制策略的计算公式为:
Figure BDA0003518681930000107
将矩阵K、L、M的值代入式(13),计算得到当前状态下后车因应前车行为变化所应采取的加速度的值af(k),后车按照af(k)确定第k个采样周期的牵引力或制动力,并实施以实现后车的跟驰行为控制。即可通过合理的行为调整过程,因应前车的行为变化,实现安全、高效和平稳跟驰运行。
S33、确定车辆跟驰系统伺服控制的算法流程并实施:
Step1:根据式(3)所示的状态预报观测器模型,建立式(8)所示的预报观测器的状态增广模型;
Step2:根据式(10)、(11)所示的优化目标,按照式(12)所示的极值条件求解出当前状态下车辆跟驰系统预报观测器的误差补偿矩阵K、预报观测器反馈矩阵L,以及伺服矩阵M;
Step3:将矩阵K、L、M的值代入车辆跟驰控制策略计算公式(13),计算得到当前状态下后车因应前车行为变化所应采取的加速度的值;
Step4:根据加速度的值af(k),计算后车应采取的牵引力或制动力,并实施以实现后车的跟驰行为控制。
实施过程中,获取前、后车的数据,基于模型计算出当前状态下后车应采取的加速度af,然后,根据af的值计算得到后车当前应采取的合力FRf,结合后车跟驰运行中的阻力ff计算得到后车实际应采取的牵引力或制动力Ff;后车跟驰运行中的阻力ff可以由Davis公式计算得到。
为了将非线性车辆跟踪系统转换为线性系统进行研究,本发明设计基于预估观测器的离散控制模型进行车辆跟踪控制,然后提出具体控制算法,最后仿真并分析车辆跟踪控制的情况,以验证提出的模型和算法,仿真结果如下:
图2为基于预测伺服控制的前、后车速度曲线,图3为前、后车的位置--时间曲线和车距--时间曲线,图4为后车的加速度—时间曲线,图5为后车冲动值—时间曲线。
从仿真来看,当实际车距与动态安全车距不一致时,或者前车行为变化致安全、高效跟驰稳态被破坏时,(上述两种情形见图2、3所示),后车将按照当前系统状态下实时计算的控制律进行自身行为的调整,直至安全、高效跟驰稳态建立起来。车辆行为调整的平稳性,一般以加速度绝对值不超过0.63m/s2和冲动值的绝对值不超过2.0m/s3为评价标准,冲动值为加速度的变化率,图4、5的仿真曲线说明后车的行为调整过程满足平稳性要求。图3则显示后车通过实施计算得到的控制律实现了对安全车距的良好跟踪,且建立了安全、高效跟驰稳态,其中包括后车跟随前车停车后的特殊的安全高效跟驰稳态。仿真结果表明,本发明专利提出的线性化预测伺服控制模型取得了预期效果。
实施例2:
一种基于预报观测器的车辆跟驰伺服控制系统,包括处理器和存储器,存储器中存储有可执行程序,处理器读取存储器中存储的可执行程序并运行,以实现实施例1所述描述的一种基于预报观测器的车辆跟驰伺服控制方法。
其中,mf为当前的后车质量,FRf为后车当前应采取的合力,ff为后车跟驰运行中的阻力,Ff为后车当前应采取的牵引力或制动力:
前车的位置sp、速度vp和控制策略ap可由前车采集后通过无线通信传递给后车,计算动态安全车距dSafe的数学模型可根据前、后车的性能确定或由交通管理的行业部门统一制定,后车的位置sf和速度vf由后车自行采集。
如图6所示,车辆跟驰伺服控制系统搭载在车载计算机,相关的基于预报观测器的车辆跟驰伺服控制模型及相关的控制算法可以软件代码的形式存储在硬盘、类似于u盘等的移动存储介质内,由计算机导入内存后运行,并对上述采集的数据进行实时处理,计算矩阵K、L、M的值,最终计算出当前状态下后车应采取的加速度af,具体步骤S1~S3以及所涉及的相关公式和模型见上文,不再赘述。
然后,根据此af计算得到后车当前应采取的合力FRf,FRf=mf×af,进一步可计算得到后车实际应采取的牵引力或制动力Ff,Ff=FRf+ff。其中,后车跟驰运行中的阻力ff可由Davis公式计算得到,相关从业人员可以理解,在此不再赘述。
若af>-ff/mf,后车将采取的为牵引力,其中:-ff/mf<af<0时车辆减速运行,af=0时车辆匀速运行,af>0时车辆加速运行;
若af<-ff/mf,后车将采取的为制动力;
若af=-ff/mf,车辆将惰行。
本发明从动力学和运动学的角度构建了一种基于预报观测器的、完全线性化的伺服控制模型,用于车辆跟驰行为控制,将动态安全车距实时跟踪与系统状态的渐近收敛有机结合起来,后车能够根据实际车距与动态安全车距的误差,以及前车的行为变化,合理调整自身行为,实现安全、高效和平稳跟驰运行,解决了跟驰行为与实际车距实时连续调整的同步控制问题,可显著增强车辆跟驰系统的自主智能和自主适应能力,有效提升跟驰行为与实际车距的控制水平和控制质量。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (10)

1.一种基于预报观测器的车辆跟驰伺服控制方法,其特征在于,包括以下步骤:
S1、设置车辆跟驰系统的状态变量,建立车辆跟驰系统的差分模型;
S11、以前、后车的速度差和跟驰车距作为状态变量x,以前、后车的加速度差为控制变量u,以前、后车的实际车距为输出变量y,即:
Figure FDA0003518681920000011
其中,vp、vf分别表示前、后车的速度,sp、sf分别表示前、后车的位置,ap表示前车的加速度,af表示后车的加速度,y为前、后车辆的实际车距dActual
S12、假定采样周期为T,车辆跟驰系统的差分模型为;
Figure FDA0003518681920000012
其中,k表示第k个采样周期,
Figure FDA0003518681920000013
C=[1 0];
S2、建立车辆跟驰系统预报观测器模型以及车辆跟驰伺服控制模型;
S21、建立车辆跟驰系统预报观测器模型:
将第k个采样周期的安全跟驰车距记为dsafe(k),参考输入r(k)=dsafe(k),e(k)=r(k)-y(k),设计车辆跟驰系统基于状态重构的预报观测器:
Figure FDA0003518681920000014
其中,K表示预估状态
Figure FDA0003518681920000015
的误差补偿矩阵;
S22、构建基于预报观测器的车辆跟驰伺服控制模型:
Figure FDA0003518681920000016
其中,L是预报观测器的反馈矩阵,M为伺服矩阵;
S3、根据建立的模型设计车辆跟驰伺服控制算法并实施。
2.根据权利要求1所述的一种基于预报观测器的车辆跟驰伺服控制方法,其特征在于,步骤S3具体为:
Step1:根据式(3)所示的状态预报观测器模型,建立预报观测器的状态增广模型;
Step2:根据优化目标,按照极值条件求解出当前状态下车辆跟驰系统预报观测器的误差补偿矩阵K、预报观测器反馈矩阵L,以及伺服矩阵M;
Step3:将矩阵K、L、M的值代入车辆跟驰控制策略计算公式,计算得到当前状态下后车因应前车行为变化所应采取的加速度的值;
Step4:根据加速度的值,计算后车应采取的牵引力或制动力,并实施以实现后车的跟驰行为控制。
3.根据权利要求2所述的一种基于预报观测器的车辆跟驰伺服控制方法,其特征在于,Step1具体为:
由式(3)可得,跟踪方程如下所示:
Figure FDA0003518681920000021
Figure FDA0003518681920000022
由式(5)至(7)可得:
Figure FDA0003518681920000023
其中
Figure FDA0003518681920000031
Figure FDA0003518681920000032
4.根据权利要求2所述的一种基于预报观测器的车辆跟驰伺服控制方法,其特征在于,Step2中优化目标为:
车辆跟驰系统第一个优化性能指标表示为:
Figure FDA0003518681920000033
由式(9)可得:
Figure FDA0003518681920000034
车辆跟驰系统第二个优化性能指标表示为:
Figure FDA0003518681920000035
J1和J2为优化目标。
5.根据权利要求4所述的一种基于预报观测器的车辆跟驰伺服控制方法,其特征在于,Step2中,根据极值条件求解出当前状态下车辆跟驰系统预报观测器的误差补偿矩阵K、预报观测器反馈矩阵L、以及伺服矩阵M具体为:
如果J1、J2为最小值,则预报观测器的误差补偿矩阵K、预报观测器反馈矩阵L,以及伺服矩阵M可根据下述条件加以确定:
Figure FDA0003518681920000036
6.根据权利要求2所述的一种基于预报观测器的车辆跟驰伺服控制方法,其特征在于,Step3中,车辆跟驰控制策略的计算公式为:
Figure FDA0003518681920000041
将矩阵K、L、M的值代入式(13),计算得到当前状态下后车因应前车行为变化所应采取的加速度的值af(k)。
7.根据权利要求6所述的一种基于预报观测器的车辆跟驰伺服控制方法,其特征在于,Step4中,后车按照af(k)确定第k个采样周期的牵引力或制动力,并实施以实现后车的跟驰行为控制。
8.根据权利要求7所述的一种基于预报观测器的车辆跟驰伺服控制方法,其特征在于,实施过程中,获取前、后车的数据,基于模型计算出当前状态下后车应采取的加速度af,然后,根据af的值计算得到后车当前应采取的合力FRf,结合后车跟驰运行中的阻力ff计算得到后车实际应采取的牵引力或制动力Ff,其中后车跟驰运行中的阻力ff由Davis公式计算得到。
9.一种基于预报观测器的车辆跟驰伺服控制系统,其特征在于,包括处理器和存储器,所述存储器中存储有可执行程序,所述处理器读取存储器中存储的可执行程序并运行,运行时实现如下步骤:
S1、设置车辆跟驰系统的状态变量,建立车辆跟驰系统的差分模型;
S11、以前、后车的速度差和跟驰车距作为状态变量x,以前、后车的加速度差为控制变量u,以前、后车的实际车距为输出变量y,即:
Figure FDA0003518681920000042
其中,vp、vf分别表示前、后车的速度,sp、sf分别表示前、后车的位置,ap表示前车的加速度,af表示后车的加速度,y为前、后车辆的实际车距dActual
S12、假定采样周期为T,车辆跟驰系统的差分模型为;
Figure FDA0003518681920000043
其中,k表示第k个采样周期,
Figure FDA0003518681920000044
C=[1 0];
S2、建立车辆跟驰系统预报观测器模型以及车辆跟驰伺服控制模型;
S21、建立车辆跟驰系统预报观测器模型:
将第k个采样周期的安全跟驰车距记为dsafe(k),参考输入r(k)=dsafe(k),e(k)=r(k)-y(k),设计车辆跟驰系统基于状态重构的预报观测器:
Figure FDA0003518681920000051
其中,K表示预估状态
Figure FDA0003518681920000052
的误差补偿矩阵;
S22、构建基于预报观测器的车辆跟驰伺服控制模型:
Figure FDA0003518681920000053
其中,L是预报观测器的反馈矩阵,M为伺服矩阵;
S3、根据建立的模型设计车辆跟驰伺服控制算法并实施。
10.根据权利要求9所述的一种基于预报观测器的车辆跟驰伺服控制系统,其特征在于,步骤S3具体为:
Step1:根据式(3)所示的状态预报观测器模型,建立预报观测器的状态增广模型;
Step2:根据优化目标,按照极值条件求解出当前状态下车辆跟驰系统预报观测器的误差补偿矩阵K、预报观测器反馈矩阵L,以及伺服矩阵M;
Step3:将矩阵K、L、M的值代入车辆跟驰控制策略计算公式,计算得到当前状态下后车因应前车行为变化所应采取的加速度的值;
Step4:根据加速度的值,计算后车应采取的牵引力或制动力,并实施以实现后车的跟驰行为控制。
CN202210172148.8A 2022-02-24 2022-02-24 一种基于预报观测器的车辆跟驰伺服控制方法及系统 Pending CN114537391A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210172148.8A CN114537391A (zh) 2022-02-24 2022-02-24 一种基于预报观测器的车辆跟驰伺服控制方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210172148.8A CN114537391A (zh) 2022-02-24 2022-02-24 一种基于预报观测器的车辆跟驰伺服控制方法及系统

Publications (1)

Publication Number Publication Date
CN114537391A true CN114537391A (zh) 2022-05-27

Family

ID=81677139

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210172148.8A Pending CN114537391A (zh) 2022-02-24 2022-02-24 一种基于预报观测器的车辆跟驰伺服控制方法及系统

Country Status (1)

Country Link
CN (1) CN114537391A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117037524A (zh) * 2023-09-26 2023-11-10 苏州易百特信息科技有限公司 智慧停车场景下车道跟车优化方法及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117037524A (zh) * 2023-09-26 2023-11-10 苏州易百特信息科技有限公司 智慧停车场景下车道跟车优化方法及系统
CN117037524B (zh) * 2023-09-26 2023-12-22 苏州易百特信息科技有限公司 智慧停车场景下车道跟车优化方法及系统

Similar Documents

Publication Publication Date Title
CN109927725B (zh) 一种具有驾驶风格学习能力的自适应巡航系统及实现方法
Zha et al. A survey of intelligent driving vehicle trajectory tracking based on vehicle dynamics
CN111158349B (zh) 基于多步线性化策略的无人驾驶车辆模型预测控制方法
Zhu et al. Barrier-function-based distributed adaptive control of nonlinear CAVs with parametric uncertainty and full-state constraint
CN107380165A (zh) 一种车辆自适应变速巡航过程车间距控制方法
CN110450794A (zh) 一种基于最优蠕滑速度搜寻与跟踪的优化粘着控制方法
Ure et al. Enhancing situational awareness and performance of adaptive cruise control through model predictive control and deep reinforcement learning
CN110116730A (zh) 一种车辆制动控制方法、系统、设备和介质
CN114537391A (zh) 一种基于预报观测器的车辆跟驰伺服控制方法及系统
CN114488799B (zh) 汽车自适应巡航系统控制器参数优化方法
WO2023010828A1 (zh) 一种无人驾驶设备的横向控制
Zhang et al. Model‐Predictive Optimization for Pure Electric Vehicle during a Vehicle‐Following Process
CN113085963B (zh) 列车控制级位的动态调控方法及其动态调控装置
CN113741199B (zh) 一种基于智能网联信息的整车经济性速度规划方法
CN110654386A (zh) 弯道下多智能电动汽车协作式巡航纵横向综合控制方法
Huang et al. Cascade optimization control of unmanned vehicle path tracking under harsh driving conditions
CN116088299A (zh) 卫星天线混联运动机构神经网络反步控制方法
Sieberg et al. Representation of an Integrated Non-Linear Model-Based Predictive Vehicle Dynamics Control System by a Co-Active Neuro-Fuzzy Inference System
CN113674529A (zh) 一种自主超车方法及系统
Alcalá et al. Gain Scheduling LPV Control Scheme for the Autonomous Guidance Problem using a Dynamic Modelling Approach
Zhou et al. Significance of low-level controller for string stability under adaptive cruise control
Ji et al. Distributed asynchronous event-triggered cooperative control for virtually coupled train set subject to gradient terrain and input saturation
CN114114929B (zh) 一种基于lssvm的无人驾驶车辆路径跟踪方法
Xie et al. Research on longitudinal control algorithm for intelligent automatic driving
CN113805485B (zh) 一种暖启动c/gmres方法、系统、设备及介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination