CN114535595A - 反应性液相激光烧蚀法制备超细银铜纳米颗粒的方法 - Google Patents

反应性液相激光烧蚀法制备超细银铜纳米颗粒的方法 Download PDF

Info

Publication number
CN114535595A
CN114535595A CN202210242103.3A CN202210242103A CN114535595A CN 114535595 A CN114535595 A CN 114535595A CN 202210242103 A CN202210242103 A CN 202210242103A CN 114535595 A CN114535595 A CN 114535595A
Authority
CN
China
Prior art keywords
silver
copper
target material
copper nanoparticles
nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210242103.3A
Other languages
English (en)
Inventor
冯涛
徐贤哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN202210242103.3A priority Critical patent/CN114535595A/zh
Publication of CN114535595A publication Critical patent/CN114535595A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • B22F2304/054Particle size between 1 and 100 nm

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种反应性液相激光烧蚀法制备超细银铜纳米颗粒的方法。所述方法先将纯铜靶材置于预处理液中进行预处理,之后放入添加表面活性剂的预处理液形成的液相中,通过将脉冲激光光束聚焦于靶材与液相的接触表面,烧蚀反应生成超细银铜纳米颗粒。本发明方法制备的银铜纳米颗粒粒径小、尺寸分布窄、单分散性好,内部银铜元素分布均匀且铜元素基本未氧化,可在常温常压环境下实现超细银铜纳米颗粒的制备。

Description

反应性液相激光烧蚀法制备超细银铜纳米颗粒的方法
技术领域
本发明属于纳米材料制备技术领域,涉及一种反应性液相激光烧蚀法制备超细银铜纳米颗粒的方法。
背景技术
合金纳米颗粒具有独特的物理化学性质,被广泛应用于磁学、光学、等离子体、生物学、分析化学、催化等领域。对于合金纳米颗粒的研究,尤其是对于成分可调且成分均匀性高的合金纳米颗粒的制备及应用一直是纳米合金领域的研究重点。
由于银和铜的纳米合金具有高导电性和更好的粘附性能,已成为具有应用前景的材料,广泛应用于抗菌和导电墨水、光纤传感器、催化剂、热传输以及太阳能电池领域。但由于铜的自发氧化和银的相对昂贵的价格,限制了银和铜的纳米合金的应用。银铜合金纳米颗粒的出现有望解决这一困境。然而,目前仍缺乏简单且环保的Ag-Cu纳米结构材料的合成方法。
液相激光烧蚀法是一种可以制备成分可调且成分均匀性高的超细合金纳米颗粒的方法。但是这种方法在制备易氧化元素的纳米颗粒时不可避免地会产生氧化的现象。Miranda等人使用液相激光烧蚀在水溶液烧蚀得到了氧化铜颗粒和氧化亚铜,溶解在水中的氧气会导致氧化层的形成(Characterization of Copper nanoparticles obtained bylaser ablation in liquids[J],Appl.Phys.A,2013,110:829–833)。Malviya等人在水溶液环境中激光烧蚀银铜靶材制备银铜纳米颗粒,但是对于铜元素的氧化并不能有效的抑制(Synthesis and Mechanism of Composition and Size Dependent MorphologySelection in Nanoparticles of Ag–Cu Alloys Processed by Laser Ablation UnderLiquid Medium[J]. Journal of Physical Chemistry C,2014.)。
发明内容
本发明目的在于提供一种反应性液相激光烧蚀法制备超细银铜纳米颗粒的方法。该方法使用反应性激光烧蚀的方法,可以在抑制氧化的环境中制备成分均匀性高的银铜合金纳米颗粒。
实现本发明目的的技术方案如下:
反应性液相激光烧蚀法制备超细银铜纳米颗粒的方法,包括以下步骤:
步骤1,铜靶预处理:将纯铜靶材置于预处理溶液中,在纯铜靶材表面包覆一层银膜,所述预处理溶液为含有硝酸银和乙二胺的乙醇溶液;
步骤2,将预处理后的铜靶材置于添加表面活性剂聚乙烯吡咯烷酮PVP-K30的预处理溶液中,边搅拌边将脉冲激光光束聚焦于铜靶材与液相的接触表面,液相激光烧蚀反应生成银铜纳米颗粒;
步骤3,将步骤2反应得到的胶体溶液离心,干燥,得到超细银铜纳米颗粒。
优选地,步骤1中,纯铜靶材的纯度≥99.95%。
优选地,步骤1中,预处理溶液中,乙二胺与硝酸银的摩尔比为4:1,硝酸银的浓度为2g/L。
优选地,步骤1中,预处理溶液的pH值为9.8。
优选地,步骤2中,PVP-K30的浓度为2g/L。
优选地,步骤2中,焦距为650mm,脉冲激光光束的波长为1064nm,脉冲宽度为15ps,单脉冲激光能量为100μJ,激光功率为43.1W,频率为100kHz。
优选地,步骤2中,烧蚀反应时间为20~60分钟。
优选地,步骤3中,离心条件为10000r/min离心30分钟。
优选地,步骤3中,干燥条件为真空干燥,干燥温度为室温。
优选地,步骤3中,超细银铜纳米颗粒的粒径为1~30nm。
本发明首先将纯铜靶材在含硝酸银和乙二胺的乙醇溶液中进行预处理,乙二胺作为络合剂,硝酸银与其发生络合反应在纯铜靶材表面包覆一层均匀致密的银膜。然后将靶材置于由表面活性剂、硝酸银、乙二胺和乙醇形成的液相中,将脉冲激光聚焦于靶材表面,靶材受到激光激发,在固液界面产生等离子体,等离子体最终会形成一个受到液体限制的空化气泡,空化气泡是一个高温高压的区域,会不断膨胀,最终气泡破裂粒子分散长大生成银铜纳米颗粒。在激光烧蚀反应的区域气泡消失的过程中,烧蚀后暴露出的纯铜区域同时与液相中的银离子发生反应生成新的银膜,同时银离子的乙醇溶液环境会抑制铜的氧化。此外,表面活性剂一方面防止纳米颗粒过度生长,另一方面也能对铜形成保护,防止铜氧化。在一个脉冲激光的过程中,会发生靶材烧蚀、等离子体-溶剂反应、溶剂分解和离子氧化还原反应等多个反应并行发生。
本发明与现有技术相比,具有如下优点:
(1)本发明首次在液相中利用反应性脉冲激光烧蚀技术制备了超细的银铜纳米颗粒,该方法操作简单,成本低廉,环境要求低,能够在常温常压条件下制备超细银铜纳米颗粒。
(2)本发明方法是在特制的溶液环境中利用脉冲激光进行,与目前的液相激光烧蚀方法相比,解决了银铜颗粒中铜易氧化的问题,制得的银铜纳米颗粒具有成分均匀、粒径较小、尺寸分布窄等特点。
附图说明
图1为本发明使用的设备的结构示意图。
图2为实施例1和对比例1所得超细纳米银铜颗粒的透射电子显微镜图,其中(a)为实施例1制备的超细纳米银铜颗粒的透射电子显微镜图,(b)为对比例1制备的银铜颗粒的透射电子显微镜图。
图3为实施例1所得超细纳米银铜颗粒的高分辨图,以及EDS mapping图像和线扫图,其中图(a)为超细纳米银铜颗粒的高分辨图,图(b)、(c)、(d)为超细纳米银铜颗粒的EDSmapping图,图(e)为超细纳米银铜颗粒的线扫图。
图4为实施例1所得的银铜纳米颗粒的紫外吸收光谱图。
具体实施方式
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
下面结合附图和实施例对本发明进行进一步阐述。
实施例1
如图1所示,本发明的设备包含激光器1(采用Nd:YAG脉冲激光,激光波长 1064nm,脉冲宽度15ps,单脉冲激光能量为100μJ,激光功率为43.1W,频率为100kHz)、全反射镜2、聚焦透镜3(焦距为650mm)、玻璃容器4、靶材5、磁力搅拌器6。
(1)预处理液的配制:将0.79g硝酸银加入乙醇中,搅拌至硝酸银完全溶解,然后吸取1.24ml乙二胺,搅拌并超声至分散均匀。
(2)靶材预处理:将1.5cm×1.5cm方形纯铜靶材悬浸在预处理液中,处理15分钟,取出靶材备用。
(3)烧蚀溶液的配制:烧蚀前配置2L烧蚀溶液,以预处理液为基础溶液,在此基础上再加上表面活性剂(PVP-K30),表面活性剂的浓度为2g/L,即烧蚀溶液中含有硝酸银6.32g、乙二胺9.92ml和表面活性剂(PVP-K30)6g。
(4)将靶材5平放在玻璃容器4中,然后将磁力转子放入玻璃容器4中,再把玻璃容器放在磁力搅拌器上,使磁力搅拌器以50r/min的转速工作。
(5)向玻璃容器4中缓慢倒入烧蚀溶液使其浸没靶材5,并使液面比靶材5的上表面高出5mm;调节激光光路,使激光器1发射的脉冲激光光束通过反射镜2和聚焦透镜3后,聚焦的激光照射在靶材5与液相的接触表面,激光频率为100kHz;当脉冲激光与银铜靶材5反应30分钟后,关闭激光器。
(6)将反应后的胶体溶液取出并滴在超薄碳膜铜网上,放入真空干燥箱进行室温干燥,得到超细银铜纳米颗粒。
将超薄碳膜铜网拿到投射电子显微镜下放大观察,可以在衬底上看到分散的球形银铜纳米颗粒。
如图2(a)所示,为本实施例制备出的超细银铜纳米颗粒的透射电子显微镜图,从图中看到银铜纳米颗粒的粒径为10~20nm,且分散性好。
如图3所示,为本实施例制备的超细银铜纳米颗粒的高分辨图以及EDS mapping图和线扫图。从图中可以看出,银铜元素分布均匀,且粒径尺寸较小。
如图4所示,为制备超细银铜纳米颗粒的紫外-可见光吸收光谱图,图中418.8nm处的吸收峰为超细银铜纳米颗粒引起的等离子共振吸收峰。
对比例1
本对比例与实施例1基本相同,不同之处在于预处理液以及烧蚀溶液中的溶剂乙醇替换成去离子水,即液相环境为水环境。
如图2(b)所示,在水系液相环境中生成的银铜纳米颗粒团聚较为严重。

Claims (10)

1.反应性液相激光烧蚀法制备超细银铜纳米颗粒的方法,其特征在于,包括以下步骤:
步骤1,铜靶预处理:将纯铜靶材置于预处理溶液中,在纯铜靶材表面包覆一层银膜,所述预处理溶液为含有硝酸银和乙二胺的乙醇溶液;
步骤2,将预处理后的铜靶材置于添加表面活性剂聚乙烯吡咯烷酮PVP-K30的预处理溶液中,边搅拌边将脉冲激光光束聚焦于铜靶材与液相的接触表面,液相激光烧蚀反应生成银铜纳米颗粒;
步骤3,将步骤2反应得到的胶体溶液离心,干燥,得到超细银铜纳米颗粒。
2.根据权利要求1所述的方法,其特征在于,步骤1中,纯铜靶材的纯度≥99.95%。
3.根据权利要求1所述的方法,其特征在于,步骤1中,预处理溶液中,乙二胺与硝酸银的摩尔比为4:1,硝酸银的浓度为2g/L。
4.根据权利要求1所述的方法,其特征在于,步骤1中,预处理溶液的pH值为9.8。
5.根据权利要求1所述的方法,其特征在于,步骤2中,PVP-K30的浓度为2g/L。
6.根据权利要求1所述的方法,其特征在于,步骤2中,焦距为650mm,脉冲激光光束的波长为1064nm,脉冲宽度为15ps,单脉冲激光能量为100μJ,激光功率为43.1W,频率为100kHz。
7.根据权利要求1所述的方法,其特征在于,步骤2中,烧蚀反应时间为20~60分钟。
8.根据权利要求1所述的方法,其特征在于,步骤3中,离心条件为10000r/min离心30分钟。
9.根据权利要求1所述的方法,其特征在于,步骤3中,干燥条件为真空干燥,干燥温度为室温。
10.根据权利要求1所述的方法,其特征在于,步骤3中,超细银铜纳米颗粒的粒径为1~30nm。
CN202210242103.3A 2022-03-11 2022-03-11 反应性液相激光烧蚀法制备超细银铜纳米颗粒的方法 Pending CN114535595A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210242103.3A CN114535595A (zh) 2022-03-11 2022-03-11 反应性液相激光烧蚀法制备超细银铜纳米颗粒的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210242103.3A CN114535595A (zh) 2022-03-11 2022-03-11 反应性液相激光烧蚀法制备超细银铜纳米颗粒的方法

Publications (1)

Publication Number Publication Date
CN114535595A true CN114535595A (zh) 2022-05-27

Family

ID=81664205

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210242103.3A Pending CN114535595A (zh) 2022-03-11 2022-03-11 反应性液相激光烧蚀法制备超细银铜纳米颗粒的方法

Country Status (1)

Country Link
CN (1) CN114535595A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281781A (ja) * 2004-03-30 2005-10-13 Kenji Sumiyama 銅ナノ粒子の製造方法
CN1908225A (zh) * 2006-08-10 2007-02-07 中山大学 利用液体环境中的激光溅射沉积工艺进行纳米组装的方法及其应用
KR100821357B1 (ko) * 2006-10-09 2008-04-11 재단법인서울대학교산학협력재단 반도체 나노 구조체의 제조방법
CN101327946A (zh) * 2008-06-05 2008-12-24 中山大学 一种具有特殊形貌的微-纳颗粒及其制备方法与应用
KR20100118746A (ko) * 2009-04-29 2010-11-08 한국원자력연구원 전자빔 조사를 이용한 인쇄전자용 은-구리 합금 나노입자의 제조방법
US20110192714A1 (en) * 2010-02-10 2011-08-11 Bing Liu Nanoparticle production in liquid with multiple-pulse ultrafast laser ablation
CN105598468A (zh) * 2016-03-17 2016-05-25 中国科学院深圳先进技术研究院 一种可用于导电油墨的银包铜纳米颗粒的制备方法
US20190360104A1 (en) * 2016-09-13 2019-11-28 Valstybinis Moksliniu Tyrimu Institutas Fiziniu Ir Technologijos Mokslu Centras METHOD FOR FORMATION of ELECTRO-CONDUCTIVE TRACES ON POLYMERIC ARTICLE SURFACE
CN110842190A (zh) * 2019-10-11 2020-02-28 云南大学 一种银包覆铜粉的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281781A (ja) * 2004-03-30 2005-10-13 Kenji Sumiyama 銅ナノ粒子の製造方法
CN1908225A (zh) * 2006-08-10 2007-02-07 中山大学 利用液体环境中的激光溅射沉积工艺进行纳米组装的方法及其应用
KR100821357B1 (ko) * 2006-10-09 2008-04-11 재단법인서울대학교산학협력재단 반도체 나노 구조체의 제조방법
CN101327946A (zh) * 2008-06-05 2008-12-24 中山大学 一种具有特殊形貌的微-纳颗粒及其制备方法与应用
KR20100118746A (ko) * 2009-04-29 2010-11-08 한국원자력연구원 전자빔 조사를 이용한 인쇄전자용 은-구리 합금 나노입자의 제조방법
US20110192714A1 (en) * 2010-02-10 2011-08-11 Bing Liu Nanoparticle production in liquid with multiple-pulse ultrafast laser ablation
CN105598468A (zh) * 2016-03-17 2016-05-25 中国科学院深圳先进技术研究院 一种可用于导电油墨的银包铜纳米颗粒的制备方法
US20190360104A1 (en) * 2016-09-13 2019-11-28 Valstybinis Moksliniu Tyrimu Institutas Fiziniu Ir Technologijos Mokslu Centras METHOD FOR FORMATION of ELECTRO-CONDUCTIVE TRACES ON POLYMERIC ARTICLE SURFACE
CN110842190A (zh) * 2019-10-11 2020-02-28 云南大学 一种银包覆铜粉的制备方法

Similar Documents

Publication Publication Date Title
JP6234498B2 (ja) 液体中における高繰返率の超短パルスレーザアブレーションによるナノ粒子の生成
Rashid et al. Study of optical and morphological properties for Au-ZnO nanocomposite prepared by Laser ablation in liquid
Barcikowski et al. Generation of nanoparticle colloids by picosecond and femtosecond laser ablations in liquid flow
US6068800A (en) Production of nano particles and tubes by laser liquid interaction
Lee et al. Production of Au–Ag alloy nanoparticles by laser ablation of bulk alloys
Zeng et al. Nanomaterials via laser ablation/irradiation in liquid: a review
Porel et al. In situ synthesis of metal nanoparticles in polymer matrix and their optical limiting applications
Amikura et al. Copper oxide particles produced by laser ablation in water
CN105220117B (zh) 一种金属纳米粒子有序微结构的制备方法
JP5589168B2 (ja) 金ナノ粒子およびその分散液、金ナノ粒子の製造方法、ナノ粒子製造システム
Lin et al. Rapid synthesis of metallic and alloy micro/nanoparticles by laser ablation towards water
Boutinguiza et al. Palladium nanoparticles produced by CW and pulsed laser ablation in water
Broadhead et al. Fabrication of gold–silicon nanostructured surfaces with reactive laser ablation in liquid
Zhao et al. Photoinduced formation of colloidal Au by a near-infrared femtosecond laser
Uwada et al. Preparation and micropatterning of gold nanoparticles by femtosecond laser-induced optical breakdown
Liu et al. Generation of metal-oxide nanoparticles using continuous-wave fibre laser ablation in liquid
Mohammed et al. Fabrication of copper nanoparticles by pulse laser ablation
CN114535595A (zh) 反应性液相激光烧蚀法制备超细银铜纳米颗粒的方法
CN114632481A (zh) 一种制备均分散金属纳米颗粒胶体的方法
Gondal et al. Synthesis and characterization of copper oxides nanoparticles via pulsed laser ablation in liquid
Kumar Synthesis routes of ZnO nanocrystallites
Nikov et al. Formation of bimetallic nanoparticles by pulsed laser ablation of multicomponent thin films in water
Lu et al. Surface plasmon assisted laser ablation of stainless steel
Al-Majeed et al. Information of silicon nanoparticles by pulsed laser
Bakhtiari et al. Structural, optical and morphology properties of Pt NPs synthesized by laser ablation: case study on effect of electric field

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination