CN114534726A - 铁/氧掺杂碳基过滤式电芬顿阴极及其制备方法与应用 - Google Patents

铁/氧掺杂碳基过滤式电芬顿阴极及其制备方法与应用 Download PDF

Info

Publication number
CN114534726A
CN114534726A CN202210223000.2A CN202210223000A CN114534726A CN 114534726 A CN114534726 A CN 114534726A CN 202210223000 A CN202210223000 A CN 202210223000A CN 114534726 A CN114534726 A CN 114534726A
Authority
CN
China
Prior art keywords
iron
cathode
oxygen
fenton
electro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210223000.2A
Other languages
English (en)
Other versions
CN114534726B (zh
Inventor
曾滔
金职权
骆金箫
宋爽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN202210223000.2A priority Critical patent/CN114534726B/zh
Publication of CN114534726A publication Critical patent/CN114534726A/zh
Application granted granted Critical
Publication of CN114534726B publication Critical patent/CN114534726B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/28Per-compounds
    • C25B1/30Peroxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种铁/氧掺杂碳基过滤式电芬顿阴极及其制备方法与应用,其包括:通过分步煅烧的方法合成一种铁‑氧‑碳单原子催化剂,将所得的催化剂滴涂在活性炭纤维上,从而形成一种高过氧化氢产率且能够快速传质的高性能铁/氧掺杂碳基过滤式电芬顿阴极。过氧化氢在铁/氧掺杂碳基过滤式电芬顿阴极高效原位产生,并在单原子铁位点的催化作用下原位生成羟基自由基,过氧化氢的产率得到大幅度的提升,将阴极表面富集的难降解有机污染物高效催化,从而实现微污染物的高效去除,且能保持良好的稳定性,在能源和环境保护领域有较高的应用价值。

Description

铁/氧掺杂碳基过滤式电芬顿阴极及其制备方法与应用
技术领域:
本发明属于纳米材料和环境技术领域,涉及一种铁/氧掺杂碳基过滤式电芬顿阴极及其的制备方法与及应用。
背景技术:
由于城市工业化的深入与化工行业的发展,难降解有机污染物(POPs)是在于水体中被越来越广泛地检出,进而引起人们越来越广泛的关注。然而由于其浓度低、毒性高的特点,传统的净水方法(例如混凝、沉淀、氯化消毒等)和污水处理途径(例如物理化学、生化法)难以有效处理。低浓度的特点导致常规处理手段污染物传输的驱动力不足。因此,亟需开发一种先进的手段来有效、快速地从水中去除难降解有机污染物。
电芬顿技术是一种改进的芬顿工艺,由于其氧化能力强、环境友好和易于操作等较为理想的特性,最近引起了广泛关注。该技术可原位合成过氧化氢,避免了传统芬顿体系中过氧化氢的运输、储存和使用等风险。外加电场有利于亚铁离子的再生,从而减少铁泥的产生和亚铁的消耗。然而,关于电芬顿技术的实际应用的报道很少,主要是因为以下瓶颈尚待克服:(i)高产率的活性物质,(ii)具有高速质量传输的先进电化学反应器,以及(iii)高效、持续、稳定的新型反应系统。
发明内容:
本发明目的在于,提出一种新型铁/氧掺杂碳基过滤式电芬顿阴极的制备方法并将其应用于过滤电芬顿体系。该方法采用通过分步煅烧的方法合成一种铁-氧-碳单原子催化剂,将所得的催化剂滴涂在活性炭纤维上,从而形成一种高过氧化氢产率且能够快速传质的高性能铁/氧掺杂碳基过滤式电芬顿阴极。过氧化氢在铁/氧掺杂碳基过滤式电芬顿阴极高效原位产生,并在单原子铁位点的催化作用下原位生成羟基自由基(·OH),过氧化氢的产率得到大幅度的提升,将阴极表面的难降解有机污染物高效催化,从而实现微污染物的高效去除
为了实现上述目的,本发明的技术方案如下:
第一方面,本发明提供一种铁-氧-碳单原子催化剂,所述铁-氧-碳单原子催化剂按如下方法制备:
将邻苯二甲酸与六水合硝酸铁溶于体积比1:1-5(优选1:3)的甲醇与丙酮的混合溶液中,加入介孔碳材(如石墨烯、CMK-3,优选CMK-3),室温下搅拌至溶剂完全挥发;所得产物在氩气氛围中以2-10℃/min(优选5℃/min)的升温速率在150-300℃(优选250℃)保持0.5-2h(优选1h)后,再升温至700-900℃(优选800℃)煅烧0.5-3h(优选2h),冷却至室温;所得产物在70-100℃(优选80℃)的1-3M(优选2M)盐酸中处理6-10h(优选8h)后,以去离子水洗涤至中性,得到铁-氧-碳单原子催化剂;所述邻苯二甲酸、六水合硝酸铁与有序介孔碳的质量比为1:0.1-5:0.1-5(优选1:1:2)。
进一步,所述甲醇与丙酮的混合溶液的体积为足够溶解所述邻苯二甲酸与六水合硝酸铁的最小剂量。
第二方面,本发明提供一种以上述铁-氧-碳单原子催化剂制备的单原子铁/氧掺杂碳基过滤式电芬顿阴极,所述单原子铁/氧掺杂碳基过滤式电芬顿阴极按如下方法制备:
将所述铁-氧-碳单原子催化剂加入乙醇和nafion试剂的混合溶液,分散均匀后,滴涂在经过预处理的活性炭纤维上,干燥,得到所述的单原子铁/氧掺杂碳基过滤式电芬顿阴极;所述乙醇和nafion试剂的混合溶液中,乙醇与nafion试剂体积比25-100:1(优选59:1);所述铁-氧-碳单原子催化剂的质量以所述乙醇和nafion试剂的混合溶液的体积计为1-3mg/mL(优选2mg/mL)。
进一步,所述的经过预处理的活性炭纤维按如下方法制备:(裁剪出直径为30mm、厚度为3mm的)活性炭纤维依次在乙醇、丙酮、水中各超声30min,以去除杂质,在60℃真空干燥箱中干燥12h,得到所述的经过预处理的活性炭纤维。
第三方面,本发明还提供一种上述单原子铁/氧掺杂碳基过滤式电芬顿阴极在过滤电芬顿体系中制备过氧化氢的应用。
具体地,所述应用为:以pH3.0、0.01-0.1mol/L(优选0.05mol/L)的硫酸钠水溶液为电解液,以所述单原子铁/氧掺杂碳基过滤式电芬顿阴极为阴极,以网状钛基镀铱电极(DSA电极,义万临,ywl188)为阳极构建所述过滤电芬顿体系,制备过氧化氢;
所述阴极与阳极之间以绝缘网隔离,所述阴极与阳极外接直流电源,阴极施加电位为-0.1-1.0V(优选-0.6V);所述电解液在进入所述过滤电芬顿体系前与空气充分接触。
优选地,所述电解液循环进入所述过滤电芬顿体系中充分反应,循环的流速为1.0-20.0mL/min(优选5mL/min)。
优选地,所述阳极有两个,分别位于所述阴极的两侧。
第四方面,本发明还提供一种上述单原子铁/氧掺杂碳基过滤式电芬顿阴极在过滤电芬顿体系中降解有机污染物的应用。
具体地,所述的应用为:以pH3.0、含0.01-0.1mol/L(优选0.05mol/L)硫酸钠和5-20mg/L(优选10mg/L)有机污染物的水溶液为电解液,以所述单原子铁/氧掺杂碳基过滤式电芬顿阴极为阴极,以网状钛基镀铱电极(DSA电极,义万临,ywl188)为阳极构建所述过滤电芬顿体系,降解有机污染物;
所述阴极与阳极之间以绝缘网隔离,所述阴极与阳极外接直流电源,阴极施加电位为-0.1-1.0V(优选-0.6V);所述电解液在进入所述过滤电芬顿体系前与空气充分接触。
优选地,所述电解液循环进入所述过滤电芬顿体系中充分反应,循环的流速为1.0-20.0mL/min(优选5mL/min)。
优选地,所述阳极有两个,分别位于所述阴极的两侧。
进一步地,所述的(难降解)有机污染物为双酚A、诺氟沙星、对硝基苯酚、卡马西平中的一种。
过氧化氢在铁/氧掺杂碳基过滤式电芬顿阴极界面高效原位产生,并在单原子铁位点的催化作用下生成·OH;在过滤电芬顿过程中,难降解有机污染物被铁/氧掺杂碳基过滤式电芬顿阴极富集浓缩,使其处于或接近电解·OH的作用区间,浓缩污染物随后被电解生成的·OH降解,从而实现了难降解有机污染物的高效去除。
与现有技术相比,本发明具有以下有益效果:
a.本发明采用分步煅烧法,制备了一种具备铁-氧-碳位点的单原子催化剂。
b.本发明制备的铁-氧-碳位点的单原子催化剂滴涂到经过预处理的活性炭纤维上,所得铁/氧掺杂碳基过滤式电芬顿阴极与无单原子催化剂负载的活性炭纤维阴极相比,过氧化氢产率提高了85倍。
c.本发明所述的铁/氧掺杂碳基过滤式电芬顿阴极,应用于过滤电芬顿体系中,有机污染物降解速率明显提升,与无单原子催化剂负载的活性炭纤维阴极相比,反应1h后处理效果提升了65%。
附图说明:
图1为本发明过滤电芬顿体系装置示意图;
图2为本发明过滤电芬顿体系下过氧化氢产量时间图;
图3为本发明过滤电芬顿体系下污染物去除率时间图;
图4为本发明过滤电芬顿体系不同难降解有机污染物对比图;
具体实施方式:
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。在不背离本发明精神和实质的情况下,对本发明方法、步骤或条件所作的简单修改或替换,均属于本发明的范围。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1:
本实施例中,制备不含金属的氧掺杂碳基过滤式电芬顿阴极,作为对照实例,具体步骤如下:
(1)将30mg邻苯二甲酸溶于40ml体积比(1:3)的甲醇与丙酮的混合溶液中,之后加入60mg有序介孔碳CMK-3(购自南京先丰纳米,100423),室温下搅拌至溶剂完全挥发。
(2)将所得产物在氩气氛围中以5℃/min的升温速率在250℃保持1h后,再升温至800℃保持2h,冷却至室温。
(3)将所得产物在80℃的2M盐酸中处理8h后,以去离子水洗涤至洗涤液呈中性得到氧/碳催化剂。
(4)裁剪直径为30mm,厚度为3mm的活性炭纤维(北海碳素,SMZ3MM),分别在乙醇、丙酮、水溶液中各超声30min,以去除杂质,之后在60℃真空干燥箱中干燥12h得到经过预处理的活性炭纤维。
(5)将所述的氧/碳单原子催化剂溶于乙醇与nafion试剂的混合溶液中,将混合物超声30min后,滴涂到到经过预处理的活性碳纤维上,并在60℃真空干燥箱中干燥12h,命名为氧掺杂活性炭纤维阴极。所述的氧/碳催化剂在混合溶液中的浓度为2mg/mL,所述的混合溶液体积为6mL,乙醇与nafion试剂体积比59:1。
实施例2:
本实施例中,制备一种铁掺杂碳基过滤式电芬顿阴极,具体步骤如下:
(1)30mg六水合硝酸铁溶于40ml体积比(1:3)的甲醇与丙酮的混合溶液中,之后加入60mg有序介孔碳CMK-3,室温下搅拌至溶剂完全挥发。
(2)将所得产物在氩气氛围中以5℃/min的升温速率在250℃保持1h后,再升温至800℃保持2h,冷却至室温。
(3)将所得产物在80℃的2M盐酸中处理8h后,以去离子水洗涤至洗涤液呈中性得到铁/碳催化剂。
(4)裁剪直径为30mm,厚度为3mm的活性炭纤维,分别在乙醇、丙酮、水溶液中各超声30min,以去除杂质,之后在60℃真空干燥箱中干燥12h得到经过预处理的活性炭纤维。
(5)将所述的铁/碳催化剂溶于乙醇与nafion试剂的混合溶液中,将混合物超声30min后,滴涂到到经过预处理的活性碳纤维上,并在60℃真空干燥箱中干燥12h,命名为铁掺杂活性炭纤维阴极。所述的铁/碳催化剂在混合溶液中的浓度为2mg/mL,所述的混合溶液体积为6mL,乙醇与nafion试剂体积比59:1。
实施例3:
本实施例中,制备一种铁/氧掺杂碳基过滤式电芬顿阴极,具体步骤如下:
(1)将30mg邻苯二甲酸与3mg六水合硝酸铁溶于40ml体积比(1:3)的甲醇与丙酮的混合溶液中,之后加入60mg有序介孔碳CMK-3,室温下搅拌至溶剂完全挥发。
(2)将所得产物在氩气氛围中以5℃/min的升温速率在250℃保持1h后,再升温至800℃保持2h,冷却至室温。
(3)将所得产物在80℃的2M盐酸中处理8h后,以去离子水洗涤至洗涤液呈中性得到铁-氧-碳单原子催化剂。
(4)裁剪直径为30mm,厚度为3mm的活性炭纤维,分别在乙醇、丙酮、水溶液中各超声30min,以去除杂质,之后在60℃真空干燥箱中干燥12h得到经过预处理的活性炭纤维。
(5)将所述的铁-氧-碳单原子催化剂溶于乙醇与nafion试剂的混合溶液中,将混合物超声30min后,滴涂到到经过预处理的活性碳纤维上,并在60℃真空干燥箱中干燥12h,命名为铁/氧掺杂碳基过滤式电芬顿阴极-0.1。所述的铁-氧-碳单原子催化剂在混合溶液中的浓度为2mg/mL,所述的混合溶液体积为6mL,乙醇与nafion试剂体积比59:1。
实施例4:
本实施例中,制备一种铁/氧掺杂碳基过滤式电芬顿阴极,具体步骤如下:
(1)将30mg邻苯二甲酸与30mg六水合硝酸铁溶于40ml体积比(1:3)的甲醇与丙酮的混合溶液中,之后加入60mg有序介孔碳CMK-3,室温下搅拌至溶剂完全挥发。
(2)将所得产物在氩气氛围中以5℃/min的升温速率在250℃保持1h后,再升温至800℃保持2h,冷却至室温。
(3)将所得产物在80℃的2M盐酸中处理8h后,以去离子水洗涤至洗涤液呈中性得到铁-氧-碳单原子催化剂。
(4)裁剪直径为30mm,厚度为3mm的活性炭纤维,分别在乙醇、丙酮、水溶液中各超声30min,以去除杂质,之后在60℃真空干燥箱中干燥12h得到经过预处理的活性炭纤维。
(5)将所述的铁-氧-碳单原子催化剂溶于乙醇与nafion试剂的混合溶液中,将混合物超声30min后,滴涂到到经过预处理的活性碳纤维上,并在60℃真空干燥箱中干燥12h,命名为铁/氧掺杂碳基过滤式电芬顿阴极-1。所述的铁-氧-碳单原子催化剂在混合溶液中的浓度为2mg/mL,所述的混合溶液体积为6mL,乙醇与nafion试剂体积比59:1。
实施例5:
本实施例中,制备一种铁/氧掺杂碳基过滤式电芬顿阴极,具体步骤如下:
(1)将30mg邻苯二甲酸与60mg六水合硝酸铁溶于40ml体积比(1:3)的甲醇与丙酮的混合溶液中,之后加入60mg有序介孔碳CMK-3,室温下搅拌至溶剂完全挥发。
(2)将所得产物在氩气氛围中以5℃/min的升温速率在250℃保持1h后,再升温至800℃保持2h,冷却至室温。
(3)将所得产物在80℃的2M盐酸中处理8h后,以去离子水洗涤至洗涤液呈中性得到铁-氧-碳催化剂。
(4)裁剪直径为30mm,厚度为3mm的活性炭纤维,分别在乙醇、丙酮、水溶液中各超声30min,以去除杂质,之后在60℃真空干燥箱中干燥12h得到经过预处理的活性炭纤维。
(5)将所述的铁-氧-碳催化剂溶于乙醇与nafion试剂的混合溶液中,将混合物超声30min后,滴涂到到经过预处理的活性碳纤维上,并在60℃真空干燥箱中干燥12h,命名为铁/氧掺杂碳基过滤式电芬顿阴极-2。所述的铁-氧-碳催化剂在混合溶液中的浓度为2mg/mL,所述的混合溶液体积为6mL,乙醇与nafion试剂体积比59:1。
实施例6:
本发明所述的过滤式电芬顿阴极(实施例1-5)电催化产过氧化氢试验,具体步骤如下:
本实施例中,过滤式电芬顿阴极用于电催化产过氧化氢,如图1所示,过滤式电芬顿阴极置于反应器中部,网状钛基镀铱电极(DSA电极,义万临,ywl188)分别置于反应器上部和下部,过滤式电芬顿阴极与上部和下部DSA阳极分别相对,阴、阳极之间采用绝缘网(墨提斯,6目)隔开,反应器的上端有一出液口,下端有一进液口。所述过滤式电芬顿阴极和DSA阳极外接直流电源;所述出液口和进液口分别通过管道外接同一敞口容器,所述进液口与所述敞口容器之间的管道上设一蠕动泵;
试验条件:总体积0.5L的0.05mol/L硫酸钠水溶液,待处理溶液的初始pH用1M盐酸调节为3.0,流速:5.0mL/min,阳极:网状DSA,阴极电位-0.6V。
如图2所示,活性炭纤维阴极、氧掺杂碳基过滤式电芬顿阴极(实施例1)、铁掺杂碳基过滤式电芬顿阴极(实施例2)产过氧化氢能力较差,反应发生1h后,溶液中过氧化氢积累量仅分别为0.09、0.16和0.15mM,远低于铁/氧掺杂碳基过滤式电芬顿阴极-1(实施例4)的7.9mM,该结果表明在活性炭纤维中引入单原子催化剂制成的过滤电芬顿阴极极大地提高了过氧化氢的产率。而过滤式电芬顿阴极-0.1(实施例3)与过滤式电芬顿阴极-2(实施例5)的过氧化氢的产率低于过滤式电芬顿阴极-1,表明过量的金属掺杂将导致金属团簇,减少了反应活性位点。
实施例7
本发明所述的过滤式电芬顿阴极(实施例1-5)电催化降解难降解污染物试验,具体步骤如下:
本实施例中,过滤式电芬顿阴极用于电催化降解难降解污染物,铁/氧掺杂碳基过滤式电芬顿阴极置于反应器中部,网状DSA电极分别置于反应器上部和下部,过滤式电芬顿阴极与上部和下部DSA阳极分别相对,阴、阳极之间采用绝缘网隔开。反应器的上端有一出液口,下端有一进液口。所述过滤式电芬顿阴极和DSA阳极外接直流电源;所述出液口和进液口分别通过管道外接同一敞口容器,所述进液口与所述敞口容器之间的管道上设一蠕动泵;
试验条件:总体积0.5L的10mg/L的双酚A水溶液,投加0.025mol的硫酸钠固体溶解以使溶液中硫酸钠浓度达到0.05mol/L,待处理溶液的初始pH用1M盐酸调节为3.0,流速:5.0mL/min,阳极:网状DSA,阴极电位-0.6V。
如图3所示,活性炭纤维阴极、氧掺杂碳基过滤式电芬顿阴极(实施例1)与铁掺杂碳基过滤式电芬顿阴极(实施例2)降解双酚A能力较差,反应发生1h后,溶液中仍存在65%、55%和53%的双酚A,作为对比,铁/氧掺杂碳基过滤式电芬顿阴极-1去除了99%的双酚A,该结果表明在活性炭纤维中引入单原子催化剂制成的过滤电芬顿阴极能够极大地提高阴极电芬顿降解污染物的能力。
实施例8
本实施例与实施例7不同之处在于,所述的污染物为10mg/L的诺氟沙星,所述的过滤式电芬顿阴极为铁/氧掺杂碳基过滤式电芬顿阴极-1,其他试验步骤与实施例7相同。
实施例9
本实施例与实施例7不同之处在于,所述的污染物为10mg/L的对硝基苯酚,所述的过滤式电芬顿阴极为铁/氧掺杂碳基过滤式电芬顿阴极-1,其他试验步骤与实施例7相同。
实施例10
本实施例与实施例7不同之处在于,所述的污染物为10mg/L的卡马西平,所述的过滤式电芬顿阴极为铁/氧掺杂碳基过滤式电芬顿阴极-1,其他试验步骤与实施例7相同。
如图4所示,铁/氧掺杂碳基过滤式电芬顿阴极对于不同结构的难降解有机污染物均表现出良好的去除效果。该结果证明了本发明中铁/氧掺杂碳基过滤式电芬顿阴极降解污染物的途径为羟基自由基(·OH)对污染物的无选择性进攻,具有较高的实际应用价值。
以上结果表明,通过在活性炭纤维中引入铁-氧-碳单原子催化剂制备的铁/氧掺杂碳基过滤式电芬顿阴极能够有效提高过滤电芬顿装置阴极过氧化氢产率。同时,该阴极的单原子铁位点能够在阴极的催化剂界面原位活化过氧化氢产生羟基自由基(·OH),从而实现难降解有机污染物的高效降解。
以上所述的实施例只是本发明的一种较优方案,而非限制本发明。例如,在实施例中,前驱体选用邻苯二甲酸引入含氧官能团以形成铁-氧-碳配位形式的单原子铁催化剂,但并不意味着只能以邻苯二甲酸作为引入含氧官能团的配体,选择与邻苯二甲酸相似结构的含羧基的有机配体都能实现本发明的效果。又如,本发明中选择有序介孔碳CMK-3作为单原子催化剂的载体,但并不意味着只能以有序介孔碳CMK-3作为载体,与有序介孔碳CMK-3结构相似的碳基介孔材料(如石墨烯等)均能实现本发明的效果。
因此,本领域的技术人员,在不脱离本发明方法的基本情况下,还可以做出各种变化。然而若是采取等同或等效替换的方法获得的发明方案,均在本发明的保护范围之内。

Claims (10)

1.一种铁-氧-碳单原子催化剂,其特征在于所述铁-氧-碳单原子催化剂按如下方法制备:
将邻苯二甲酸与六水合硝酸铁溶于体积比1:1-5的甲醇与丙酮的混合溶液中,加入介孔碳材,室温下搅拌至溶剂完全挥发;所得产物在氩气氛围中以2-10℃/min的升温速率在150-300℃保持0.5-2h后,再升温至700-900℃煅烧0.5-3h,冷却至室温;所得产物在70-100℃的1-3M盐酸中处理6-10h后,以去离子水洗涤至中性,得到铁-氧-碳单原子催化剂;所述邻苯二甲酸、六水合硝酸铁与有序介孔碳的质量比为1:0.1-5:0.1-5。
2.如权利要求1所述的铁-氧-碳单原子催化剂,其特征在于:所述甲醇与丙酮的混合溶液的体积为足够溶解所述邻苯二甲酸与六水合硝酸铁的最小剂量。
3.如权利要求1所述的铁-氧-碳单原子催化剂,其特征在于:所述介孔碳材为CMK-3。
4.如权利要求1所述的铁-氧-碳单原子催化剂制备的单原子铁/氧掺杂碳基过滤式电芬顿阴极,其特征在于所述单原子铁/氧掺杂碳基过滤式电芬顿阴极按如下方法制备:
将所述铁-氧-碳单原子催化剂加入乙醇和nafion试剂的混合溶液,分散均匀后,滴涂在经过预处理的活性炭纤维上,干燥,得到所述的单原子铁/氧掺杂碳基过滤式电芬顿阴极;所述乙醇和nafion试剂的混合溶液中,乙醇与nafion试剂体积比25-100:1;所述铁-氧-碳单原子催化剂的质量以所述乙醇和nafion试剂的混合溶液的体积计为1-3mg/mL。
5.如权利要求4所述的单原子铁/氧掺杂碳基过滤式电芬顿阴极,其特征在于所述的经过预处理的活性炭纤维按如下方法制备:活性炭纤维依次在乙醇、丙酮、水中各超声30min,在60℃真空干燥箱中干燥12h,得到所述的经过预处理的活性炭纤维。
6.如权利要求4所述的单原子铁/氧掺杂碳基过滤式电芬顿阴极在过滤电芬顿体系中制备过氧化氢的应用。
7.如权利要求6所述的应用,其特征在于所述应用为:以pH3.0、0.01-0.1mol/L的硫酸钠水溶液为电解液,以所述单原子铁/氧掺杂碳基过滤式电芬顿阴极为阴极,以网状钛基镀铱电极为阳极构建所述过滤电芬顿体系,制备过氧化氢;
所述阴极与阳极之间以绝缘网隔离,所述阴极与阳极外接直流电源,阴极施加电位为-0.1-1.0V;所述电解液在进入所述过滤电芬顿体系前与空气充分接触。
8.如权利要求4所述的单原子铁/氧掺杂碳基过滤式电芬顿阴极在过滤电芬顿体系中降解有机污染物的应用。
9.如权利要求8所述的应用,其特征在于所述的应用为:以pH3.0、含0.01-0.1mol/L硫酸钠和5-20mg/L有机污染物的水溶液为电解液,以所述单原子铁/氧掺杂碳基过滤式电芬顿阴极为阴极,以网状钛基镀铱电极为阳极构建所述过滤电芬顿体系,降解有机污染物;
所述阴极与阳极之间以绝缘网隔离,所述阴极与阳极外接直流电源,阴极施加电位为-0.1-1.0V;所述电解液在进入所述过滤电芬顿体系前与空气充分接触。
10.如权利要求8所述的应用,其特征在于:所述的有机污染物为双酚A、诺氟沙星、对硝基苯酚、卡马西平中的一种。
CN202210223000.2A 2022-03-09 2022-03-09 铁/氧掺杂碳基过滤式电芬顿阴极及其制备方法与应用 Active CN114534726B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210223000.2A CN114534726B (zh) 2022-03-09 2022-03-09 铁/氧掺杂碳基过滤式电芬顿阴极及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210223000.2A CN114534726B (zh) 2022-03-09 2022-03-09 铁/氧掺杂碳基过滤式电芬顿阴极及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN114534726A true CN114534726A (zh) 2022-05-27
CN114534726B CN114534726B (zh) 2024-05-03

Family

ID=81664059

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210223000.2A Active CN114534726B (zh) 2022-03-09 2022-03-09 铁/氧掺杂碳基过滤式电芬顿阴极及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN114534726B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115893592A (zh) * 2022-11-03 2023-04-04 北京林业大学 一种电絮凝原位耦合电芬顿溢流污染快速净化技术

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107601624A (zh) * 2017-10-26 2018-01-19 清华大学 一种基于负载型活性炭纤维的电芬顿阴极材料的制备及应用
CN112803030A (zh) * 2020-12-29 2021-05-14 河北工业大学 一种电芬顿复合膜阴极的制备方法及应用方法
CN113998761A (zh) * 2021-04-13 2022-02-01 河北工业大学 一种原位缓释芬顿催化剂的方法及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107601624A (zh) * 2017-10-26 2018-01-19 清华大学 一种基于负载型活性炭纤维的电芬顿阴极材料的制备及应用
CN112803030A (zh) * 2020-12-29 2021-05-14 河北工业大学 一种电芬顿复合膜阴极的制备方法及应用方法
CN113998761A (zh) * 2021-04-13 2022-02-01 河北工业大学 一种原位缓释芬顿催化剂的方法及应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115893592A (zh) * 2022-11-03 2023-04-04 北京林业大学 一种电絮凝原位耦合电芬顿溢流污染快速净化技术
CN115893592B (zh) * 2022-11-03 2024-05-24 北京林业大学 一种电絮凝原位耦合电芬顿溢流污染快速净化技术

Also Published As

Publication number Publication date
CN114534726B (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
Liu et al. Oxygen vacancies-enriched Cu/Co bimetallic oxides catalysts for high-efficiency peroxymonosulfate activation to degrade TC: Insight into the increase of Cu+ triggered by Co doping
CN111790422B (zh) 一种石墨化基氮络合的Fe(III)-Fe0催化剂及其合成方法和应用
Zhang et al. Highly efficient dual-cathode Electro-Fenton process without aeration at a wide pH range: Simultaneously enhancing Fe (II) regeneration and mineralization efficiency
Xie et al. Enhanced redox activity and oxygen vacancies of perovskite triggered by copper incorporation for the improvement of electro-Fenton activity
CN107519934B (zh) 一种二茂铁修饰的铁基金属-有机骨架材料类Fenton催化剂制备方法
Li et al. Peroxymonosulfate activation by oxygen vacancies-enriched MXene nano-Co3O4 co-catalyst for efficient degradation of refractory organic matter: Efficiency, mechanism, and stability
CN111039388B (zh) 负载单原子催化剂的聚酰亚胺基催化阴极炭膜及其应用
CN105439258A (zh) 一种原位电产生h2o2协同o3氧化的废水处理方法
CN110548514B (zh) 一种具有丰富氧空位的分级多孔钴/铁双金属氧化物纳米片催化剂及其制备方法和应用
Long et al. Staged and efficient removal of tetracycline and Cu2+ combined pollution: A designed double-chamber electrochemistry system using 3D rGO
US20220033285A1 (en) Copper Integrated Electrode with Convertible Oxidation State and Preparation Method and Application Method thereof
CN111167513B (zh) 一种用于去除水中硝酸盐的柔性电催化膜及其制备方法和应用
CN102424465A (zh) 一种电催化氧化和电Fenton技术协同降解酚类废水的方法
CN105293688B (zh) 一种耦合生物阳极电催化去除水中硝酸盐氮的系统
Zhou et al. New insights into the surface-dependent activity of graphitic felts for the electro-generation of H2O2
Qu et al. Enhanced Fenton-like catalysis for pollutants removal via MOF-derived CoxFe3− xO4 membrane: Oxygen vacancy-mediated mechanism
CN113083369A (zh) 一种基于铁基金属有机骨架衍生的电芬顿催化剂及其制备方法和应用
CN112657493A (zh) 碳纳米管膜的制作方法及基于限域催化剂的连续流电芬顿系统
Zhang et al. Improved alkaline water electrolysis system for green energy: sulfonamide antibiotic-assisted anodic oxidation integrated with hydrogen generation
CN114534726B (zh) 铁/氧掺杂碳基过滤式电芬顿阴极及其制备方法与应用
Guo et al. Highly dispersed FeN-CNTs heterogeneous electro-Fenton catalyst for carbamazepine removal with low Fe leaching at wide pH
Lu et al. A bifunctional graphene-based cathode for wastewater treatment in heterogeneous electro-fenton: Taking textile, old landfill leachate and simulated antibiotic wastewater as examples
Xie et al. In-situ electrodeposition of Co/Ce-MOF-derived carbon composites as anode for electrochemical degradation of ceftazidime
Li et al. Improvement of the conventional flat plate electrode: Application of filtered Pd@ Ti electrode in the removal of toxic chlorinated PPCPs
Zhang et al. Enhanced tetracycline degradation by a confinement structure rGO/Fe1/C3N4 photocathode during the sequential oxygen reduction process

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant