CN114534711A - 一种重金属Al3+的快速检测试剂盒及其应用 - Google Patents

一种重金属Al3+的快速检测试剂盒及其应用 Download PDF

Info

Publication number
CN114534711A
CN114534711A CN202210439024.1A CN202210439024A CN114534711A CN 114534711 A CN114534711 A CN 114534711A CN 202210439024 A CN202210439024 A CN 202210439024A CN 114534711 A CN114534711 A CN 114534711A
Authority
CN
China
Prior art keywords
nanoenzyme
cerium
monatomic
solution
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210439024.1A
Other languages
English (en)
Inventor
程楠
宋光春
黄昆仑
罗云波
许文涛
贺晓云
庞晓旭
刘清亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Agricultural University
Original Assignee
China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Agricultural University filed Critical China Agricultural University
Priority to CN202210439024.1A priority Critical patent/CN114534711A/zh
Publication of CN114534711A publication Critical patent/CN114534711A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/27Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a liquid or molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/775Indicator and selective membrane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供了一种重金属Al3+的快速检测试剂盒及其应用方法,包括:(1)单原子铈(Single atom Ce‑N‑C,SACe‑N‑C)纳米酶类磷酸酶(Phosphatase,PPA‑like)活性的验证和评估,(2)快速检测试剂盒检测体系的构建。本发明利用Al3+能与单原子铈纳米酶结构中的氧原子发生反应形成Al‑O键,从而显著降低单原子铈纳米酶类磷酸酶活性,能在4 min内实现对体系中Al3+的快速、高效的检测。

Description

一种重金属Al3+的快速检测试剂盒及其应用
技术领域
本发明涉及食品安全检测技术领域,尤其及一种对金属Al3+的快速检测试剂盒及其应用。
背景技术
Al3+是现如今使用最普遍的金属之一,在日常的饮食生活中,Al3+常被作为固化剂,膨松剂,稳定剂,抗结剂和染色剂等食品添加剂运用到食品制作过程中。例如在油炸食品中、豆制品中Al3+超标的情况都十分显著。摄入过多的Al3+会对人体产生一定的危害,会造成阿尔兹海默症和帕金森症疾病发生[1, 2]。然而目前检测Al3+的方法主要有原子吸收光谱法[3-5] 、电感耦合等离子体原子发射光谱法[6, 7]等。然而,这些方法均存在一定的局限性,如需要昂贵的设备和专业的操作人员等,这严重阻碍了食品安全快速检测领域的发展。因此,与常规的仪器设备检测方法相比,比色[8-10]、荧光[11]、化学发光[12]、电化学[13, 14]等新颖的方法逐渐成为大型仪器检测的替代方法。然而,由于比色检测灵敏度低;化学发光必须使用发光剂;电化学重现性差等缺点,在实际应用中存在一定的局限。荧光检测方法因其在简单性和选择性、高灵敏度、低成本和实时监测等方面的优势,已被认为是一种重要的检测分析技术[15]。
此外,随着纳米技术的发展,具有模拟天然酶活性的纳米材料被命名为纳米酶,其表现出比天然酶更宽的酸碱、温度耐受范围、制作成本低、稳定性高等诸多优点,但同时其类酶活性普遍低于天然酶,这一缺点严重制约了纳米酶的发展。然而随着球差电子显微镜技术的发展,金属活性中心单一且均匀分散的单原子纳米酶被开发出来,其表现出更高的类酶活性。因此,本发明研究基于前期团队开发合成的单原子铈纳米酶材料,充分结合单原子铈纳米酶自身优异的Ce3+和Ce4+氧化还原体系所表现出的催化性能,结合荧光分析技术进一步应用于开发快速、灵敏检测Al3+
参考文献
[1]WALTON J R. Aluminum in hippocampal neurons from humans withAlzheimer's disease [J]. NeuroToxicology, 2006, 27(3): 385-394.
[2]NARAYANASWAMY, NAGARJUN, VICCARO, et al. A beta plaque-selectiveNIR fluorescence probe to differentiate Alzheimer's disease from tauopathies[J]. Biosensors & Bioelectronics, 2017, 98(15): 54-61.
[3]SLCFA B, MABB C, ASSA B, et al. Atomic absorption spectrometry-Amulti element technique [J]. TrAC Trends in Analytical Chemistry, 2018, 100:1-6.
[4]DA-COL J A, DOMENE S, PEREIRA-FILHO E R. Fast Determination of Cd,Fe, Pb, and Zn in Food using AAS [J]. Food Analytical Methods, 2009, 2(2):110-115.
[5]CANFRANC E, ABARCA A, SIERRA I, et al. Determination of iron andmolybdenum in a dietetic preparation by flame AAS after dry ashing [J].Journal of Pharmaceutical & Biomedical Analysis, 2001, 25(1): 103-108.
[6]TANGEN G, WICKSTR M T, LIERHAGEN S, et al. Fractionation andDetermination of Aluminum and Iron in Soil Water Samples Using SPE Cartridgesand ICP-AES [J]. Environmental Science & Technology, 2002, 36(24): 5421-5425.
[7]PAKTSEVANIDOU I P, MANOUSI N, ZACHARIADIS G A. Development andValidation of an Inductively Coupled Plasma-Atomic Emission Spectrometry(ICP-AES) Method for Trace Element Determination in Vinegar [J]. AnalyticalLetters, 2020, 54(13):1-12.
[8]RPA B, PJ B, DKB C. Aluminon functionalized silver nanoparticlesfor the colorimetric detection of aqueous Al(III) [J]. Materials Chemistryand Physics, 2020, 239(1): 122318-122326.
[9]LUO X, XIE X, MENG Y, et al. Ligands Dissociation Induced GoldNanoparticles Aggregation for Colorimetric Al3+ Detection [J]. AnalyticaChimica Acta, 2019, 1087(9): 76-85.
[10]JOSHI P, PAINULI R, KUMAR D. Label-Free Colorimetric Nanosensorfor the Selective On-Site Detection of Aqueous Al3+ [J]. ACS Sustainable ChemEng, 2017, 5(6): 4552-4562.
[11]MENDECKI L, GRANADOS-FOCIL S, JENDRLIN M, et al. Self-plasticized, lumogallion-based fluorescent optical sensor for thedetermination of aluminium (III) with ultra-low detection limits [J].Analytica Chimica Acta, 2019, 1101(8):141-148.
[12]XUE T A, HONG L A, MIN W B, et al. Highly sensitivechemiluminescent sensing of intracellular Al3+ based on the phosphatasemimetic activity of cerium oxide nanoparticles [J]. Biosensors andBioelectronics, 2020, 152(15): 112027-112034.
[13]GUO L, ZHI S, SUN X, et al. Ultrasensitive detection ofbioanalytes based on signal amplification of coil-integrated giantmagnetoimpedance biosystems [J]. Sensors & Actuators B Chemical, 2017, 247:1-10.
[14]GUPTA A, KUMAR N. A review of mechanisms for fluorescent ''turn-on'' probes to detect Al3+ ions [J]. RSC Advances, 2016, 6(108): 106413-106434
[15]JU P, SU Q, LIU Z, et al. A Salen-based covalent organic polymeras highly selective and sensitive fluorescent sensor for detection of Al3+ ,Fe3+ and Cu2+ ions [J]. 2019, 54: 851–861。
发明内容
本发明的目的是基于Al3+对单原子铈纳米酶类磷酸酶活性的特异性抑制研发的快速检测Al3+的试剂盒。
本发明提供一种单原子纳米酶,所述纳米酶为单原子铈纳米酶。
上述单原子纳米酶的制备方法,包括以下步骤:
将十六烷基三甲基溴化铵溶解于1 M HCl中,加入过硫酸铵搅拌均匀,并添加吡咯搅拌聚合;真空过滤收集黑色沉淀,用水和乙醇洗涤;
将0.2-0.6 mol/L氯化锂和0.01-0.06 mol/L硝酸铈混合,加入上述体系并超声和剧烈搅拌,干燥后在N2流和NH3流下热解,加入H2SO4浸泡,合成单原子铈纳米酶;
将合成的单原子铈纳米酶溶解于无水乙醇和5 % Nafion溶液组成的混合溶液中,超声至溶解,即得到单原子铈纳米酶溶液。
进一步的,单原子铈纳米材料的合成是通过将0.4-1.5 g十六烷基三甲基溴化铵溶解在40-100 mL 0.5-2 M HCl溶液中,在冰浴下通过超声处理。将0.2-2.5 g过硫酸铵加入到上述溶液中搅拌均匀,得到具有白色沉淀的十六烷基三甲基溴化铵模板。其中优选的,十六烷基三甲基溴化铵量为0.5-1.2 g,优选0.75-1 g,更优选为0.8-0.9 g。优选的,过硫酸铵 量为0.5-1.8 g,优选0.75-1.5 g,更优选为1-1.3 g。
在上述体系中再加入0.2-5 mL吡咯,连续搅拌0.5-3天以达到聚合。再通过真空过滤收集得到黑色沉淀,用水和乙醇洗涤2-6次。将混合物分散在氯化锂(0.2-0.6 mol/L)和硝酸铈(0.01-0.06 mol/L)的混合体系中,进行1-10分钟的超声处理和12-48小时的剧烈搅拌,使其吸附Li+和Ce3+阳离子。通过真空过滤收集该混合物前体,并在40-85℃下干燥6-18h,之后在300-1200℃下在N2流下热解0-90 min,在NH3流下热解0-90 min。将获得的碳材料在20-80℃下用0.3-0.8 M H2SO4溶液浸泡2-10 h,以除去氯化锂和不稳定物质,从而获得最终的单原子铈纳米催化剂。
将合成的单原子铈纳米酶溶解于无水乙醇和5%的Nafion的混合溶液(混合溶液中无水乙醇的体积分数为90-99%)中,超声至溶解,即得到单原子铈纳米酶溶液。
优选的,单原子铈纳米酶制备方法,还可以是将0.6-0.8g十六烷基三甲基溴化铵(CTAB)溶解在60 mL 1 M HCl溶液中,在冰浴下通过超声处理。然后将1.2-1.5 g过硫酸铵(APS)加入到上述溶液中搅拌均匀,得到具有白色沉淀的CTBA模板。再加入1.0 mL吡咯,连续搅拌一天以达到聚合。再通过真空过滤收集得到黑色沉淀,再用水和乙醇洗涤。然后再将混合物分散在100 mL氯化锂(0.4 mol/L)和硝酸铈(0.02 mol/L)的混合体系中,进行2分钟的超声处理和24小时的剧烈搅拌,使其吸附Li+和Ce3+阳离子。再通过真空过滤收集该混合物前体,并在60℃下干燥12 h,之后在900℃下在N2流下热解30 min,在NH3流下热解30 min。将获得的碳材料在60℃下用0.5 M H2SO4溶液浸泡4 h,以除去氯化锂和不稳定物质,从而获得最终的单原子铈纳米催化剂。将合成的单原子铈纳米酶溶解于无水乙醇和5%的Nafion的混合溶液(混合溶液中无水乙醇的体积分数为99%)中,超声至溶解,即得到单原子铈纳米酶溶液。
另一方面,本发明提供一种重金属Al3+快速检测方法,检测试剂中包含上述单原子铈纳米酶。
检测方法中包含单原子铈纳米酶溶液、4-甲基伞形酮磷酸二钠盐4-MUP溶液和Tris-HCl缓冲液。
其中单原子铈纳米酶溶液的溶剂为乙醇和5% Nafion溶液组成的混合溶剂,浓度为 0.1-2.3 μM。优选0.5-1.5 μM,更优选的为0.8-1.2 μM,更优选为0.6-0.8 μM,优选为0.73 μM。
上述混合溶剂为乙醇:(5% Nafion)体积分数为(50-150):1,优选(90-110):1,优选99:1。
其中4-MUP溶液,其溶剂为pH7-8的Tris-HCl缓冲液中,浓度为1-5 mM。优选为2mM。
另一方面,本发明提供一种Al3+检测试剂盒,试剂盒中包含上述单原子铈纳米酶。
另一方面,本发明提供一种Al3+检测传感器,传感器中包含上述单原子铈纳米酶。
另一方面,本发明提供一种单原子铈纳米酶在Al3+检测中的应用。应用包括重金属污染物检测,食品安全检测等。所述食品包括粉丝、粉条、宽粉、桃酥、红豆酥、月饼、枣糕、腐乳、豆腐、豆腐皮、蛋糕、蛋卷等的检测。
其他方面,本发明提供了一种重金属Al3+的快速检测试剂盒及其应用,包括:(1)单原子铈纳米酶类磷酸酶活性的验证和评估,(2)快速检测试剂盒检测体系的构建。
本发明提供上述单原子铈纳米酶类磷酸酶活性的验证和评估,包括:水解底物分子特征吸收峰、类磷酸酶最佳反应条件和拟合参数大小;
所述水解底物分子特征吸收峰是指比色底物p-NPP被单原子铈纳米酶水解后在405 nm处产生的特征吸收峰,以及荧光底物4-MUP被单原子铈纳米酶水解后在430 nm处产生的特征吸收峰;
所述类磷酸酶最佳反应条件,反应pH7.0-9.0、反应温度20-80℃、反应时间10-20min和相对稳定时间20-30 d;
所述拟合参数为:最大反应速率(v max)为5.86×10-6 M s-1、米氏常数(K m)为0.28mM和酶活力(SA)为29.61 U/mg;
类磷酸酶活性验证和评估过程为:(1)比色体系:在96孔板中依次加入120 μL 的pH 9.0 Tris-HCl缓冲溶液、40 μL的p-NPP溶液及40 μL 的单原子铈纳米酶溶液,涡混均匀后,静置20 min观察溶液颜色是否会从无色变为黄色,并检测在310 nm和405 nm处的吸收峰值变化。若溶液颜色变为黄色,且在405 nm处有特征吸收峰,即说明单原子铈纳米材料具有类磷酸酶活性,反之则无。(2)荧光体系:在1.5 mL离心管中依次加入40 μL的pH 9.0Tris-HCl缓冲溶液、40 μL 的4-MUP溶液和60 μL 的去离子水最后加入60 μL的单原子铈纳米酶溶液,观察体系的荧光变化。若溶液有蓝绿色荧光,且在430 nm处有特征吸收峰,即说明单原子铈纳米材料具有类磷酸酶活性,反之则无。
以此同时,在比色体系中,测试其酶活力SA以及酶动力学参数v maxK m以此来评价单原子铈纳米酶类磷酸酶活性的大小。
另一方面,本发明提供上述快速检测试剂盒体系的检测条件:
重金属Al3+快速检测试剂盒体系中,荧光底物4-MUP浓度为1-2.5 mM;具体地,荧光底物4-MUP浓度为2 mM;单原子铈纳米酶溶液浓度为0.18-1.44 μM;具体地,单原子铈纳米酶溶液浓度为0.72 μM。检测时间为4-6 min;具体地,检测时间为4 min;荧光产物的稳定时间为0.5-4 h。
本发明快速检测试剂盒的检测分析原理:利用单原子铈纳米酶具有类磷酸酶活性,且Al3+可特异性与单原子铈纳米酶结构中的氧原子结合形成Al-O键使其发生聚集,从而抑制类磷酸酶活性,从而实现对Al3+检测(图1)。
具体检测过程为:分别将粉丝、粉条、宽粉、桃酥、红豆酥、月饼、枣糕、腐乳、豆腐、豆腐皮、蛋糕、蛋卷作为实际样品进行分析检测。将各个样品分别称取约0.5 g,加入5.0 mL浓HNO3,1 mL 30% H2O2进行微波消解20 min后加水稀释定容至50.0 mL,得到待测液进行检测(图1)。
借由上述技术方案,本发明至少具有下列优点及有益效果:
a)本发明提供了一种单原子铈纳米酶,其具有类磷酸酶活性,且验证其可特异性与Al3+结合,可用于Al3+的检测。
b)本发明基于Al3+对单原子铈纳米酶类磷酸酶活性的特异性抑制研发的快速检测试剂盒具有以下优点:
(1)在4 min范围内能快速、高效及灵敏的检测食品基质中Al3+
(2)易操作,不需要专业人员及大型设备。
附图说明
图1为Al3+检测原理及操作流程。
图2为单原子铈纳米酶类磷酸酶活性验证。图A为比色及荧光反应示意图;图B为紫外光谱分析;图C为荧光光谱分析。
图3为检测机理验证;图A为比色体系;图B为荧光体系;图C为不同浓度的EDTA-2Na对Al3+的螯合实验;图D为Al3+对商用碱性磷酸酶活性影响;图E为Al3+对单原子铈纳米酶结构影响;图F为Al3+对商用碱性磷酸酶结构影响。
图4为单原子铈纳米酶类磷酸酶活性优化。图A为反应pH对类磷酸酶活性的影响;图B为反应温度对类磷酸酶活性的影响;图C为反应时间对类磷酸酶活性的影响;图D为贮藏时间对类磷酸酶活性的影响。
图5为单原子铈纳米酶类磷酸酶活性拟合参数;图A为米氏方程及双倒数图;图B为酶活力SA线性拟合图。
图6为快速检测试剂盒体系优化;图A为4-MUP浓度;图B为单原子铈纳米酶浓度;图C为检测时间;图D为产物4-MU稳定性。
图7为灵敏度分析。图A为Al3+检测的灵敏度实物检测图;图B为Al6+检测的灵敏度线性关系。
图8为特异性分析。
图9为加标样品检测应用。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段,所用原料均为市售商品。
实施例1 单原子铈纳米酶的合成
十六烷基三甲基溴化铵(CTAB)、过硫酸铵(APS)、硝酸铈、二甲基亚砜(DMSO)、氯化锂由上海阿拉丁生化科技有限公司提供;聚吡咯(PPy)和3,3’,5,5’-四甲基联苯胺(TMB)由上海麦克林生化科技有限公司提供。
1、单原子铈纳米材料的合成
单原子铈纳米材料的合成是通过将0.73 g十六烷基三甲基溴化铵(CTAB)溶解在60 mL 1 M HCl溶液中,在冰浴下通过超声处理。然后将1.37 g过硫酸铵(APS)加入到上述溶液中搅拌均匀,得到具有白色沉淀的CTBA模板。再加入1.0 mL吡咯,连续搅拌一天以达到聚合。再通过真空过滤收集得到黑色沉淀,再用水和乙醇洗涤。然后再将混合物分散在100mL氯化锂(0.4 mol/L)和硝酸铈(0.02 mol/L)的混合体系中,进行2分钟的超声处理和24小时的剧烈搅拌,使其吸附Li+和Ce3+阳离子。再通过真空过滤收集该混合物前体,并在60 ℃下干燥12 h,之后在900℃下在N2流下热解30 min,在NH3流下热解30 min。将获得的碳材料在60℃下用0.5 M H2SO4溶液浸泡4 h,以除去氯化锂和不稳定物质,从而获得最终的单原子铈纳米催化剂。
2、单原子铈纳米酶溶液的制备
将合成的单原子铈纳米酶溶解于无水乙醇和5%的Nafion的混合溶液(混合溶液中无水乙醇的体积分数为99%)中,超声至溶解,即得到单原子铈纳米酶溶液。
实施例2 基于单原子铈纳米酶类磷酸酶活性用于Al3+检测方法的建立
1、实验材料
5% Nafion由上海生物技术有限公司提供;Tris-HCl缓冲液(pH 9.0)和无水乙醇(C2H5OH)由上海源叶生物技术有限公司制备;4-硝基苯磷酸二钠盐(p-NPP)、乙二胺四乙酸二钠(EDTA-2Na)、商用碱性磷酸酶(ALP)、FCP962 96孔板购买于上海碧云天生物技术有限公司、4-甲基伞形酮磷酸二钠盐(4-MUP)购买于西安齐岳生物科技有限公司;Fe3+、Cu2+、Cd2 +、Hg2+、K+、Na+、Ca2+、Mg2+、Zn2+、Pb2+、Cr6+、As5+、F-、Cl-、Br-、NO3 -、SO4 2-、PO4 3- 、Cr3+、Al3+标准品溶液标准品由青岛泉畅科贸有限公司提供;
粉条、粉丝、宽粉、桃酥、红豆酥、月饼、红枣糕、腐乳、豆腐、豆腐皮、蛋糕、蛋卷均购买当地超市。
2、设计原理
本发明快速检测试剂盒的检测分析原理:单原子铈纳米酶具有显著的类磷酸酶酶活性,Al3+能与单原子铈纳米酶结构中的O原子发生反应,形成Al-O键,使均匀分散的单原子铈纳米酶发生不同程度的聚集,从而抑制其磷酸酶活性,使其催化底物产生具有荧光产物的性能下降,通过荧光强度的变化实现对体系中Al3+的检测。(图1)。
3、单原子铈纳米酶类磷酸酶活性验证
(1)比色体系:在96孔板中依次加入120 μL 的pH 9.0 Tris-HCl缓冲溶液、40 μL的p-NPP溶液及40 μL 的单原子铈纳米酶溶液,涡混均匀后,静置20 min观察溶液颜色是否会从无色变为黄色,并检测在310 nm和405 nm处的吸收峰值变化(图2A,B)。
(2)荧光体系:在1.5 mL离心管中依次加入40 μL 的pH 9.0 Tris-HCl缓冲溶液、40 μL 的4-MUP溶液和60 μL 的去离子水最后加入60 μL 的单原子铈纳米酶溶液,观察体系的荧光变化。(图2A,C)。
4、检测机理验证
分别在比色及荧光体系中进行可行性验证。可以观察到Al3+的加入使405 nm处的紫外特征吸收峰(图3A)及430 nm的荧光发射光谱峰(图3B)发生明显下降趋势。为进一步说明产生的结果,我们使用了EDTA-2Na作为螯合剂去螯合Al3+,比较Ce-N-C单原子纳米酶与Al3+体系中加入不同浓度EDTA-2Na后荧光强度变化。与只加有Al3+的空白组相比,发现体系中加有EDTA-2Na后荧光强度有所恢复,且与EDTA-2Na浓度成正相关(图3C)。然而,对商用ALP来说,Al3+的加入并不会影响体系的荧光强度(图3D),表明Al3+对商用ALP的活性没有任何影响。
基于以上实验结果,可能是由于Al3+的加入后与Ce-N-C单原子纳米酶结构中的O原子发生反应,形成Al-O键,使得最开始均匀分散的Ce-N-C单原子纳米酶发生不同程度的聚集,使得其类磷酸酶活性降低。由于商用ALP结构中不具有能与Al3+螯合的氧结构,从而不会发生上述反应影响其催化活性。为了上述推测,在200-800 nm光谱范围内对加有Al3+的体系进行光谱扫描,验证是否有Al-O键的生成。在只有SACe-N-C体系中,约在260 nm处有明显的特征吸收峰出现,其归因于Ce4+ ← O2-电荷的转移,即Ce-O键的存在(图3E)。加入Al3+之后特征吸收峰红移约40 nm,在300 nm处产生明显的特征吸收峰,峰的移动归因于从Ce-O→Al3+的给电子效应,表明有新的Al-O键形成(图3E)。同样,商用ALP体系中加入Al3+后在200-800 nm的范围内均未出现明显的特征吸收峰(图3F),说明商用ALP不会与Al3+发生反应并产生新的反应物质。
综上,可以证明Al3+能通过与Ce-N-C单原子纳米酶结构中的O原子发生反应,形成Al-O键,使均匀分散的Ce-N-C单原子纳米酶发生不同程度的聚集,从而使得其类磷酸酶活性降低,因此,通过荧光淬灭现象及荧光定量可实现对Al3+的定性定量检测。
实施例3 检测条件优化结果
1、单原子铈纳米酶类磷酸酶活性优化
为了使其类磷酸酶活性能最大的发挥,对其可能的影响因素与商用碱性磷酸酶进行优化比较,如反应pH(图4A)、反应温度(图4B)、反应时间(图4C)、及贮藏时间(图4D)。经实验证明,最优的反应条件为:pH9.0的Tris-HCl缓冲液、反应温度37℃、反应时间15 min以及贮藏时间为30 d。
2、单原子铈纳米酶类磷酸酶活性拟合参数
在最佳的反应条件下评估单原子铈纳米酶类磷酸酶活性的大小。通过计算酶动力学参数v maxK m(图5A)及其酶活力SA(图5B)来评价单原子铈纳米酶类磷酸酶活性的大小。
因此,最终的反应数据为:v max为5.86×10-6M s-1K m为0.28 mM以及SA为29.61 U/mg。
3、快速检测试剂盒体系优化
选择在荧光体系中对Al3+检测条件进行了优化。随着底物4-MUP浓度的增加,荧光强度也随之增加,当浓度超过2 mM时随着浓度的增加荧光强度反而下降(图6A)。单原子铈纳米酶浓度查过0.72 μM之后随着浓度的增加荧光强度随之下降(图6B)。在整个检测体系中随着时间的延长荧光强度逐渐降低,但4 min之后荧光淬灭程度并不明显(图6C)。此外,产物4-MU在4 h内均具有很好的稳定性,可以保证在整个检测范围内荧光强度的准确性(图6D)。因此,最佳的检测体系为:底物4-MUP浓度为2 mM、单原子铈纳米酶溶液的浓度为0.72μM、检测时间为4 min以及产物4-MU在4 h内具有良好的稳定性。
实施例4 检测方法的灵敏度测定
在最佳检测条件下,通过改变Al3+的浓度探究体系对Al3+检测的灵敏度。随着Al3+浓度的增加荧光强度逐渐下降,甚至消失(图7A)。在0、5、10、15、20和25 μg/mL线性范围内,Al3+浓度与荧光淬灭效率QI呈现很好的线性关系,线性方程为y=0.023x+0.012,LOD为22.98ng/mL(图7B)。
实施例5 检测方法的选择性验证
在不同阴阳离子的存在下,探究了Al3+对单原子铈纳米酶类磷酸酶特异性抑制的能力。除了Al3+的加入能够使得体系荧光强度下降,Cr3+在一定程度上也能使体系的荧光强度下降,但Cr6+并不影响体系的荧光强度。因此,在实验前将Cr3+氧化成Cr6+进行后续实验,能够消除Cr3+对Al3+检测的影响。其他一些常见的阴阳离子均不会影响单原子铈纳米酶类磷酸酶活性。因此,所构建的传感器对体系中Al3+具有良好的选择性(图8)。
实施例6 加标样品检测应用
对实际加标样品使用本章构建的检测方法进行检测且与常规的仪器检测方法ICP-MS进行比较。豆腐制品中的Al3+含量基本均高于其他制品,主要原因可能是在豆腐的制作过程中会加入石膏作为凝结剂,而石膏主要为无水硫酸钙含有铝等金属。此外,粉丝中的Al3+含量仅次于豆腐制品,可能原因有商家非法加入膨松剂明矾或者制作粉丝的农产品原料如红薯在生长过程中受到了外界环境如土壤中重金属Al3+的污染,使得最终制作出来的粉丝具有很高的Al3+含量(图9)。总体而言,本章构建的荧光液相传感器检测的结果与ICP-MS仪器检测的最终结果基本相似,对Al3+的回收率分别为83.13-122.2%,标准偏差为2.11-5.98%。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之做一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (10)

1.一种单原子纳米酶,其特征在于,所述纳米酶为单原子铈纳米酶。
2.如权利要求1所述单原子纳米酶的制备方法,其特征在于,包括以下步骤:
将十六烷基三甲基溴化铵CTAB溶解于1 M HCl中,加入过硫酸铵搅拌均匀,并添加吡咯搅拌聚合;真空过滤收集黑色沉淀,用水和乙醇洗涤;
将0.2-0.6 mol/L氯化锂和0.01-0.1 mol/L硝酸铈混合,加入上述体系并超声和剧烈搅拌,干燥后在N2流和NH3流下热解,加入H2SO4浸泡,合成单原子铈纳米酶;
将合成的单原子铈纳米酶溶解于无水乙醇和5% Nafion溶液组成的混合溶液中,超声至溶解,即得到单原子铈纳米酶溶液。
3.一种重金属Al3+快速检测方法,其特征在于,检测试剂中包含如权利要求1的单原子铈纳米酶或由权利要求2的制备方法制备的单原子铈纳米酶。
4.如权利要求3所述的检测方法,其特征在于,包含单原子铈纳米酶溶液、4-甲基伞形酮磷酸二钠盐4-MUP溶液和Tris-HCl缓冲液。
5.如权利要求4所述的检测方法,其特征在于,所述单原子铈纳米酶溶液,其溶剂为乙醇和5% Nafion溶液组成的混合溶剂,浓度为 0.1-2.3 μM。
6.如权利要求5所述的所述检测方法,其特征在于,所述混合溶剂为无水乙醇: 5%Nafion体积分数为(50-150):1。
7.如权利要求4所述的所述检测方法,其特征在于,所述4-MUP溶液,其溶剂为pH7-8的Tris-HCl缓冲液中,浓度为1-5 mM。
8.一种Al3+检测试剂盒,其特征在于,试剂盒中包含权利要求1的单原子铈纳米酶或用权利要求2的制备方法制备的单原子铈纳米酶。
9.一种Al3+检测传感器,其特征在于,传感器中包含权利要求1的单原子铈纳米酶或用权利要求2的制备方法制备的单原子铈纳米酶。
10.一种如权利要求1的单原子铈纳米酶在Al3+检测中的应用。
CN202210439024.1A 2022-04-25 2022-04-25 一种重金属Al3+的快速检测试剂盒及其应用 Pending CN114534711A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210439024.1A CN114534711A (zh) 2022-04-25 2022-04-25 一种重金属Al3+的快速检测试剂盒及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210439024.1A CN114534711A (zh) 2022-04-25 2022-04-25 一种重金属Al3+的快速检测试剂盒及其应用

Publications (1)

Publication Number Publication Date
CN114534711A true CN114534711A (zh) 2022-05-27

Family

ID=81666992

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210439024.1A Pending CN114534711A (zh) 2022-04-25 2022-04-25 一种重金属Al3+的快速检测试剂盒及其应用

Country Status (1)

Country Link
CN (1) CN114534711A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116371395A (zh) * 2023-04-13 2023-07-04 成都理工大学 一种铈单原子纳米酶、制备方法以及检测有机磷的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111579515A (zh) * 2020-05-26 2020-08-25 山东理工大学 一种以纳米二氧化铈为模拟氧化酶氧化tmb的方法
CN113418909A (zh) * 2021-05-20 2021-09-21 青岛农业大学 一种Ce-N-C纳米酶及其在有机磷农药残留检测中的应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111579515A (zh) * 2020-05-26 2020-08-25 山东理工大学 一种以纳米二氧化铈为模拟氧化酶氧化tmb的方法
CN113418909A (zh) * 2021-05-20 2021-09-21 青岛农业大学 一种Ce-N-C纳米酶及其在有机磷农药残留检测中的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUANGCHUN SONG: "Single-atom Ce-N-C nanozyme bioactive paper with a 3D-printed platform for rapid detection of organophosphorus and carbamate pesticide residues", 《FOOD CHEMISTRY》 *
XUE TIAN: "Highly sensitive chemiluminescent sensing of intracellular Al3+ based on the phosphatase mimetic activity of cerium oxide nanoparticles", 《BIOSENSORS AND BIOELECTRONICS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116371395A (zh) * 2023-04-13 2023-07-04 成都理工大学 一种铈单原子纳米酶、制备方法以及检测有机磷的方法

Similar Documents

Publication Publication Date Title
Niu et al. Electrochemically generated green-fluorescent N-doped carbon quantum dots for facile monitoring alkaline phosphatase activity based on the Fe3+-mediating ON-OFF-ON-OFF fluorescence principle
Guo et al. Colorimetric detection of Cr (VI) based on the leaching of gold nanoparticles using a paper-based sensor
CN108517208B (zh) 稀土比率荧光探针的制备方法及其Cu2+检测应用
Li et al. Colorimetric measurement of Fe3+ using a functional paper-based sensor based on catalytic oxidation of gold nanoparticles
Xia et al. Self-enhanced electrochemiluminescence of luminol induced by palladium–graphene oxide for ultrasensitive detection of aflatoxin B1 in food samples
CN110669499B (zh) 一种基于普鲁士蓝纳米粒子的荧光适配体探针及其制备方法和应用
CN113429961A (zh) 一种荧光探针、增强型比率荧光传感器、方法及应用
Chen et al. An eco-friendly near infrared fluorescence molecularly imprinted sensor based on zeolite imidazolate framework-8 for rapid determination of trace trypsin
CN108250133B (zh) 一种用于检测锌离子的荧光-拉曼双探针材料及其制备方法
Wang et al. In situ synthesis of fluorescent copper nanoclusters for rapid detection of ascorbic acid in biological samples
CN115728262B (zh) 基于红外光增强缺陷纳米酶快速检测草甘膦的方法
CN113720794A (zh) 基于金纳米粒子的比色适配体传感检测大米中真菌毒素的方法
Zhou et al. Nitrogen-doped Ti3C2 MXene quantum dots as an effective FRET ratio fluorometric probe for sensitive detection of Cu2+ and D-PA
CN113956871B (zh) 一种具有红色荧光的硅纳米颗粒的制备及在检测酸性磷酸酶中的应用
Sha et al. One step functional assembly of guanosine monophosphate and terbium ion on metal organic frameworks for determination of alkaline phosphatase activity
CN114534711A (zh) 一种重金属Al3+的快速检测试剂盒及其应用
CN111707654A (zh) 一种用于铜离子的比色和表面增强拉曼双传感分析方法及试剂
Pu et al. Ce4+-based self-validated portable platform for highly selective and anti-interference visual sensing of phosphate
Ma et al. Ultrasensitive determination of α-glucosidase activity using CoOOH nanozymes and its application to inhibitor screening
Du et al. Boric acid-functionalized lanthanide metal-organic framework used as a ratiometric fluorescence probe for uric acid detection
CN113777088A (zh) 一种基于碳点的乙酰胆碱酯酶的荧光检测方法
Pan et al. Fluorescent solid-state strips based on SiO2 shell-stabilized perovskite nanocrystals applying for magnetic aptasensing detection of aflatoxin B1 toxin in food
Gao et al. Integrated enzyme with stimuli-responsive coordination polymer for personal glucose meter-based portable immunoassay
Shi et al. Carbon dots derived from peptone as “off-on” fluorescent probes for the detection of oxalic acid
Zhao et al. “EDTA• 2Na-Mn+” based-signal regulation strategy for the construction of vigorous and progressive detection platforms with various signals

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220527

RJ01 Rejection of invention patent application after publication