CN114534530A - 一种流动化学自动化实验系统及其控制方法 - Google Patents

一种流动化学自动化实验系统及其控制方法 Download PDF

Info

Publication number
CN114534530A
CN114534530A CN202210165113.1A CN202210165113A CN114534530A CN 114534530 A CN114534530 A CN 114534530A CN 202210165113 A CN202210165113 A CN 202210165113A CN 114534530 A CN114534530 A CN 114534530A
Authority
CN
China
Prior art keywords
liquid
injection device
path
medicine
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210165113.1A
Other languages
English (en)
Inventor
潘甚锡
李嘉煌
王子瑜
陈耀腾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen Xinshuguang Technology Co ltd
Original Assignee
Xiamen Xinshuguang Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen Xinshuguang Technology Co ltd filed Critical Xiamen Xinshuguang Technology Co ltd
Priority to CN202210165113.1A priority Critical patent/CN114534530A/zh
Publication of CN114534530A publication Critical patent/CN114534530A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本发明公开一种流动化学自动化实验系统及其控制方法,控制方法包括:获取终端的目标控制进液参数;启动注液装置定量压入药品A、B;定量进液完毕后,注液装置持续推进药品A、B各自进入分支路一和分支路二,所述分支路一和分支路二上分别安装有传感器一、二;判断所述分支路一、二是否有药品A、B流入;若传感器同时检测到药品A和B流入,注液装置一、二继续推进药品A、B同时进入混合主路进行同步混合;若传感器预先检测到某分支路进液,则通过控制注液装置间歇式作业或调节注液装置的注射速度,使得药品A和药品B同步进入混合。本发明通过精细的自动化控制方式,使得各个分支路上的流体能够同步进行混合,同时其对管路的安装要求低。

Description

一种流动化学自动化实验系统及其控制方法
技术领域
本发明涉及一种流动化学自动化实验系统及其控制方法。
背景技术
如今,实验室安全问题受到越来越多的关注,在实验室中进行合成反应时,主要依靠人员进行操作,然而操作过程中涉及易燃易爆或有毒有害物质时,对人员的人身安全造成较大的危险隐患;再者,由于主要依靠实验人员进行实验操作,人力成本高,效率低下,且实验操作更多的依赖于实验人员的经验或熟练度,也容易造成实验结果产率不稳定,甚至导致实验的失败。
在这样的背景下,流动合成技术应运而生。流动合成,又称连续流动化学,其对反应条件例如时间、温度、试剂等条件具有优异的控制功能,其创新地将传统独立分开的合成操作过程整合起来,加快了合成的速度,可重复性强,尤其是能进行危险的、不易实现的反应。然而,现有的流动合成虽然能够有效的减少人工的介入,但如何对其装置进行优化,从而对流动化学进行精细控制以进一步提高产品的产率或质量是一个亟需解决的问题。
发明内容
为了解决上述技术问题,本发明的目的在于提供一种流动化学自动化实验系统及其控制方法。
本发明通过以下技术方案来实现:本发明提供了一种流动化学自动化实验系统的控制方法,包括步骤如下:
步骤一:获取终端的目标控制进液参数;
步骤二:根据所获取的目标控制进液参数,启动注液装置一和注液装置二,分别从各自所连接的反应物容器中定量压入药品A和药品B;
步骤三:定量进液完毕后,注液装置一和注液装置二分别持续推进药品A、B各自进入分支路一和分支路二,所述分支路一和分支路二上分别安装有传感器一和传感器二;
步骤四:判断所述分支路一或分支路二是否有药品A或药品B流入;
步骤五:若传感器同时检测到药品A和药品B流入,注液装置一和注液装置二继续推进药品A和药品B同步进入混合主路混合;若传感器预先检测到其中一分支路进液,则主控模块通过控制注液装置间歇式作业或调节注液装置的注射速度,使得药品A和药品B同时进入混合主路内进行同步混合。
在可选实施例中,步骤五中,若传感器一预先检测到分支路一进液,其控制步骤如下:
步骤1:所述传感器一发送信号至主控模块,所述主控模块控制所述注液装置一停止作业,分支路一的流体在空气压力下暂时停止流动;
步骤2:待传感器二检测到分支路二进液后,所述传感器二发送信号至所述主控模块,所述主控模块根据两者的流速差计算出两者实现同步进液的时间差Δt1;
步骤3:经过Δt1后,控制注液装置一重新启动,打开对应的电磁阀的进样通道,使得药品A和药品B同时进入混合主路内进行同步混合。
在可选实施例中,步骤五中,若传感器一预先检测到分支路一进液,其控制步骤如下:
步骤1:所述传感器一发送信号至主控模块,所述主控模块按预设幅度降低注液装置一的流速,提高注液装置二的流速;
步骤2:待传感器二检测到分支路二进液后,所述传感器二发送信号至所述主控模块,所述主控模块根据反馈信息再次调节所述注液装置一或注液装置二的流速,使得药品A、B同时进入混合主路内进行同步混合。
在可选实施例中,该控制方法还包括:步骤七:所述反应模块的出液位置处设置有检测装置,所述检测装置与终端通讯连接,实时将检测装置的产物分析信息输送至终端。
在可选实施例中,步骤七中,若反应后所流出的物质不符合目标产物特征要求,则控制出液电磁阀的废液通道打开;若符合目标产物特征要求,则控制废液通道关闭,产物通道打开。
在可选实施例中,该控制方法还包括:按设定的时间获取系统的反应过程数据;将所述反应过程数据发送至终端,所述终端将所述反应过程数据发送至服务器进行保存。
本发明还提供了一种流动化学自动化实验系统,包括流动化学装置和终端,所述流动化学装置内设置有通讯装置,所述流动化学装置通过所述通讯装置与所述终端进行通讯连接,所述流动化学装置包括有进液模块、预混连接件、反应模块和主控模块,所述主控模块用于执行上述任一控制方法。
在可选实施例中,所述进液模块上的第一进液液路和第二进液液路上分别设置有注液装置和电磁阀,所述注液装置用于反应物的进液或将反应物压出至所述预混连接件内;
所述预混连接件至少包括有分支路一、分支路二和混合主路,所述混合主路联通至所述反应模块,所述分支路一和所述分支路二分别与所述第一进液液路和所述第二进液液路联通,所述分支路一和所述分支路二分别设置有传感器一和传感器二,所述传感器一或传感器二用来检测所述分支路一或所述分支路二上是否有流体流入;
所述注液装置、电磁阀、传感器和反应模块均连接至所述主控模块。
在可选实施例中,所述注液装置和反应模块与所述通讯装置之间利用RS485或RS232进行串口通讯连接,所述电磁阀和所述主控模块之间利用IO口进行连接。
在可选实施例中,所述传感器一或传感器二为光学传感器、电容液位传感器、非接触式液位传感器或者图像传感器。
本发明的流动化学自动化实验系统利用流动化学模块和终端交互通讯,通过精细的自动化控制方式,使得各个分支路上的流体能够同步进行混合,提高反应产率,实现系统的精准控制,同时其对管路的安装要求低;同时,利用终端与一个或多个流动化学模块进行联合,且能够将反应过程数据进行保存,便于后期的用户的研究工作,确保了数据的准确性,大大缩短了用户研究时间,提高研究效率。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它附图。
图1是本发明的结构示意图。
图2是本发明流动化学装置的结构示意图。
图3是本发明流动化学自动化实验系统的控制步骤的流程图。
图4是本发明流动化学自动化实验系统的显示界面示意图。
图5和图6是本发明实施例一中进液模块同步混合进液流程图。
图7和图8是本发明实施例二中进液模块同步混合进液流程图。
具体实施方式
下面将结合本发明实施例中的附图,对发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
参考说明书附图1和附图2,一种流动化学自动化实验系统,包括流动化学装置10和终端50,该流动化学装置通过网络与终端进行通讯连接,该流动化学装置内设置有通讯装置,该通讯装置用于接收和发送操作指令,该通讯装置能够与该终端50进行信息交互,该通讯装置可采用蓝牙无线通信、WiFi无线通信和USB等,终端具体举例可以为手机、平板电脑等,该终端50能够通过其安装的目标应用程序下发命令至通讯装置内,目标应用程序中的显示界面可以包括设置流动化学反应所需参数的功能,使得各个模块能够按照所设定的参数进行运行,同时通讯装置也能够将装置运行过程中的信息实时传送至终端,实现人机交互,通过上述目标应用程序可实现:对流动化学自动化实验装置反应所需的反应物属性、体积、流速以及温度等进行设定。
本发明还可将系统的反应过程数据按设定的时间通过通讯装置发送至终端的服务器进行保存,服务器内能够实时保存每一次反应过程的操作实验记录,便于后续用户的随时调用且能够有效的提高研究效率。
可选地,服务器中包括多个存储有各个反应方式的文件夹,每个文件夹会完整保存对应的反应的操作记录,通过服务器存储数据的方式实时自动保存数据,完整的保存了反应过程的各个参数和数据,便于后期的用户的研究工作,确保了数据的准确性,大大缩短了用户研究时间,提高研究效率。本申请的终端的存储介质上还存储有相应程序,程序被处理器运行时能够执行本文所述的自动化实验系统的控制方法。
上述流动化学装置10包括有进液模块1、预混连接件2、反应模块3和主控模块4,该进液模块1依次与预混连接件2和反应模块3的液路相互连通,且该进液模块1和反应模块3连接于该主控模块4,该主控模块4例如为微控制器,通用处理器或数字信号处理器等集成电路芯片,同时,终端50具有控制系统的软件,主控模块用于将终端的指令内容转化为流动化学模块的自动化操作,从而使得整个系统能够自运行作业。
该进液模块1至少包括有反应物容器11、注液装置12、电磁阀13和液路通道14,该液路通道14包括有第一进液液路141、第二进液液路142和两进液液路进行汇合后的中间液路143,该第一进液液路141和第二进液液路142分别对应连接于注液装置一121和注液装置二122,该中间液路143将混合后的流体流入反应模块3内,其中,该中间液路143与第一、第二进液液路之间利用预混连接件2进行连接;上述第一进液液路141和第二进液液路142上均布设有电磁阀13,该电磁阀13为三通阀,该三通阀的各个通路分别与反应物容器11、注液装置12和预混连接件2联通。上述注液装置12、电磁阀13和反应模块3均连接至主控模块4,该注液装置12和反应模块3与通讯装置之间通过串口进行通讯连接,例如,该注液装置12和反应模块3能够利用RS485或RS232与通讯装置之间进行串口通讯连接,电磁阀13和主控模块之间利用IO口进行连接;该注液装置12例如采用注射泵装置,其用于从反应物容器中抽吸药品或压出药品至反应模块内,该注射泵装置由驱动机构(例如电机)、丝杆、滑块和注射器构成,滑块与注射器连接,驱动机构带动丝杆转动,丝杆上的滑块进行移动,从而能够拉动注射器的活塞滑动从而实现吸入或压出注射器内的药品;当然,该注液装置还可以选用蠕动泵或液相色谱泵等。
进一步的,该预混连接件2至少包括有分支路一21、分支路二22和混合主路23,分支路一21和分支路二22的流体在混合主路23内混合,该混合主路23一端与两分支路的流体相连通,另一端则联通至中间液路143,在本实施例中,该预混连接件2为Y型阀体;此外,在分支路一21和分支路二22上还布设有传感器一61和传感器二62,该些传感器连接至主控模块4,该些传感器安装于预混连接件的分支路上,其能够用来检测是否有液体流入该些分支路内,从而发送信号至主控模块4,主控模块4识别到信号后控制注液装置间歇式工作或调节注液装置的注射速度从而保证各个分支路上的液体能够同时流入混合主路内,保证两种流体的同步混合,较佳的,该些传感器分布在对应的分支路上且靠近混合主路处设置;该传感器一或传感器二例如为光学传感器、电容液位传感器或者非接触式液位传感器,当然在其他方式中,该些传感器也能够为图像传感器,其能够通过实时图片信息将液位信息传输至主控模块,从而实现液体监控的效果。
参照附图2,本发明的反应模块3为流动化学管路模块(例如包括反应管道a1和加热模块a2),中间液路143的出口连接至该流动化学的反应管道a1内进行充分反应,反应后的物质再流入收集容器内进行收集;在该种应用装置中,该加热模块a2连接至主控模块且能够与终端50进行交互通信,用户可通过在终端50上设置温度参数信息,当系统启动作业后,终端50能够将温度的信息输送至主控模块4上,主控模块4启动加热模块a2与进液模块先后进行作业,即系统启动后,加热模块a2预先对反应管道a1进行加热至目标反应温度,之后进液模块1启动进行进液或同步进液的动作,当进液模块1内的药品已经进液或同步进液预混完毕,其直接进入已加热至指定温度的反应管道a1内,即可开始进行反应,从而能够使得各种反应物充分进行反应,有效提高产物的产率。
此外,本发明的反应管道a1能够为图中所示出的蛇形状,也可以为盘绕式管路或其他弯曲状,其通过弯曲的形状设计能够有效延长反应的路径,增大反应时间,从而进一步提高反应效率;当然,本发明的反应管路也能够利用蚀刻的方式在基板上形成微通道。该反应管道的直径为100-1000um,且该反应管道可采用耐化学腐蚀的高分子材料或二氧化硅制成,本发明的反应管道例如采用ETFE聚合物(乙烯-四氟乙烯共聚物)、聚醚醚酮(PEEK)、聚四氟乙烯(PTFE)、四氟乙烯-全氟烷氧基乙烯基醚共聚物(PFA)等,其具有很好的耐腐蚀性。
可以推知的是,本发明的流动化学管路模块中的加热模块也可以替换成其他模块,例如光反应模块、电化学反应模块或低温模块等其他条件模块,其均能在进液充分混合的情况下有效提高反应管道内的反应产物的产率,实现精确控制,在自动化的反应过程中有效的保证了产物的产率。
可选的,还可在反应模块3的出液位置处设置有检测装置(例如光谱检测装置),该检测装置与终端通讯连接,该检测装置能够实时检测分析产物信息,将产物检测信息发送至终端显示出来,如果所流出的物质不符合目标产物特征要求,则直接从出液电磁阀的废液通道流出排掉;若符合目标产物特征要求,则切换至产物通道,从产物通道流出至接收瓶,从而提升产物纯度。
在一实施例中,该流动化学自动化实验系统的控制步骤如下:
步骤a:获取终端的目标控制参数,目标控制参数可在统一界面下进行自定义输入设置(如进液运行状态、反应环境或反应物属性等),具体的,该目标控制参数可包括目标进液控制参数(例如体积和/或流速信息等流动化学装置的运行状态)和目标反应控制参数(例如反应温度或光源条件等反应环境),终端将目标控制参数的指令发送至主控模块;
步骤b:根据反应模块处的检测器反馈信息和其中的目标反应控制参数的差异拟合计算出反应模块作业达到目标反应条件的时长t,之后主控模块根据目标反应控制参数的指令内容控制反应模块在预定的时间t内持续作业以达到目标反应条件;
步骤c:反应模块达成目标反应条件后,根据目标进液控制参数的指令内容再启动进液模块,触发进液模块进液汇合至所述反应模块内进行反应。
步骤d:混合后的流体在所述反应模块内进行反应。
以反应条件设定为达到设定温度为例,用户可预先在终端输入目标反应温度参数,反应模块处的温度传感器将反应管道的温度信息多次传输至主控模块中计算出平均温度,根据设定温度与平均温度的差异进行拟合计算出预热时间t1,经过预热时间t1后,主控模块再触发进液模块进液,控制反应管道在进液之前反应模块已达到所设定的反应温度;反应模块3的反应条件应在进液之前达到目标控制温度,由于微反应管道具有传热效率高的特点,进入反应管道内的反应物能够在特定的设定温度下即时进行反应,从而保证反应物在特定的反应条件下进行高效的反应。在一可选实施例中,终端50还可以包括报警器,用于在接收到反应模块发送的条件异常的警报信息时,输出报警信号,报警器例如为声音报警器、光源报警器等;若反应模块在预定时间内未达到目标控制条件或者检测器反馈的信息不在预设的目标控制条件范围内,主控模块即通过通讯装置向终端发送报警信息,提示用户及时进行排查,保证反应产率,同时也能够延长设备的使用寿命。
在流动化学自动化实验系统的精细控制中,在两种流体进入反应模块反应前,由于注射速度或管道等因素的影响,亦或者由于流动化学自动控制装置在安装过程中所产生的偏差,均易出现两种流体没有或未充分混合便进入反应模块内的情况,在流动化学的反应环境中,其造成的结果便是使得流体反应的产率降低,且造成了药品浪费的情况,因而,如何能够进一步控制进液模块内的流体在汇合处能够同步混合进入反应模块内便成了亟需解决的问题。本发明利用分支路上所布设的传感器与主控模块、终端进行相互配合,从而精准的自动控制各个分支路上的流体能够同步进行混合,提高反应产率,实现系统的精准控制,同时其对管路的安装要求低,本发明也能够即时通过传感器的布设对系统进行控制调整,保证两种药品的同步进液需求。当然在其他实施例中,上述的预混连接件2不仅仅局限于两分支路的设置,其为多分支路的设置也能够落入本发明的保护范围,本发明在实施例中以两分支路的结构进行说明,其并没有局限本发明多支路的实现方式。本发明的实现方式如下实施例。
实施例一
参照附图5,本发明自动化实验系统的控制方法如下:
步骤101:获取终端50处所设置的药品A、B的体积和流速参数;
步骤102:主控模块4根据所获取的药品体积信息,发送信号至电磁阀13,控制电磁阀13的进样通道打开,同时启动注液装置一121和注液装置二122,利用驱动机构带动注射器120分别从各自所连接的反应物容器11中分别定量压入药品A和B,实现预设体积的药品A、B进液;
步骤103:药品定量进液完毕后,主控模块4控制电磁阀13的进样通道关闭,且电磁阀13的另一流体通道被开启,注液装置一121和注液装置二122按预设的流速分别持续推进药品A、B各自进入第一进液液路141和第二进液液路142;
步骤104:判断预混连接件的分支路一或二是否有药品A或B流入:
步骤1041:若预混连接件中各个分支路上的传感器一61和传感器二62同时检测到药品A、B进入,则传感器一和传感器二发送信号至主控模块4,主控模块4持续控制两注液装置12以预先设定的流速持续推进药品A和B进入,此时,药品A和B能够同步进入混合主路23内混合;之后,混合后的液体再进入反应模块3中进行充分反应。
或者,
参照附图6,若预混连接件中某分支路的传感器先检测到某药品的流入,以传感器一61预先检测到分支路一21的药品A为例,其具体控制步骤如下:
步骤1042:若传感器一61预先检测到分支路一21的流体,传感器一61发送信号至主控模块4,主控模块4控制注液装置一121停止工作,且控制对应的电磁阀13的流体通道暂时关闭,此时,由于整个进液模块1处于密封状态,分支路一内的药品A在空气压力的作用下暂时停止流动;
步骤1043:待分支路二上的传感器二62检测到药品B的流入后,传感器二62发送信号至主控模块4,此时,主控模块4根据两注液装置预先所设定的不同流速信息计算出两者实现同步进液的时间差Δt1;
步骤1044:经过Δt1时长后,主控模块4控制分支路一上的电磁阀13的流体通道重新开启且启动与其相对应的注液装置一121,重新按预定的流速推动分支路一内的药品A进入混合主路23内,此时,分支路一的药品A和分支路二的药品B同步进入混合主路23内进行混合,之后再进入反应模块3中进行充分反应。本实施例利用主控模块控制注射泵和电磁阀进行间歇式工作,从而使得药品A和B能够同步进入混合主路混合,智能化程度高,安装要求低,能够有效提高后续反应模块内的产品产率。
实施例二
参照附图7,本发明自动化实验系统的控制方法如下:
步骤201:获取终端50处所设置的药品A、B的体积参数;
步骤202:主控模块4根据所获取的药品体积信息,发送信号至电磁阀13,控制电磁阀13的进样通道打开,同时启动注液装置一121和注液装置二122,利用驱动机构带动注射器120分别从各自所连接的反应物容器11中分别定量压入药品A和B,实现预设体积的药品A、B进液;
步骤203:药品定量进液完毕后,主控模块4控制电磁阀13的进样通道关闭,且电磁阀13的另一流体通道被开启,注液装置一121和注液装置二122按预设的流速分别持续推进药品A、B各自进入第一进液液路141和第二进液液路142;
步骤204:判断预混连接件的分支路一或二是否有药品A或B流入:
步骤2041:若预混连接件中各个分支路上的传感器一61和传感器二62同时检测到药品A、B进入,则传感器一和传感器二发送信号至主控模块4,主控模块4持续控制两注液装置12以预先设定的流速持续推进药品A和B进入,此时,药品A和B能够同步进入混合主路23内混合,之后再进入反应模块3中进行充分反应。
或者,
参照附图8,若预混连接件中某分支路的传感器先检测到某药品的流入,以传感器一61预先检测到分支路一21的药品A为例,其具体控制步骤如下:
步骤2042:若传感器一61预先检测到分支路一21的流体,传感器一61发送信号至主控模块4,主控模块4按预设定的幅度降低注液装置一121的流速,提高注液装置二122的流速,持续推进药品A、B沿着液路方向流动;
步骤2043:待分支路二上的传感器二62检测到药品B的流入后,传感器二62发送信号至主控模块4,此时,主控模块4根据反馈信息再次调节注液装置一121或注液装置二122的流速,从而使得注液装置一121和注液装置二122所推进的药品A、B能够同步进入混合主路23内,之后再进入反应模块3中进行充分反应。本实施例中,以预设流速为基准,通过各个液路上的流速按幅度进行相应的升高或降低,使得主控模块能够在信号的传递过程中计算出最终两者同步混合的所需的流速,从而在不断的调节过程中使得药品A和药品B最终在混合主路内同步充分混合。本实施例在持续推进药品进液的过程中,利用各个仪器模块反馈信息至主控模块内,改变各个注液装置的流速,在不断的调节过程中确保药品A和B能够同步进入混合主路内混合,智能化程度高,安装要求低,能够有效提高后续反应模块内的产品产率。
上述说明示出并描述了本发明的优选实施例,如前所述,应当理解本发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述发明构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。

Claims (10)

1.一种流动化学自动化实验系统的控制方法,其特征在于,包括步骤如下:
步骤一:获取终端的目标控制进液参数;
步骤二:根据所获取的目标控制进液参数,启动注液装置一和注液装置二,分别从各自所连接的反应物容器中定量压入药品A和药品B;
步骤三:定量进液完毕后,注液装置一和注液装置二分别持续推进药品A、B各自进入分支路一和分支路二,所述分支路一和分支路二上分别安装有传感器一和传感器二;
步骤四:判断所述分支路一或分支路二是否有药品A或药品B流入;
步骤五:若传感器同时检测到药品A和药品B流入,注液装置一和注液装置二继续推进药品A和药品B同时进入混合主路混合;若传感器预先检测到其中一分支路进液,则主控模块通过控制注液装置间歇式作业或调节注液装置的注射速度,使得药品A和药品B同时进入混合主路内进行同步混合。
2.根据权利要求1所述的一种流动化学自动化实验系统的控制方法,其特征在于,步骤五中,若传感器一预先检测到分支路一进液,其控制步骤如下:
步骤1:所述传感器一发送信号至主控模块,所述主控模块控制所述注液装置一停止作业,分支路一的流体在空气压力下暂时停止流动;
步骤2:待传感器二检测到分支路二进液后,所述传感器二发送信号至所述主控模块,所述主控模块根据两者的流速差计算出两者实现同步进液的时间差Δt1;
步骤3:经过Δt1后,控制注液装置一重新启动,打开对应的电磁阀的进样通道,使得药品A和药品B同时进入混合主路内进行同步混合。
3.根据权利要求1所述的一种流动化学自动化实验系统的控制方法,其特征在于,步骤五中,若传感器一预先检测到分支路一进液,其控制步骤如下:
步骤1:所述传感器一发送信号至主控模块,所述主控模块按预设幅度降低注液装置一的流速,提高注液装置二的流速;
步骤2:待传感器二检测到分支路二进液后,所述传感器二发送信号至所述主控模块,所述主控模块根据反馈信息再次调节所述注液装置一或注液装置二的流速,使得药品A、B同时进入混合主路内进行同步混合。
4.根据权利要求1所述的一种流动化学自动化实验系统的控制方法,其特征在于,还包括:
步骤七:所述反应模块的出液位置处设置有检测装置,所述检测装置与终端通讯连接,实时将检测装置的产物分析信息输送至终端。
5.根据权利要求4所述的一种流动化学自动化实验系统的控制方法,其特征在于,步骤七中,若反应后所流出的物质不符合目标产物特征要求,则控制出液电磁阀的废液通道打开;若符合目标产物特征要求,则控制废液通道关闭,产物通道打开。
6.根据权利要求1所述的一种流动化学自动化实验系统的控制方法,其特征在于,还包括:
按设定的时间获取系统的反应过程数据;
将所述反应过程数据发送至终端,所述终端将所述反应过程数据发送至服务器进行保存。
7.一种流动化学自动化实验系统,其特征在于,包括流动化学装置和终端,所述流动化学装置内设置有通讯装置,所述流动化学装置通过所述通讯装置与所述终端进行通讯连接,所述流动化学装置包括有进液模块、预混连接件、反应模块和主控模块,所述主控模块用于执行权利要求1~6任一所述的控制方法。
8.根据权利要求7所述的一种流动化学自动化实验系统,其特征在于,所述进液模块上的第一进液液路和第二进液液路上分别设置有注液装置和电磁阀,所述注液装置用于反应物的进液或将反应物压出至所述预混连接件内;
所述预混连接件至少包括有分支路一、分支路二和混合主路,所述混合主路联通至所述反应模块,所述分支路一和所述分支路二分别与所述第一进液液路和所述第二进液液路联通,所述分支路一和所述分支路二分别设置有传感器一和传感器二,所述传感器一或传感器二用来检测所述分支路一或所述分支路二上是否有流体流入;
所述注液装置、电磁阀、传感器和反应模块均连接至所述主控模块。
9.根据权利要求8所述的一种流动化学自动化实验系统,其特征在于,所述注液装置和反应模块与所述通讯装置之间利用RS485或RS232进行串口通讯连接,所述电磁阀和所述主控模块之间利用IO口进行连接。
10.根据权利要求8所述的一种流动化学自动化实验系统,其特征在于,所述传感器一或传感器二为光学传感器、电容液位传感器、非接触式液位传感器或者图像传感器。
CN202210165113.1A 2022-02-23 2022-02-23 一种流动化学自动化实验系统及其控制方法 Pending CN114534530A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210165113.1A CN114534530A (zh) 2022-02-23 2022-02-23 一种流动化学自动化实验系统及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210165113.1A CN114534530A (zh) 2022-02-23 2022-02-23 一种流动化学自动化实验系统及其控制方法

Publications (1)

Publication Number Publication Date
CN114534530A true CN114534530A (zh) 2022-05-27

Family

ID=81677278

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210165113.1A Pending CN114534530A (zh) 2022-02-23 2022-02-23 一种流动化学自动化实验系统及其控制方法

Country Status (1)

Country Link
CN (1) CN114534530A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6010032A (en) * 1997-06-19 2000-01-04 Emes N.V. Continuous dispensing system for liquids
CN202366629U (zh) * 2011-09-15 2012-08-08 上海大学 自动配色配液装置
CN110256584A (zh) * 2019-06-10 2019-09-20 华南理工大学 一种基于微流控芯片的纳米微晶纤维素制备方法
CN215586008U (zh) * 2020-12-31 2022-01-21 上海至纯洁净系统科技股份有限公司 一种可控制半导体湿法清洗溶液中混酸浓度的混酸装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6010032A (en) * 1997-06-19 2000-01-04 Emes N.V. Continuous dispensing system for liquids
CN202366629U (zh) * 2011-09-15 2012-08-08 上海大学 自动配色配液装置
CN110256584A (zh) * 2019-06-10 2019-09-20 华南理工大学 一种基于微流控芯片的纳米微晶纤维素制备方法
CN215586008U (zh) * 2020-12-31 2022-01-21 上海至纯洁净系统科技股份有限公司 一种可控制半导体湿法清洗溶液中混酸浓度的混酸装置

Similar Documents

Publication Publication Date Title
Betteridge Flow injection analysis
US8465697B2 (en) System and method for regulating flow in fluidic devices
CN111050901B (zh) 微型反应器系统
JPH0367226B2 (zh)
CN100510742C (zh) 负压进样微流控化学合成反应系统
JP2008221095A (ja) マイクロリアクタシステム
Somerville et al. A flow reactor with inline analytics: design and implementation
CN102559488A (zh) 集成电化学检测技术的定量pcr微流控芯片一体化装置
CN114534530A (zh) 一种流动化学自动化实验系统及其控制方法
CN102796039B (zh) 一种微通道内连续化制备2-氯-5-氯甲基吡啶的方法
US10464039B2 (en) Microreactor, chemical product manufacturing system and microreactor manufacturing method
CN114534655A (zh) 流动化学自动化实验系统及其控制方法
CN205599164U (zh) 一种远程控制的安全化学反应装置
US20230191346A1 (en) Microfluidic System Suitable for Liquid Mixing and Method
CN207361780U (zh) 一种定量加液装置
CN216846358U (zh) 一种流动化学实验装置
CN211814370U (zh) 循环肿瘤细胞分选及检测用的多通道进样装置
CN205361370U (zh) 一种微流控芯片
CN217425424U (zh) 液路装置
CN205015354U (zh) 试剂预封装微流控芯片及其实验仪
CN210752523U (zh) 一种智能配药系统
CN115386472A (zh) 核酸检测卡微流控卡盒
CN114452913A (zh) 一种流动化学反应模块及其自动化实验装置
US11857941B2 (en) Microreactor system
CN209984986U (zh) 单双泵全自动层析系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination