CN114526984B - 多场耦合原位实验仪 - Google Patents

多场耦合原位实验仪 Download PDF

Info

Publication number
CN114526984B
CN114526984B CN202210151656.8A CN202210151656A CN114526984B CN 114526984 B CN114526984 B CN 114526984B CN 202210151656 A CN202210151656 A CN 202210151656A CN 114526984 B CN114526984 B CN 114526984B
Authority
CN
China
Prior art keywords
pressure
pressure chamber
pipeline
lower cover
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210151656.8A
Other languages
English (en)
Other versions
CN114526984A (zh
Inventor
雷亮
姜英博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Westlake University
Original Assignee
Westlake University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westlake University filed Critical Westlake University
Priority to CN202210151656.8A priority Critical patent/CN114526984B/zh
Publication of CN114526984A publication Critical patent/CN114526984A/zh
Application granted granted Critical
Publication of CN114526984B publication Critical patent/CN114526984B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/04Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/06Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring the deformation in a solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20245Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures by natural convection; Thermosiphons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20281Thermal management, e.g. liquid flow control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0222Temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/023Pressure
    • G01N2203/0232High pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0236Other environments
    • G01N2203/024Corrosive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0244Tests performed "in situ" or after "in situ" use
    • G01N2203/0246Special simulation of "in situ" conditions, scale models or dummies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0676Force, weight, load, energy, speed or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0682Spatial dimension, e.g. length, area, angle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0694Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Biochemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明涉及多场耦合原位实验仪,该方案包括压力室,压力室上盖和压力室下盖;样品套,样品套设于压力室内部,样品套上端套在压力室上盖轴压传动轴上,轴压传动轴内设有孔压管路,样品套下端套在压力室下盖顶部凸起的中轴上,且该中轴内部设有孔压管路,上下孔压管路于样品套内部连通;驱动器,该驱动器能够驱动压力传感器和轴压传动轴向下运动以实现对样品套内样品的轴压施加;底座,该底座连接压力室下盖底部;围压循环系统,该围压循环系统包括离心泵、围压循环管路以及导流管;温控系统,该温控系统设于底座上。本申请设计紧凑,具有显著提高图像分辨率、提高X射线能量利用率、提升图像质量及精准控制样品温度的优点。

Description

多场耦合原位实验仪
技术领域
本发明涉及原位实验仪设备技术领域,具体涉及一种多场耦合原位实验仪。
背景技术
基于CT扫描技术的多场耦合原位实验仪可以给样品施加轴压、围压及孔压以控制样品受力状态,通过控制进出口孔压测量样品渗流特性,调控样品温度,并利用CT成像技术分析样品应变及形状变化,从而分析样品的力学、渗流和其他物理性质。
然而目前的原位实验仪的压力室与压力室上下盖之间采用法兰连接方式,使得压力室上下两端外径过大,由此增大了X射线源、样品与接收器的距离,导致图像分辨率低,扫描时间加长,影响图像质量,并妨碍CT扫描仪的高效利用。同时目前的原位实验仪由于缺少环流结构,还存在温度控制困难的问题,导致样品内部温度不均匀性大,严重影响数据可信度。
因此,亟待开发一种设计紧凑、能够显著提高图像分辨率、提高X射线能量利用率、提升图像质量及精准控制样品温度的用于原位实验的多场耦合原位实验仪。
发明内容
本发明的目的是针对现有技术中存在的上述问题,提供了一种多场耦合原位实验仪。
为了实现上述发明目的,本发明采用了以下技术方案:多场耦合原位实验仪包括:
中空设置的压力室,该压力室的上下两端分别通过卡扣件连接压力室上盖和压力室下盖;
压力室、压力室上盖及压力室下盖上均设有供卡扣件扣入的扣槽,且压力室上盖和压力室下盖上均设有与固定孔配合的通孔,以使得能够通过连接件依次插入通孔和固定孔,以固定压力室和压力室上盖以及压力室和压力室下盖;
当卡扣件完全扣入扣槽后,卡扣件外表面与压力室、压力室上盖及压力室下盖的外表面平齐或位于压力室、压力室上盖及压力室下盖的外表面内侧;
样品套,该样品套设于压力室内部,样品套上端套在压力室上盖轴压传动轴上,轴压传动轴内设有孔压管路,样品套下端套在压力室下盖顶部凸起的中轴上,且该中轴内部设有孔压管路,上下孔压管路于样品套内部连通;
驱动器,该驱动器通过电机连接轴套连接压力室上盖,该电机连接轴套内设有设于轴压传动轴顶部的压力传感器,且驱动器能够驱动压力传感器和轴压传动轴向下运动以实现对样品套内样品的轴压施加,位于轴压传动轴一端的孔压管路从连接轴套穿出;
底座,该底座连接压力室下盖底部;
围压循环系统,该围压循环系统包括设于底座上的离心泵、与该离心泵连通的围压循环管路以及设于该样品套和压力室之间的导流管,通过该导流管将压力室内样品套之外的空间进一步分为内腔和外腔,围压循环管路从底座出发依次经过压力室下盖、导流管内腔、导流管外腔,再从压力室下盖回到底座的离心泵,以配合温控系统实现对样品套内的样品温度进行精准控制,同时对样品套施加围压;
温控系统,该温控系统设于底座上,用于对围压循环系统中的围压液实现温度控制。
工作原理及有益效果:1、与现有技术相比,与现有技术相比,本申请舍去了现有的法兰连接方式,转而采用卡扣件和扣槽以及连接件固定的连接方式,从而能够保证压力室和压力室上下盖的外径一致,不会因为卡扣件部分导致外径增大,从而在保证耐压强度基础上减小了压力室外径,使得X射线源和接收器可以距离样品很近,极大减少CT扫描时长并增大了图像分辨率,使空间分辨率可达到亚微米级别,从而提高了图像质量,提高X射线能量利用率,还可减少X射线衍射造成的伪影;
2、与现有技术相比,本申请不会增加更多的装配学习成本,与现有技术的装配难度基本一致,因此改造成本较低,便于推广,而且使扫描时间缩短到原来的1/4-1/10(CT扫描时间当前收费标准为2500元/小时),经济效益巨大;
3、与现有技术相比,本申请通过驱动器推动压力传感器和轴压传动轴对样品套内的样品施加轴向压力,而通过孔压管路可以通入高压流体实现孔压操作,如此当做渗流实验时,可控制上下两个孔压管路的孔压压差或者渗流边界,就能让高压流体在样品里面渗流,可以测量多孔介质样品的渗透率及多相流渗透率。
4、与现有技术相比,本申请通过围压循环系统和温控系统的结合,可以实现对围压液温度的精确控制,而且不需要在压力室上设置接头,如此进一步减小了压力室外径,使得X射线源和接收器可以距离样品很近,从而提高了图像质量;
5、现有技术的围压循环系统存在增加系统复杂度以及CT扫描中的高压系统失效风险,因为CT扫描中样品需要旋转360度,接头和管道需要经受扭转作用力及承受变形。而本申请将围压循环系统的管路设置于压力室等部件的内部,如此就不存在变形问题,结构紧凑,同时能够减少接头数量,提高能量利用效率,且围压管线周围不需要保温措施,提供围压的高压泵可以设置在CT扫描室之外,避免X射线对电子设备造成的损伤。
进一步地,扣槽包括位于压力室的第一扣槽和位于压力室上盖和压力室下盖的第二扣槽,第一扣槽小于第二扣槽,第一扣槽远离压力室中心一端的截面宽度尺寸小于第一扣槽另一端的截面宽度尺寸,第二扣槽靠近压力室一端的截面宽度尺寸小于第二扣槽的另一端的截面宽度尺寸。
此设置,使得第一扣槽占用压力室的空间较小,减小扣槽对压力室材料受力的影响,并提高整体的空间利用率,还有的目的在于当卡扣件同时插入第一扣槽和第二扣槽时,能够通过卡扣件来起到连接压力室和压力室上下盖的作用,卡扣件起到了限位的作用,同时通过连接件将卡扣件固定在压力室上盖和压力室下盖上,彻底固定连接件,从而完成了压力室与压力室上下盖的固定。
进一步地,压力室上盖和压力室下盖上均设有供连接件插入的沉孔,当连接件完全插入沉孔时,连接件的顶部位于该沉孔顶部表面的下方或平齐,且该连接件外边缘与压力室上盖和压力室下盖的边缘平齐或位于压力室上盖和压力室下盖的边缘内侧。
此设置,使得连接件在安装后,不会影响压力室上盖和下盖的外径大小,以保证X射线源和接收器可以距离样品很近。
进一步地,底座上还设有与围压循环管路通过高压管连通的接头,以使得能够通过接头接入高压围压液给围压循环管路提供30MPa的高围压。
此设置,高压的围压液通过接头流入底座高压管,进入流入围压循环管路中,给围压液提供高围压,如此可方便地控制围压大小。如此也可以做到高达30MPa的高围压。
进一步地,围压循环管路包括设于压力室下盖内的上流管和下流管及设于导流管内的内外分流室,内外分流室上设有多个分别与导流管内外腔连通的分流孔,上流管通过内分流室及分流孔连通导流管内腔,导流管内腔通过设于该导流管上的上端孔连通导流管外腔,并通过分流孔连接外分流室,再与下流管连通。
此设置,围压液从上流管流入内分流室,经过分流孔进入导流管内腔腔体,后通过导流管上端孔进入导流管外腔腔体,通过外分流室进入下流管,实现了围压液上环流。
进一步地,围压循环管路还包括设于底座内的连接管路,该连接管路分别连通高压管和离心泵,且该连接管路一端连通上流管,另一端连通下流管。
进一步地,温控系统包括设于底座上的热交换板、设于该热交换板与底座之间的帕尔贴板,通过该帕尔贴板实现对位于底座内的围压循环管路进行冷却或加热。
此设置,通过帕尔贴板可以对底座内的围压循环管路进行主动冷却或加热,由于帕尔贴板可以通过翻面或者电流方向调节的方式供冷或者供热,因此可以非常方便地控制围压循环管路中循环液的温度。如此可做到将温度控制在[-10,60]摄氏度之间。
进一步地,温控系统还包括冷却液循环管路,该冷却液循环管路设于底座、压力室下盖以及压力室内,且该底座上设有与冷却液循环管路连通的外循环入液管和外循环出液管。
此设置,通过冷却液循环管路来进一步进行冷却或加热操作,如此低压冷却液会给围压冷却液降或升温,冷却液外循环系统则为围压冷却液制冷或制热起辅助作用。如此结合主动冷却和水冷,可极大地提升本实验仪的温度控制效果,从而实现对样品环境的精准控制。
进一步地,位于压力室下盖内的冷却液循环管路与围压循环管路平行,且冷却液循环管路内的冷却液流向与围压循环管路内的围压液流向相反。
此设置,可进一步提升对于围压液的辅助冷却或辅助加热效果。
进一步地,底座上设有供压力室下盖安装的安装槽,且该安装槽内设有底座密封垫,底座和压力室下盖的连接处设有双层密封圈。
此设置,可将压力室下盖方便地安装在底座上,同时由于压力室下盖的沉孔和卡扣件设置,导致连接件和卡扣件不会凸出于压力室下盖,因此可以减少与底座的干涉,显著提高空间利用率,结构紧凑。
附图说明
图1是本发明的结构示意图;
图2是本发明的后视图;
图3是图1中离心泵的局部放大图;
图4是压力室与压力室上盖以及压力室下盖的连接关系图;
图5是压力室与压力室上盖以及压力室下盖的内部结构图;
图6是驱动器与轴压传动器的连接示意图;
图7是分流室的示意图;
图8是围压循环系统的部分结构图;
图9是冷却液循环管路的结构示意图;
图10是分流室的内部结构示意图。
图中,1、驱动器;2、电机连接轴套;3、压力传感器;4、传感器垫片;5、轴压传动轴;6、上孔压管;7、压力室上盖;8、卡扣件;9、压力室;10、导流管;11、样品套;12、下孔压管;13、压力室下盖;14、底座;15、转子光轴;16、转子叶片;17、转子磁铁;18、转子底座;19、转子垫片;20、离心泵外壳;21、离心泵定子;22、离心泵底托;23、接头;24、帕尔贴板;25、热交换板;26、底座密封垫;27、连接件;28、扣槽;29、沉孔;30、密封圈;281、第一扣槽;282、第二扣槽;131、上流管;132、下流管;133、冷却液循环管路;101、上端孔;102、内腔;103、外腔;104、分流室;104-1、内分流室;104-2、外分流室;105、分流孔;105-1、内分流孔;105-2、外分流孔;141、离心泵入液口;142、离心泵出液口;143、连接管路;144、高压管;145、外循环入液管;146、外循环出液管。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
本领域技术人员应理解的是,在本发明的披露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
如图1-2所示,本多场耦合原位实验仪包括:
中空设置的压力室9,该压力室9的上下两端分别通过卡扣件8连接压力室上盖7和压力室下盖13;
具体地,如图4-5所示,压力室9、压力室上盖7及压力室下盖13上均设有供卡扣件8扣入的扣槽28,且压力室上盖7和压力室下盖13上均设有与固定孔配合的通孔,以使得能够通过连接件27依次插入通孔和固定孔,以固定压力室9和压力室上盖7以及压力室9和压力室下盖13,扣槽28包括位于压力室9的第一扣槽281和位于压力室上盖7和压力室下盖13的第二扣槽282,第一扣槽281小于第二扣槽282,第一扣槽281远离压力室9中心一端的截面宽度尺寸小于第一扣槽281另一端的截面宽度尺寸,第二扣槽282靠近压力室9一端的截面宽度尺寸小于第二扣槽282的另一端的截面宽度尺寸,压力室上盖7和压力室下盖13上均设有供连接件27插入的沉孔29,当连接件27完全插入沉孔29时,连接件27的顶部位于该沉孔29顶部表面的下方或平齐,且该连接件27外边缘与压力室上盖7和压力室下盖13的边缘平齐或位于压力室上盖7和压力室下盖13的边缘内侧。
如此,当卡扣件8完全扣入扣槽28后,卡扣件8外表面与压力室9、压力室上盖7及压力室下盖13的外表面平齐或位于压力室9、压力室上盖7及压力室下盖13的外表面内侧,也使得第一扣槽281占用压力室9的空间较小,从而能够提高压力室9内部的空间大小,提高整体的空间利用率,还有的目的在于当卡扣件8同时插入第一扣槽281和第二扣槽282时,能够通过卡扣件8来起到连接压力室9和压力室9上下盖的作用,卡扣件8起到了限位的作用,同时通过连接件27将卡扣件8固定在压力室上盖7和压力室下盖13上,彻底固定连接件27,从而完成了压力室9与压力室9上下盖的固定。
优选地,连接件27、卡扣件8以及扣槽28位于同一径向平面,扣槽28沿压力室9圆周方向阵列设置,扣槽28和卡扣件8的数量均至少为两个,且在本实施例中,第一扣槽281为T形或三角形,第二扣槽282可以是三角形或梯形或其他形状,只要符合上述对于第一扣槽281和第二扣槽282的形状要求即可,目的在于限制卡扣件8的轴向自由度。而在本实施例中,卡扣件8的截面形状就是第一扣槽281和第二扣槽282的结合。
在本实施例中,固定孔为螺纹孔,连接件27为螺纹紧固件,而且在卡扣件8安装在扣槽28内的时候,卡扣件8与扣槽28之间间隙配合。
如此舍去了现有的法兰连接方式,转而采用卡扣件8和扣槽28以及连接件27固定的连接方式,从而能够保证压力室9和压力室9上下盖的外径一致,不会因为连接结构部分导致外径增大,从而在保证耐压强度基础上减小了压力室9外径,使得X射线源和接收器可以距离样品很近,极大减少CT扫描时长并增大了图像分辨率,使空间分辨率可达到亚微米级别,从而提高了图像质量,提高X射线能量利用率,还可减少X射线衍射造成的伪影。
具体地,样品套11设于压力室9内部,样品套11上端套在压力室上盖7轴压传动轴5上,轴压传动轴5内设有孔压管路,样品套11下端套在压力室下盖13顶部凸起的中轴上,且该中轴内部设有孔压管路,上下孔压管路于样品套11内部连通。其中孔压管路为围压循环管路的一部分。
在本实施例中,轴压传动轴5与压力室上盖7的内孔间隙配合,并用O型圈密封。孔压管路的上孔压管6插入轴压传动轴5的内孔,并用O型圈密封。上孔压管6的底部与轴压传动轴5的底部相接触。孔压管路的下孔压管12插入压力室下盖13的内孔,并用O型圈密封。下孔压管12的底部与压力室下盖13的顶部相接触。样品套11内壁套住上下孔压管12的底部及样品。如此能够施加轴压和孔压,通过驱动器1推动压力传感器3和轴压传动轴5对样品套11内的样品施加轴向压力,而通过孔压管路可以通入高压流体实现孔压操作,如此当做渗流实验时,可控制上下两个孔压管路的孔压压差或者渗流边界,就能让高压流体在样品里面渗流,可以测量多孔介质样品的渗透率及多相流渗透率。
具体地,如图6所示,驱动器1通过电机连接轴套2连接压力室上盖7,该电机连接轴套2内设有设于轴压传动轴5顶部的压力传感器3,且驱动器1能够驱动压力传感器3和轴压传动轴5向下运动以实现对样品套11内样品的轴压施加,位于轴压传动轴5一端的孔压管路从连接轴套穿出。
在本实施例中,驱动器1为推杆式直线步进电机,与电机连接轴通过法兰连接紧固,电机连接轴套2与压力室上盖7通过法兰连接紧固。压力传感器3搭在传感器垫片4上。传感器垫片4搭在轴压传动轴5上。轴压传动轴5与压力室上盖7的内孔间隙配合,并用O型圈密封。
由于X射线源和接收器主要是针对压力室9,因此除了压力室9其他部分的连接只要不超出压力室9的外径,都不会影响X射线源和接收器与压力室9之间的距离,也不存在影响图像质量的情况。而且如图1所示,实际上其他部分通过法兰连接也并未超过压力室9的外径。
具体地,底座14连接压力室下盖13底部,底座14上设有供压力室下盖13安装的安装槽,且该安装槽内设有底座密封垫26,底座14和压力室下盖13的连接处设有双层密封圈30;底座14上还设有与围压循环管路通过高压管144连通的接头23,以使得能够通过接头23接入高压围压液给围压循环管路提供高围压。
在本实施例中,压力室下盖13与底座14通过法兰连接紧固,并通过双层O型圈密封。压力室下盖13底端与底座14之间放入底座密封垫26。底座14与接头23通过螺丝紧固。底座14与热交换板25通过螺丝紧固,帕尔贴板24夹在底座14和热交换板25之中。
具体地,如图1以及图7-8所示,围压循环系统包括设于底座14上的离心泵、与该离心泵连通的围压循环管路以及设于该样品套11和压力室9之间的导流管10,围压循环管路从底座14出发依次经过压力室下盖13、导流管10内腔102、导流管10外腔103,再从压力室下盖13回到底座14的离心泵,以实现对样品套11产生围压。优选地,围压可达30MPa。
其中,如图10,围压循环管路包括设于压力室下盖13内的上流管131和下流管132以及设于导流管10内的内外分流室104-1和104-2,内外分流室104-1和104-2上设有多个分别与导流管内外腔102和103连通的分流孔105-1和105-2,上流管131通过内分流室104-1及分流孔105-1连通导流管内腔102,导流管内腔102通过设于该导流管10上的上端孔101连通导流管外腔103并通过分流孔105-2连接外分流室104-2,再与下流管132连通,围压循环管路还包括设于底座14内的连接管路143,该连接管路143分别连通高压管144和离心泵,且该连接管路143一端连通上流管131,另一端连通下流管132。在本实施例中,离心泵定子21为市面上可购买到的产品,高压的围压液通过接头23流入底座14高压管144,进入流入围压循环管路中,给围压液提供高围压,围压液在离心泵作用下从上流管131流入内分流室104-1,经过内分流孔105-1进入导流管10的内腔102,后通过导流管10的上端孔101进入导流管10的外腔103,通过外分流孔105-2及外分流室104-2进入下流管132,实现了围压液上环流,而围压液通过下流管132流入底座14内的离心泵入液口141,从底座14内的离心泵出液口142流出后进入底座14内的冷却水盘管,该冷却水盘管为连接管路143的一部分,目的是在于与温控系统配合实现热交换。
在本实施例中,如图3所示,离心泵外壳20与底座14通过法兰连接紧固,O型圈密封。离心泵底托22与离心泵外壳20通过法兰连接紧固。在离心泵外壳20和离心泵底托22之中的空腔中放入离心泵定子21。转子垫片19放入离心泵外壳20内孔底部。转子垫片19与底座14离心泵入液口141的中央孔共同固定转子光轴15。转子叶片16、转子磁铁17和转子底座18共同组成离心泵转子,围绕转子光轴15旋转。离心泵定子21通电后,由转子叶片16、转子磁铁17和转子底座18组成的离心泵转子开始旋转,转子叶片16旋转后产生离心力效应,将围压液从离心泵入液口141吸入空腔并从离心泵出液口142排出。这种定子与转子隔离的设计可以避免定子中的复杂电路接触高压,保证离心泵的稳定性。
具体地,温控系统设于底座14上,用于对围压循环系统中的围压液实现温度控制。
其中,如图9所示,温控系统包括设于底座14上的热交换板25、设于该热交换板25与底座14之间的帕尔贴板24,通过该帕尔贴板24实现对位于底座14内的围压循环管路进行冷却或加热,通过帕尔贴板24可以对底座14内的围压循环管路进行主动冷却或加热,由于帕尔贴板24可以通过翻面或者电流方向调节的方式供冷或者供热,因此可以非常方便地控制围压循环管路中循环液的温度。
其中,如图9所示,温控系统还包括冷却液循环管路133,该冷却液循环管路133设于底座14、压力室下盖13以及压力室9内,且该底座14上设有与冷却液循环管路133连通的外循环入液管145和外循环出液管146,通过冷却液循环管路133来进一步进行冷却或加热操作,如此低压冷却液会给围压冷却液降或升温,冷却液外循环系统则为围压冷却液制冷起辅助作用。当然冷却液循环管路133可以根据需求通入温度低的冷却液或温度高的冷却液来进行冷却或加热操作。如此结合主动冷却和水冷,可极大地提升本实验仪的温度控制效果,从而实现对样品环境的精准控制。
在本实施例中,低压冷却液从外循环入液管145进入,流入冷却液循环管路133中,后通过外循环出液管146流出。冷却液循环管路133的部分与上流管131和下流管132平行,低压冷却液与围压液流向相反,这样低压冷却液会给围压液降温或升温,冷却液外循环系统则为围压液制冷或制热起辅助作用。
如此可做到将温度控制在[-10,60]摄氏度之间,这个温度范围主要受压力室材料的强度特性影响,温度过低材料变脆,温度过高材料强度下降,变换压力室材料或者对压力室承压需求的情况下这个温度范围可以进一步扩大。
如此,通过围压循环系统和温控系统的结合,可以实现对围压液温度的精确控制,而且不需要在压力室9上设置接头23,如此进一步减小了压力室9外径,使得X射线源和接收器可以距离样品很近,从而提高了图像质量,也不存在变形问题,结构紧凑,同时能够减少接头23数量,提高能量利用效率,且围压管线周围不需要保温措施,提供围压的高压泵可以设置在CT扫描室之外,避免X射线对电子设备造成的损伤。
本发明的温度控制范围不应该做为本发明的限制。
本发明未详述部分为现有技术,故本发明未对其进行详述。
可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。
尽管本文较多地使用了驱动器1、电机连接轴套2、压力传感器3、传感器垫片4、轴压传动轴5、上孔压管6、压力室上盖7、卡扣件8、压力室9、导流管10、样品套11、下孔压管12、压力室下盖13、底座14、转子光轴15、转子叶片16、转子磁铁17、转子底座18、转子垫片19、离心泵外壳20、离心泵定子21、离心泵底托22、接头23、帕尔贴板24、热交换板25、底座密封垫26、连接件27、扣槽28、沉孔29、密封圈30、第一扣槽281、第二扣槽282、上流管131、下流管132、冷却液循环管路133、上端孔101、内腔102、外腔103、分流室104、分流孔105、离心泵入液口141、离心泵出液口142、连接管路143、高压管144、外循环入液管145、外循环出液管146等术语,但并不排除使用其他术语的可能性。使用这些术语仅仅是为了更方便地描述和解释本发明的本质;把它们解释成任何一种附加的限制都是与本发明精神相违背的。
本发明不局限于上述最佳实施方式,任何人在本发明的启示下都可得出其他各种形式的产品,但不论在其形状或结构上做任何变化,凡是具有与本申请相同或相近似的技术方案,均落在本发明的保护范围之内。

Claims (10)

1.多场耦合原位实验仪,其特征在于,包括:
中空设置的压力室,该压力室的上下两端分别通过卡扣件连接压力室上盖和压力室下盖;
所述压力室、所述压力室上盖及所述压力室下盖上均设有供所述卡扣件扣入的扣槽,且所述压力室上盖和所述压力室下盖上均设有与卡扣件的固定孔配合的通孔,以使得能够通过连接件依次插入所述通孔和所述固定孔,以固定所述压力室和所述压力室上盖以及所述压力室和所述压力室下盖;
当所述卡扣件完全扣入所述扣槽后,所述卡扣件外表面与所述压力室、所述压力室上盖及所述压力室下盖的外表面平齐或位于所述压力室、所述压力室上盖及所述压力室下盖的外表面内侧;
样品套,该样品套设于所述压力室内部,样品套上端套在压力室上盖轴压传动轴上,所述轴压传动轴内设有孔压管路,所述样品套下端套在压力室下盖顶部凸起的中轴上,且该中轴内部设有孔压管路,上下孔压管路于样品套内部连通;
驱动器,该驱动器通过电机连接轴套连接所述压力室上盖,该电机连接轴套内设有设于所述轴压传动轴顶部的压力传感器,且所述驱动器能够驱动所述压力传感器和轴压传动轴向下运动以实现对样品套内样品的轴压施加,位于所述轴压传动轴一端的孔压管路从所述连接轴套穿出;
底座,该底座连接所述压力室下盖底部;
围压循环系统,该围压循环系统包括设于底座上的离心泵、与该离心泵连通的围压循环管路以及设于该样品套和所述压力室之间的导流管,通过该导流管将所述压力室内样品套之外的空间进一步分为导流管内腔和导流管外腔,所述围压循环管路从所述底座出发依次经过所述压力室下盖、导流管内腔、导流管外腔,再从所述压力室下盖回到所述底座的离心泵,以配合温控系统实现对所述样品套内的样品温度进行精准控制,同时对所述样品套施加围压;
温控系统,该温控系统设于所述底座上,用于对所述围压循环系统中的围压液实现温度控制。
2.根据权利要求1所述的多场耦合原位实验仪,其特征在于,所述扣槽包括位于所述压力室的第一扣槽和位于所述压力室上盖和所述压力室下盖的第二扣槽,所述第一扣槽小于所述第二扣槽,所述第一扣槽远离所述压力室中心一端的截面宽度尺寸小于所述第一扣槽另一端的截面宽度尺寸,所述第二扣槽靠近所述压力室一端的截面宽度尺寸小于所述第二扣槽的另一端的截面宽度尺寸。
3.根据权利要求2所述的多场耦合原位实验仪,其特征在于,所述压力室上盖和所述压力室下盖上均设有供所述连接件插入的沉孔,当所述连接件完全插入所述沉孔时,所述连接件的顶部位于该沉孔顶部表面的下方或平齐,且该连接件外边缘与所述压力室上盖和所述压力室下盖的边缘平齐或位于所述压力室上盖和所述压力室下盖的边缘内侧。
4.根据权利要求1-3任意一项所述的多场耦合原位实验仪,其特征在于,所述底座上还设有与所述围压循环管路通过高压管连通的接头,以使得能够通过所述接头接入高压围压液给所述围压循环管路提供30MPa的高围压。
5.根据权利要求4所述的多场耦合原位实验仪,其特征在于,所述围压循环管路包括设于所述压力室下盖内的上流管和下流管及设于所述导流管内的内外分流室,所述内分流室上设有多个分别与所述导流管内外腔连通的分流孔,所述上流管通过所述内分流室及分流孔连通所述导流管内腔,所述导流管的内腔通过设于该导流管上的上端孔连通所述导流管外腔,并通过分流孔连接外分流室,再与所述下流管连通。
6.根据权利要求5所述的多场耦合原位实验仪,其特征在于,所述围压循环管路还包括设于所述底座内的连接管路,该连接管路分别连通所述高压管和所述离心泵,且该连接管路一端连通所述上流管,另一端连通所述下流管。
7.根据权利要求1所述的多场耦合原位实验仪,其特征在于,所述温控系统包括设于所述底座上的热交换板、设于该热交换板与所述底座之间的帕尔贴板,通过该帕尔贴板实现对位于所述底座内的围压循环管路进行冷却或加热。
8.根据权利要求7所述的多场耦合原位实验仪,其特征在于,所述温控系统还包括冷却液循环管路,该冷却液循环管路设于所述底座、所述压力室下盖以及所述压力室内,且该所述底座上设有与所述冷却液循环管路连通的外循环入液管和外循环出液管。
9.根据权利要求8所述的多场耦合原位实验仪,其特征在于,位于所述压力室下盖内的所述冷却液循环管路与所述围压循环管路平行,且所述冷却液循环管路内的冷却液流向与所述围压循环管路内的围压液流向相反。
10.根据权利要求5-8任意一项所述的多场耦合原位实验仪,其特征在于,所述底座上设有供所述压力室下盖安装的安装槽,且该安装槽内设有底座密封垫,所述底座和所述压力室下盖的连接处设有双层密封圈。
CN202210151656.8A 2022-02-18 2022-02-18 多场耦合原位实验仪 Active CN114526984B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210151656.8A CN114526984B (zh) 2022-02-18 2022-02-18 多场耦合原位实验仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210151656.8A CN114526984B (zh) 2022-02-18 2022-02-18 多场耦合原位实验仪

Publications (2)

Publication Number Publication Date
CN114526984A CN114526984A (zh) 2022-05-24
CN114526984B true CN114526984B (zh) 2024-04-05

Family

ID=81622643

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210151656.8A Active CN114526984B (zh) 2022-02-18 2022-02-18 多场耦合原位实验仪

Country Status (1)

Country Link
CN (1) CN114526984B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102678091A (zh) * 2012-05-14 2012-09-19 中国科学院力学研究所 水合物开采实验模拟的方法及围压加载与隔热一体化系统
CN106872497A (zh) * 2017-05-03 2017-06-20 青岛海洋地质研究所 Ct专用水合物电阻率测量装置及方法
CN107697249A (zh) * 2017-10-25 2018-02-16 深圳乐智机器人有限公司 一种水下机器人及多功能水下作业装置
CN109459368A (zh) * 2018-11-23 2019-03-12 成都理工大学 一种实现多场耦合及原位干湿循环的渗透仪
CN109520855A (zh) * 2018-10-19 2019-03-26 中国科学院地质与地球物理研究所 用于旋转岩石力学试验机的压力室
CN110160885A (zh) * 2019-06-28 2019-08-23 辽宁工程技术大学 多场耦合作用下测量低渗透煤岩渗透率的实验装置及方法
CN214534971U (zh) * 2021-02-02 2021-10-29 湖南安联金属制品有限公司 一种具有改进型密封结构的高压管件
CN113820249A (zh) * 2021-11-22 2021-12-21 中国矿业大学(北京) 基于渗吸核磁共振评价沉积物润湿性的装置和方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102678091A (zh) * 2012-05-14 2012-09-19 中国科学院力学研究所 水合物开采实验模拟的方法及围压加载与隔热一体化系统
CN106872497A (zh) * 2017-05-03 2017-06-20 青岛海洋地质研究所 Ct专用水合物电阻率测量装置及方法
CN107697249A (zh) * 2017-10-25 2018-02-16 深圳乐智机器人有限公司 一种水下机器人及多功能水下作业装置
CN109520855A (zh) * 2018-10-19 2019-03-26 中国科学院地质与地球物理研究所 用于旋转岩石力学试验机的压力室
CN109459368A (zh) * 2018-11-23 2019-03-12 成都理工大学 一种实现多场耦合及原位干湿循环的渗透仪
CN110160885A (zh) * 2019-06-28 2019-08-23 辽宁工程技术大学 多场耦合作用下测量低渗透煤岩渗透率的实验装置及方法
CN214534971U (zh) * 2021-02-02 2021-10-29 湖南安联金属制品有限公司 一种具有改进型密封结构的高压管件
CN113820249A (zh) * 2021-11-22 2021-12-21 中国矿业大学(北京) 基于渗吸核磁共振评价沉积物润湿性的装置和方法

Also Published As

Publication number Publication date
CN114526984A (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
CN106151054B (zh) 电驱动泵
KR20020000490A (ko) 냉각용 중공의 회전자 봉을 갖는 회전기계
CN107703014B (zh) 高温高压环境冲击磨损试验机
US9322601B2 (en) Optical fiber cooling device
CN210587193U (zh) 一种电主轴冷却机构
CN114526984B (zh) 多场耦合原位实验仪
CN101435786A (zh) 热管性能检测装置
CN114526983B (zh) 用于多场耦合原位实验仪的围压温控一体系统
CN111060557A (zh) 一种轴向旋转振荡热管试验装置及其使用方法
CN103132027A (zh) 真空镀膜设备
CN116780034A (zh) 全浸没非循环流动液冷式电池储能热管理系统
CN114850962B (zh) 一种冷却系统及电主轴
CN103474865A (zh) 一种用于冷却片状激光增益介质的装置
CN212620274U (zh) 一种用于低温条件下粘稠物质的换热系统
CN219674917U (zh) 一种便于流场调节的高效型换热器
CN219716001U (zh) 一种基于油冷电机的多路温控测试设备
CN219888411U (zh) 具有控温功能的转接件及综合环境测试装置
US8646178B2 (en) Heat exchanger fabrication with improved thermal exchange efficiency
CN218973285U (zh) 一种冷却系统用换热管道
KR101333136B1 (ko) 전수로형 펌프
CN201130811Y (zh) 调控激光谐振腔内倍频晶体温度的装置
CN219957275U (zh) 一种高压电缆接头浸水试验装置
CN219351387U (zh) 一种用于冷却电机转子的装置
CN220474733U (zh) 一种利用管道加热液体的电加热装置
CN219871115U (zh) 一种真空套管及超临界循环隔热测试回路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant