CN114522726B - 一种还原铁粉复合聚四氟乙烯材料及其制备方法和应用 - Google Patents

一种还原铁粉复合聚四氟乙烯材料及其制备方法和应用 Download PDF

Info

Publication number
CN114522726B
CN114522726B CN202210211020.8A CN202210211020A CN114522726B CN 114522726 B CN114522726 B CN 114522726B CN 202210211020 A CN202210211020 A CN 202210211020A CN 114522726 B CN114522726 B CN 114522726B
Authority
CN
China
Prior art keywords
iron powder
reduced iron
polytetrafluoroethylene
ptfe
imidacloprid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210211020.8A
Other languages
English (en)
Other versions
CN114522726A (zh
Inventor
杨列
吴丽娟
闫霄珂
申时太
杨上丁
张祖麟
吴丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN202210211020.8A priority Critical patent/CN114522726B/zh
Publication of CN114522726A publication Critical patent/CN114522726A/zh
Application granted granted Critical
Publication of CN114522726B publication Critical patent/CN114522726B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/306Pesticides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种还原铁粉复合聚四氟乙烯材料及其制备方法和应用,具体由聚四氟乙烯微粉与还原铁粉经球磨得到,其制备方法简单易行、成本低、能耗少,所得的压电材料表现出很高的反应活性,能稳定降解环境中的多种有机污染物,且可回收性高、重复利用效率高,具有广阔的应用前景。

Description

一种还原铁粉复合聚四氟乙烯材料及其制备方法和应用
技术领域
本发明涉及压电催化降解技术领域,具体涉及一种还原铁粉复合聚四氟乙烯(Fe@PTFE)材料及其制备方法和应用
背景技术
压电催化成为一种新的应用于环境污染治理中的高级氧化过程,由于其在机械振动(如水流、声波等)下降解有机污染的能力而引起广泛关注。目前已被证实具有压电催化效应并被应用于环境领域降解有机污染物的传统材料有氧化锌、钛酸钡、锆钛酸铅、铁酸铋以及有机聚偏氟乙烯(PVDF)等,但这些材料压电系数太低(d33=3~105pC/N),不能有效应用于压电催化;或不稳定,会释放出有毒物质铅,容易引起二次污染。
聚四氟乙烯(PTFE)由于具有耐高温、耐寒、耐酸碱腐蚀、抗各种有机溶剂等优点,已被广泛应用于化工、石油、纺织、医疗、机械等领域。但其于2021年才被发现证实为一种新的压电催化材料,研究表明,PTFE粉末具有优良的压电催化性能,经超声激活后压电系数高达600pC/N。不过,目前对PTFE粉末压电催化性能的相关研究非常有限,因此,PTFE及其改性方法在环境降解有机污染物等方面的研究与能力还有待被挖掘和完善。
相对于传统的改性方法,铁元素的掺杂可明显改善压电材料的整体性能。目前常见的压电-芬顿体系是向反应体系中添加压电材料和含有Fe2+的溶液,存在的问题主要是:以Fe2+为催化剂,每次反应需单独添加该催化剂,且不易回收利用。
发明内容
有鉴于此,本发明的目的在于提供一种固体铁粉改性聚四氟乙烯压电性能的复合材料,以望用于稳定、高效的降解有机污染物。
为了实现上述目的,本发明的技术方案具体如下:
本发明提供了一种还原铁粉复合聚四氟乙烯材料,由聚四氟乙烯微粉和还原铁粉按比例球磨所得,且二者的质量比为1:19~19:1。
优选地,聚四氟乙烯微粉的粒径为1~15μm,还原铁粉过100目筛。
优选地,球磨的条件为:500~700r/min,球磨时间为2~24h;更加优选地,球磨的运行方式为:工作5min,停留5min。
本发明还提供了上述还原铁粉复合聚四氟乙烯材料在有机污染物降解中的应用;具体地,应用的过程为,将还原铁粉复合聚四氟乙烯材料作为压电材料,加入含有机污染物的废水中,超声降解;优先地,该反应体系的pH为3~7
本发明的有益效果为:
本发明以固体铁粉对聚四氟乙烯改性,得到高反应活性、高稳定性的复合材料,其制备方法简单、成本低、能耗小,且具有可回收性高、重复利用效率高的优点;有效解决了现有技术中的压电催化材料制备方法复杂、成本高,且对环境中有机污染物降解能力有限的技术问题。
由于铁粉密度大于水的密度,而聚四氟乙烯微粉的密度小于水的密度,故为了使在有机物降解的过程中紧密接触,本发明通过球磨将铁粉与聚四氟乙烯微粉成功复合在一起,提高自由基与污染物之间的接触面积以及接触效率,大大提高了该压电材料的反应活性,从而提高对有机污染物的去除效率。另外,相对于其他金属元素,铁能在超声的作用下,形成类芬顿的环境,与聚四氟乙烯的压电催化体系构成协同体系,生成·OH等自由基,也能参与有机污染物的降解。
本发明制备得到的Fe@PTFE压电催化材料在无需其他氧化剂、且在常温、较低的超声波能量密度下对有机污染物(如吡虫啉)的降解效果仍高于现有技术多种金属掺杂的其他压电材料的有机物降解效果,且有高反应活性。
本发明制备的Fe@PTFE材料在各种自然水体(如自来水、矿物质水、南湖水、长江水等)中也能表现出对有机污染物较好的降解效果且具有广谱性,不仅对吡虫啉等农药类物质有较好的降解效果,还对磺胺甲恶唑等抗生素类有机污染物有较高的降解效果。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍:
图1为实施例1制备的Fe@PTFE材料与聚四氟乙烯微粉的SEM对比图;
图2为实施例1制备的Fe@PTFE材料的mapping图;
图3为实施例2中不同材料在超声环境下对吡虫啉的降解曲线图;
图4为实施例2中聚四氟乙烯和铁粉比例对Fe@PTFE材料降解吡虫啉效果的对比图;
图5为实施例3中的Fe@PTFE材料对不同浓度的吡虫啉的降解曲线图;
图6为实施例4中的Fe@PTFE材料在不同超声波能量密度下对吡虫啉的降解曲线图;
图7为实施例5中的Fe@PTFE材料对磺胺甲恶唑的降解动力学图;
具体实施方式
下面将结合本发明中的实施例,对本发明的技术方案进行清楚、完整地描述。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本文中所披露的范围的端点和任何值都不限于该精准的范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合得到一个或者多个新的数值范围,这些数值范围应被视为在本文中具体公开。在本发明中,在表示数值范围时,“在X-X范围内”包括两个边界值。本发明中,“至少一种”表示一种或两种以上。
实施例1
还原铁粉复合聚四氟乙烯(Fe@PTFE)材料的制备,过程具体为:称取3.2g粒径为10μm聚四氟乙烯微粉,0.8g过100目筛的还原铁粉,放入装有100g氧化锆球的球磨罐中置于球磨机中于630r/min球磨2h,即得到还原铁粉复合聚四氟乙烯(Fe@PTFE)材料。
以上述方法为例,可分别制备总质量为4g,粒径为10μm的聚四氟乙烯与铁粉质量比例分别为1:19、1:4、1:1、4:1、19:1的还原铁粉复合聚四氟乙烯(Fe@PTFE)材料。
对Fe@PTFE材料的形貌进行表征,具体如图1所示:(a)为PTFE的SEM图,可以观察到未经处理的PTFE为呈薄带状,表面有少许狭小细纹;(b)为Fe@PTFE的SEM图,呈无孔带状,但表面形成较多无规则片状突起,有利于增大表面积,从而促进其与污染物的接触范围。进一步地,对Fe@PTFE材料表面的元素分布进行检测,结果如图2所示:Fe元素被成功负载在了PTFE表面,并通过EDS元素分析得到其负载量。
实施例2
Fe@PTFE材料、还原铁粉和PTFE粉末在吡虫啉降解效果上的对比试验:
称取20mg上述各样品,分别加入至浓度为500ppb(体积为50mL)、pH为3.0的吡虫啉溶液中,于超声波能量密度为0.08013W/cm3的KQ-300DE超声清洗仪中进行超声反应,在设定的时间(0~60min)取样,利用高效液相色谱-质谱测定吡虫啉残余浓度,计算不同时间吡虫啉的去除率。检测结果如图3和图4所示。
图3中显示:单超声对吡虫啉的降解效果很微弱,仅达到28.58%;还原铁粉加超声构成类芬顿反应体系,对吡虫啉的降解达到51.99%;PTFE加超声构成压电反应体系,对吡虫啉的降解达到45.07%;而经过复合后的Fe@PTFE材料对吡虫啉的降解率达到了98.99%,显著增强了对吡虫啉的去除。其原因为经过球磨改性后的Fe@PTFE材料能很好结合前述两个体系,并且促进了铁粉与PTFE粉末的相互接触。
在超声状态下,Fe@PTFE压电催化材料被激活,超声强烈的空化作用使PTFE微粉发生形变,激活PTFE,与超声构成对吡虫啉等污染物的压电催化降解;另一方面,还原铁粉与超声构成类芬顿体系。压电催化体系与类芬顿体系同时产生大量的·OH自由基,与污染物进行降解反应。此外,超声在反应中不仅能激活促进·OH等自由基的生成,还能提高传质作用,促进自由基对污染物的降解。
图4中显示:Fe@PTFE材料对吡虫啉的去除率随反应时间而提高,且聚四氟乙烯与铁粉质量比例小于1:1时,随着铁粉的质量占比增大,对吡虫啉的去除率也增大;聚四氟乙烯与铁粉质量比例大于1:1时,随着铁粉的质量占比减小,对吡虫啉的去除率逐渐降低。总体上,该Fe@PTFE材料对吡虫啉的降解效果很好。
实施例3
称取20mg实施例1中聚四氟乙烯与铁粉质量比例为4:1的Fe@PTFE材料,加入至浓度分别为100ppb、300ppb、500ppb、5ppm(体积为50mL)、pH为3.0的吡虫啉溶液中,于超声波能量密度为0.08013W/cm3的KQ-300DE超声清洗仪中进行超声反应,在设定的时间(0~60min)取样,利用高效液相色谱-质谱测定吡虫啉残余浓度,计算不同时间吡虫啉的去除率。
由图5可知,Fe@PTFE材料对水中不同浓度的吡虫啉去除率随反应时间而提高。当吡虫啉浓度为500ppb时,超声状态下的还原铁粉复合聚四氟乙烯(Fe@PTFE)材料对吡虫啉的去除率为96.91%。
实施例4
称取20mg实施例1中聚四氟乙烯与铁粉质量比例为4:1的Fe@PTFE材料,加入至浓度为500ppb(体积为50mL)、pH为3.0的吡虫啉溶液中,于超声功率为100%(该状态下超声波能量密度为0.08013W/cm3,超声输入功率为300W)、80%、60%、40%的KQ-300DE超声清洗仪中进行超声反应,在设定的时间(0~60min)取样,利用高效液相色谱-质谱测定吡虫啉残余浓度,计算不同时间吡虫啉的去除率。
由图6可知,60%及以上的超声功率对吡虫啉的去除率能达到94.87%以上,超声功率越大,对吡虫啉的降解速率越快,去除率越高。
实施例5
称取20mg实施例1中聚四氟乙烯与铁粉质量比例为4:1的Fe@PTFE材料,加入至浓度为500ppb(体积为50mL)、pH为3.0的磺胺甲恶唑溶液中,于超声波能量密度为0.08013W/cm3的KQ-300DE超声清洗仪中进行超声反应,在设定的时间(0~60min)取样,利用高效液相色谱-质谱测定磺胺甲恶唑残余浓度,60min时对磺胺甲恶唑的去除率达到99.28%。
实施例6
按照实施例1的制备方法,可分别制备总质量为4g,粒径为1μm、3μm、5μm、15μm的聚四氟乙烯与铁粉质量比例为4:1的还原铁粉复合聚四氟乙烯(Fe@PTFE)材料。在上述粒径范围内,Fe@PTFE材料均具有高反应活性,且粒径为10μm时效果最好。
本发明所列举的各原料,以及本发明各原料的上下限、区间取值,以及工艺参数(如球磨转速、球磨时间、反应时间等)的上下限、区间取值都能实现本发明,在此不一一列举实施例。
综上所示,本发明通过球磨得到的Fe@PTFE材料具有高反应活性,即使在常温、较低的超声波能量密度下对有机污染物仍有很高的降解效果,且具有广谱性。
以上所述是本发明的优选实施方式而已,当然不能以此来限定本发明之权利范围,应当指出,对于本技术领域的普通技术人员来说,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.一种还原铁粉复合聚四氟乙烯材料在有机污染物降解中的应用,其特征在于,其应用方法为:将还原铁粉复合聚四氟乙烯材料作为压电材料,加入含有机污染物的废水中,超声降解;其中,所述还原铁粉复合聚四氟乙烯材料由聚四氟乙烯微粉与还原铁粉球磨得到,所述聚四氟乙烯微粉与铁粉的质量比为1:1~19:1;
所述聚四氟乙烯微粉的粒径为1~15μm,所述还原铁粉过100目筛;
所述球磨的条件为:500~700r/min,球磨时间为2~24h;所述球磨的运行方式为:工作5min,停留5min。
2.根据权利要求1所述还原铁粉复合聚四氟乙烯材料在有机污染物降解中的应用,其特征在于,所述废水的pH为3~7。
CN202210211020.8A 2022-03-03 2022-03-03 一种还原铁粉复合聚四氟乙烯材料及其制备方法和应用 Active CN114522726B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210211020.8A CN114522726B (zh) 2022-03-03 2022-03-03 一种还原铁粉复合聚四氟乙烯材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210211020.8A CN114522726B (zh) 2022-03-03 2022-03-03 一种还原铁粉复合聚四氟乙烯材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114522726A CN114522726A (zh) 2022-05-24
CN114522726B true CN114522726B (zh) 2023-08-25

Family

ID=81626512

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210211020.8A Active CN114522726B (zh) 2022-03-03 2022-03-03 一种还原铁粉复合聚四氟乙烯材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114522726B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102372355A (zh) * 2011-10-09 2012-03-14 广东省生态环境与土壤研究所 一种处理有机废水的方法
CN110498494A (zh) * 2019-08-01 2019-11-26 武汉理工大学 一种高还原活性的零价铁-矿物复合材料及其制备方法
CN110627187A (zh) * 2019-08-30 2019-12-31 山东大学 一种硫化改性零价铁复合材料的制备方法及应用
CN111171359A (zh) * 2020-01-07 2020-05-19 南京大学 活化聚四氟乙烯的方法及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102372355A (zh) * 2011-10-09 2012-03-14 广东省生态环境与土壤研究所 一种处理有机废水的方法
CN110498494A (zh) * 2019-08-01 2019-11-26 武汉理工大学 一种高还原活性的零价铁-矿物复合材料及其制备方法
CN110627187A (zh) * 2019-08-30 2019-12-31 山东大学 一种硫化改性零价铁复合材料的制备方法及应用
CN111171359A (zh) * 2020-01-07 2020-05-19 南京大学 活化聚四氟乙烯的方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高能球磨法制备铁/聚四氟乙烯纳米复合材料;陈春霞,姜继森,宫峰飞,钱思明,杨燮龙;中国粉体技术(06);11-13 *

Also Published As

Publication number Publication date
CN114522726A (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
Diem et al. Is dissolved Mn2+ being oxidized by O2 in absence of Mn-bacteria or surface catalysts?
CN109911992A (zh) 一种铁基多金属合金微电解填料的制备方法和应用
CN105236543A (zh) 重金属沉淀剂及其制备方法和重金属废水处理方法
Zinicovscaia et al. Metal removal from chromium containing synthetic effluents by Saccharomyces cerevisiae
Yang et al. Electrochemical reduction of nitrate on different Cu-Zn oxide composite cathodes
CN114522726B (zh) 一种还原铁粉复合聚四氟乙烯材料及其制备方法和应用
Es-Said et al. Adsorptivity and selectivity of heavy metals Cd (II), Cu (II), and Zn (II) toward phosphogypsum
Sreeram et al. Optimisation of the removal of arsenate from water using nanochitosan
CN111362423B (zh) 一种化工废水净化剂及其制备方法
Yu et al. Tribocatalytic degradation of organic pollutants using Fe2O3 nanoparticles
CN104258873A (zh) 一种复合臭氧催化氧化催化剂的制备方法
Resmi et al. Brevundimonas vesicularis: A novel bio-sorbent for removal of lead from wastewater
El-Khateeb et al. Effective granular activated carbon for greywater treatment prepared from corncobs
Zeng et al. Enhanced phosphate removal by zero valent iron activated through oxidants from water: batch and breakthrough experiments
CN109827954A (zh) 一种纳米金修饰聚多巴胺纳米管、其制备方法及应用
CN108636372A (zh) 一种好氧颗粒污泥-Fe3O4-腐殖酸复合生物吸附剂的制备及应用
Muin et al. Electrochemical removal of copper ions using coconut shell activated carbon
Aracagök et al. Fungal biosorption of cadmium (II) onto Fennelia nivea from aqueous solution: equilibrium, thermodynamics, and kinetics
CN106745663A (zh) 多功能污水处理装置
CN111068659B (zh) 一种复合压电催化材料及其制备方法与污泥脱水应用
Tang et al. Kinetics of Cu (II) and fulvic acid adsorption on modified biochar derived from rice husk
CN110526300A (zh) 一种重金属处理用磁性纳米Fe-S材料的制备方法
CN115888731B (zh) 一种六方纳米棒聚合纳米球芬顿水处理催化剂、制备方法和应用
Lai et al. Nitrate reduction using As-Synthesized Nanoparticles Zero Valent Iron (nZVI) at ambient environment
CN108117146B (zh) 利用改性钢渣去除水体中甲草胺的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant