CN114512651A - 一种硅酸钛锂颗粒原位碳包覆方法及复合产物 - Google Patents

一种硅酸钛锂颗粒原位碳包覆方法及复合产物 Download PDF

Info

Publication number
CN114512651A
CN114512651A CN202210155130.7A CN202210155130A CN114512651A CN 114512651 A CN114512651 A CN 114512651A CN 202210155130 A CN202210155130 A CN 202210155130A CN 114512651 A CN114512651 A CN 114512651A
Authority
CN
China
Prior art keywords
lithium titanium
titanium silicate
carbon coating
coating method
silicate particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210155130.7A
Other languages
English (en)
Other versions
CN114512651B (zh
Inventor
张防
杨小杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN202210155130.7A priority Critical patent/CN114512651B/zh
Publication of CN114512651A publication Critical patent/CN114512651A/zh
Application granted granted Critical
Publication of CN114512651B publication Critical patent/CN114512651B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种对硅酸钛锂颗粒进行原位均匀碳包覆的方法,步骤为:将硅酸钛锂颗粒分散在一定量水中,加入少量表面活性剂搅拌均匀,形成悬浮液。分别加入乙醇、间苯二酚、甲醛和少量催化剂搅拌均匀,搅拌后室温下无干扰静置老化一段时间;经过离心、洗涤、干燥后得到酚醛树脂包覆的前驱体;将所得前驱物在氮气或惰性气氛下碳化,得到均匀碳包覆的硅酸钛锂材料。本发明中酚醛树脂在硅酸钛锂颗粒表面原位生成,碳化后可实现颗粒表面均匀碳包覆。本发明适用于不同尺寸的硅酸钛锂颗粒表面碳包覆。该包覆工艺不需要复杂和昂贵的球磨混料设备,过程简单,易操作,有利于商业化。

Description

一种硅酸钛锂颗粒原位碳包覆方法及复合产物
技术领域
本发明属于锂离子电池材料技术领域,尤其涉及一种对负极材料硅酸钛锂颗粒表面进行原位均匀碳包覆的方法及复合产物。
背景技术
随着“双碳”目标和5G时代的到来,人们对电动汽车和便携式电子设备的需求与日俱增,由此产生的对高能量密度、高功率密度、长循环寿命和高安全性能的锂离子电池的需求也愈加旺盛。与传统的铅酸电池、镍氢电池相比,目前商业化的锂离子电池有着高能量密度、长循环寿命、安全性能好和环境友好等优点,已经成为便携式电子产品和电动汽车的首选电池储能技术。
现阶段锂离子电池负极材料主要采用基于嵌入反应的石墨和尖晶石型钛酸锂,但是石墨的工作电势较低,大电流充放电和长时间循环易导致锂枝晶在电极表面沉积形成刺穿隔膜,带来可怕的安全隐患。尖晶石型钛酸锂虽然不易形成锂枝晶,而且稳定性好,但是理论比容量较低,充放电电势较高,极大限制了锂离子电池的能量密度提升。
新型聚阴离子型锂离子电池负极材料硅酸钛锂,不仅理论比容量高(308mAh g-1),还具有合适的充放电平台(约0.3V)。因此,可以在一定程度上解决钛酸锂比容量较低和充放电平台过高的缺点,与石墨相比安全性也更高。但是硅酸钛锂较低的电导率和充放电过程中出现的晶粒粉化现象严重限制了其电化学性能的发挥。
发明内容
发明目的:本发明的第一目的在于提供一种有效提高硅酸钛锂循环稳定性能和倍率性能的碳包覆改性制备方法。
本发明的第二目的在于提供利用所述制备方法得到的碳包覆硅酸钛锂复合材料;该复合材料电导率、循环稳定性和倍率性能都得到了极大的提高。
技术方案:本发明的硅酸钛锂颗粒原位碳包覆方法,包括如下步骤:
步骤1、将硅酸钛锂分散在一定量水中,加入表面活性剂,搅拌或超声分散均匀,形成悬浮液;
步骤2、往悬浮液中依次加入乙醇、间苯二酚、甲醛和催化剂,搅拌均匀;
步骤3、将步骤2所得混合物在室温下无干扰静置老化;
步骤4、将步骤3所得产物离心、洗涤、干燥得到前驱物;
步骤5、将前驱物在惰性气氛下碳化,煅烧,冷却后得到所述的碳包覆硅酸钛锂材料。
进一步地,步骤1中,所述表面活性剂为十六烷基三甲基溴化铵;所述硅酸钛锂与十六烷基三甲基溴化铵的质量比为1:0.5~1。
进一步地,步骤2中,所述间苯二酚的加入量,按照硅酸钛锂与间苯二酚的质量比为1:0.2~0.5。
进一步地,步骤2中,所述甲醛的加入量,按照硅酸钛锂与甲醛的质量比为1∶2~5。
进一步地,步骤2中,所述催化剂为氨水;所述氨水的加入量,按照硅酸钛锂与氨水的质量比为1∶1~5。
进一步地,步骤3中,所述无干扰静置老化的时间为6~12h。
进一步地,步骤4中,所述干燥条件为60℃,干燥时间为6~12h。
进一步地,步骤5中,所述惰性气氛为氩气或氮气气氛。
进一步地,步骤5中,所述煅烧温度为700~1000℃,煅烧时间为2~5h。
反应原理如下:
Figure BDA0003512061720000021
本发明利用表面活性剂的吸附耦合作用,将间苯二酚和甲醛反应生成的酚醛树脂原位吸附在硅酸钛锂的表面形成均匀致密的包覆层。将所得产物碳化后,前驱体酚醛树脂中苯环中6个sp2杂化的碳原子构成的六元环状π-π共轭结构被保留下来,形成高石墨化度碳层。碳层中的共轭结构极大促进了电子和离子的传输,使得硅酸钛锂具备出色的电化学性能。
有益效果:与现有技术相比,本发明具有如下显著优点:
(1)本发明引入的聚合物碳源在硅酸钛锂颗粒表面原位生成,高温碳化后可以在硅酸钛锂表面实现均匀碳包覆。
(2)本发明引入的碳源含有大量的共轭结构,因此经过碳化后形成的碳包覆层具有极高的电子电导率。
(3)本发明通过控制其他变量,只改变反应物浓度就可以在硅酸钛锂表面包覆几纳米到上百纳米厚度不等的均匀碳层。
(4)本发明引入的碳包覆改性制备方法极大的提高了硅酸钛锂的电导率、循环稳定性能和倍率性能。
附图说明
图1为本发明实施例1碳包覆改性制备的硅酸钛锂的工艺流程图;
图2为本发明实施例1碳包覆改性制备的硅酸钛锂的X-射线衍射图谱;
图3为本发明实施例1碳包覆改性制备的硅酸钛锂在不同放大倍数下的扫描电镜图;
图4为本发明实施例1碳包覆改性制备的硅酸钛锂在不同放电倍率下的性能图。
图5为本发明实施例2碳包覆改性制备的硅酸钛锂的在不同放大倍数下的透射电镜图;
图6为本发明实施例3碳包覆改性制备的硅酸钛锂的在不同放大倍数下的透射电镜图;
图7为本发明实施例4碳包覆改性制备的硅酸钛锂的在不同放大倍数下的透射电镜图。
具体实施方式
下面结合附图对本发明的技术方案作进一步说明。
实施例1
本发明的流程如图1所示:
A、称取1g硅酸钛锂和0.5g十六烷基三甲基溴化铵,分散于蒸馏水中超声均匀,形成悬浮液;
B、往溶液中加入20ml乙醇、0.2g间苯二酚、2ml甲醛和1ml起催化作用的氨水搅拌均匀,制得混合物;
C、将混合物在室温下无干扰静置6h老化;
D、将所得产物离心、洗涤后,在60℃干燥6h后得到前驱体;
E、将所得前驱体在氮气气氛下700℃煅烧2h,冷却后获得所述的碳包覆改性硅酸钛锂。
图2为碳包覆硅酸钛锂的X-射线衍射谱图,从图2中可以看出碳包覆后的硅酸钛锂结晶性良好;图3为碳包覆后的硅酸钛锂在不同放大倍数下的扫描电镜图,从图3可以看出碳层均匀包覆在硅酸钛锂颗粒的表面;图4为碳包覆和未经包覆处理的的硅酸钛锂电极在不同放电电流密度下的容量对比图,从图4可以看出碳包覆后的硅酸钛锂在不同电流密度下比容量明显高于纯相硅酸钛锂,说明均匀碳包覆提高了硅酸钛锂大电流下的放电能力。
实施例2
A、称取1g硅酸钛锂和0.6g十六烷基三甲基溴化铵,分散于蒸馏水中超声均匀,形成悬浮液;
B、往溶液中加入25ml乙醇、0.3g间苯二酚、3ml甲醛和2ml起催化作用的氨水搅拌均匀,制得混合物;
C、将混合物在室温下无干扰静置8h老化;
D、将所得产物离心、洗涤后,在60℃干燥8h后得到前驱体;
E、将所得前驱体在氮气气氛下800℃煅烧3h,冷却后获得所述的碳包覆改性硅酸钛锂。
图5为碳包覆改性硅酸钛锂的透射电镜图,从图5a可以看出酚醛树脂碳化后在硅酸钛锂颗粒表面形成了均匀包覆的碳层,从图5b中可以看出碳层厚度约为3nm。
实施例3
A、称取1g硅酸钛锂和0.8g十六烷基三甲基溴化铵,分散于蒸馏水中超声均匀,形成悬浮液;
B、往溶液中加入30ml乙醇、0.4g间苯二酚、4ml甲醛和3ml起催化作用的氨水搅拌均匀,制得混合物;
C、将混合物在室温下无干扰静置10h老化;
D、将所得产物离心、洗涤后,在60℃干燥10h后得到前驱体;
E、将所得前驱体在氮气气氛下900℃煅烧3h,冷却后获得所述的碳包覆改性硅酸钛锂。
图6为碳包覆改性硅酸钛锂的透射电镜图,从图6a可以看出酚醛树脂碳化后在硅酸钛锂的表面形成了均匀包覆的碳层,从图6b中可以看出碳层厚度约为9nm。
实施例4
A、称取1g硅酸钛锂和1g十六烷基三甲基溴化铵,分散于蒸馏水中超声均匀,形成悬浮液;
B、往溶液中加入30ml乙醇、0.5g间苯二酚、5ml甲醛和5ml起催化作用的氨水搅拌均匀,制得混合物;
C、将混合物在室温下无干扰静置12h老化;
D、将所得产物离心、洗涤后,在60℃干燥12h后得到前驱体;
E、将所得前驱体在氮气气氛下1000℃煅烧5h,冷却后获得所述的碳包覆改性硅酸钛锂。
图7为碳包覆改性硅酸钛锂的透射电镜图,从图7a可以看出酚醛树脂碳化后在硅酸钛锂的表面形成了均匀包覆的碳层,从图7b中可以看出碳层厚度约为20nm。

Claims (10)

1.一种硅酸钛锂颗粒原位碳包覆方法,其特征在于,包括如下步骤:
步骤1、将硅酸钛锂分散在一定量水中,加入表面活性剂,搅拌或超声分散均匀,形成悬浮液;
步骤2、往悬浮液中依次加入乙醇、间苯二酚、甲醛和催化剂,搅拌均匀;
步骤3、将步骤2所得混合物在室温下无干扰静置老化;
步骤4、将步骤3所得产物离心、洗涤、干燥得到前驱物;
步骤5、将前驱物在惰性气氛下碳化,煅烧,冷却后得到所述的碳包覆硅酸钛锂材料。
2.根据权利要求1所述的硅酸钛锂颗粒原位碳包覆方法,其特征在于,步骤1中,所述表面活性剂为十六烷基三甲基溴化铵;所述硅酸钛锂与十六烷基三甲基溴化铵的质量比为1:0.5~1。
3.根据权利要求1所述的硅酸钛锂颗粒原位碳包覆方法,其特征在于,步骤2中,所述间苯二酚的加入量,按照硅酸钛锂与间苯二酚的质量比为1:0.2~0.5。
4.根据权利要求1所述的硅酸钛锂颗粒原位碳包覆方法,其特征在于,步骤2中,所述甲醛的加入量,按照硅酸钛锂与甲醛的质量比为1∶2~5。
5.根据权利要求1所述的硅酸钛锂颗粒原位碳包覆方法,其特征在于,步骤2中,所述催化剂为氨水;所述氨水的加入量,按照硅酸钛锂与氨水的质量比为1∶1~5。
6.根据权利要求1所述的硅酸钛锂颗粒原位碳包覆方法,其特征在于,步骤3中,所述无干扰静置老化的时间为6~12h。
7.根据权利要求1所述的硅酸钛锂颗粒原位碳包覆方法,其特征在于,步骤4中,所述干燥条件为60℃,干燥时间为6~12h。
8.根据权利要求1所述的硅酸钛锂颗粒原位碳包覆方法,其特征在于,步骤5中,所述惰性气氛为氩气或氮气气氛。
9.根据权利要求1所述的硅酸钛锂颗粒原位碳包覆方法,其特征在于,步骤5中,所述煅烧温度为700~1000℃,煅烧时间为2~5h。
10.一种采用权利要求1~9中任一项所述方法制备得到碳包覆改性硅酸钛锂复合物。
CN202210155130.7A 2022-02-21 2022-02-21 一种硅酸钛锂颗粒原位碳包覆方法及复合产物 Active CN114512651B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210155130.7A CN114512651B (zh) 2022-02-21 2022-02-21 一种硅酸钛锂颗粒原位碳包覆方法及复合产物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210155130.7A CN114512651B (zh) 2022-02-21 2022-02-21 一种硅酸钛锂颗粒原位碳包覆方法及复合产物

Publications (2)

Publication Number Publication Date
CN114512651A true CN114512651A (zh) 2022-05-17
CN114512651B CN114512651B (zh) 2024-06-21

Family

ID=81552282

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210155130.7A Active CN114512651B (zh) 2022-02-21 2022-02-21 一种硅酸钛锂颗粒原位碳包覆方法及复合产物

Country Status (1)

Country Link
CN (1) CN114512651B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102593444A (zh) * 2012-01-17 2012-07-18 东莞市迈科科技有限公司 一种碳包覆钛酸锂的制备方法及其产物
CN103985876A (zh) * 2014-05-15 2014-08-13 中国科学院化学研究所 利用酚醛树脂对锂离子电池电极材料进行原位可控包覆的方法
CN105226281A (zh) * 2015-10-20 2016-01-06 复旦大学 锂离子电池用的硅酸钛锂负极材料及制备方法和应用
CN113921783A (zh) * 2021-09-27 2022-01-11 天津市捷威动力工业有限公司 一种长循环高倍率硅碳负极材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102593444A (zh) * 2012-01-17 2012-07-18 东莞市迈科科技有限公司 一种碳包覆钛酸锂的制备方法及其产物
CN103985876A (zh) * 2014-05-15 2014-08-13 中国科学院化学研究所 利用酚醛树脂对锂离子电池电极材料进行原位可控包覆的方法
CN105226281A (zh) * 2015-10-20 2016-01-06 复旦大学 锂离子电池用的硅酸钛锂负极材料及制备方法和应用
CN113921783A (zh) * 2021-09-27 2022-01-11 天津市捷威动力工业有限公司 一种长循环高倍率硅碳负极材料及其制备方法

Also Published As

Publication number Publication date
CN114512651B (zh) 2024-06-21

Similar Documents

Publication Publication Date Title
CN108899507B (zh) 一种具有核壳结构的双层碳包覆金属硫化物复合电极材料的制备方法
CN111180714B (zh) 一种碳/二氧化钼/硅/碳复合材料、包含其的电池负极及锂离子电池
CN109817949B (zh) 硅或其氧化物@二氧化钛@碳核壳结构复合颗粒及制备
CN112670461B (zh) 一种天然石墨炭包覆负极材料及其制备方法、锂离子电池
CN107464938B (zh) 一种具有核壳结构的碳化钼/碳复合材料及其制备方法和在锂空气电池中的应用
CN110429282B (zh) 一种锂离子电池用新型纳米碳球负极材料
CN111211273A (zh) 氮化铁纳米颗粒原位生长在还原氧化石墨烯上作为修饰隔膜材料的锂硫电池及其制备方法
US20230369589A1 (en) Silicon-based negative electrode material containing silicate skeleton, negative electrode plate, and lithium battery
CN112110448A (zh) 一种氮掺杂碳与纳米硅复合负极材料及其制备方法
CN116683017A (zh) 一种高能量密度的无钠负极钠电池
CN113066988B (zh) 一种负极极片及其制备方法和用途
CN114497475A (zh) 一种锂离子电池用含锌的氮掺杂多孔碳包覆锌基负极材料
CN116826060B (zh) 复合补钠材料及制备方法、正极极片、钠电池、用电设备
CN113690420A (zh) 一种氮硫掺杂硅碳复合材料及其制备方法和应用
CN113410459A (zh) 一种内嵌MoSx纳米片的三维有序大孔类石墨烯炭材料、制备与应用
CN115626637B (zh) 一种碳/石墨烯/钛酸锂复合负极材料的制备方法
JP2013069567A (ja) 電極活物質及びその製造方法並びにリチウムイオン電池
CN114373933B (zh) 一种固态电池正极片及其制备方法与固态电池
CN114512651B (zh) 一种硅酸钛锂颗粒原位碳包覆方法及复合产物
CN112670458B (zh) 一种硅碳材料的制备方法及其应用
KR20220105418A (ko) 실리콘/탄소나노튜브/그래핀 복합체 제조방법 및 이를 이용한 이차전지 제조방법
CN114162814A (zh) 一种石墨的改性方法
Lang et al. Study on the electrochemical performance of lead-acid battery with micro/nanostructure tetrabasic lead sulfate prepared via sol-gel method
CN111490235A (zh) 基于转换反应的微米颗粒高容量锂离子电池负极材料及其制备方法和应用
CN115911306B (zh) 一种高能量密度石墨复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant