CN114512323A - 一种MnO-SiO2绝缘包覆的金属软磁粉芯制备方法 - Google Patents

一种MnO-SiO2绝缘包覆的金属软磁粉芯制备方法 Download PDF

Info

Publication number
CN114512323A
CN114512323A CN202210056647.0A CN202210056647A CN114512323A CN 114512323 A CN114512323 A CN 114512323A CN 202210056647 A CN202210056647 A CN 202210056647A CN 114512323 A CN114512323 A CN 114512323A
Authority
CN
China
Prior art keywords
mno
magnetic powder
sio
soft magnetic
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210056647.0A
Other languages
English (en)
Inventor
关婉婉
胡锋
李明玲
刘国安
苏海林
张艳
万静龙
张德光
王玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HEFEI ECRIEE-TAMURA ELECTRIC CO LTD
Original Assignee
HEFEI ECRIEE-TAMURA ELECTRIC CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HEFEI ECRIEE-TAMURA ELECTRIC CO LTD filed Critical HEFEI ECRIEE-TAMURA ELECTRIC CO LTD
Priority to CN202210056647.0A priority Critical patent/CN114512323A/zh
Publication of CN114512323A publication Critical patent/CN114512323A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F2027/348Preventing eddy currents

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明适用于金属软磁粉芯领域,提供了一种MnO‑SiO2绝缘包覆的金属软磁粉芯制备方法,所述方法包括以下步骤:向MnO2粉末中加入硅烷偶联剂,对MnO2粉末进行改性,使其富羟基化;向所得改性后的MnO2混合液中加入金属磁粉及乙醇,搅拌后干燥,得到MnO2绝缘包覆的金属磁粉;将所得MnO2绝缘包覆的金属磁粉过筛,进行筛分造粒,加压制成生坯;将所得生坯进行升温退火,得到MnO‑SiO2绝缘包覆的金属软磁粉芯成品。通过高温退火使MnO2包覆层转变为MnO‑SiO2包覆层,金属磁粉中的Si与MnO2原位反应生成的MnO‑SiO2包覆绝缘层比较均匀、致密,MnO‑SiO2包覆层耐高温,不易分解脱落,有效解决了磷酸钝化层高温下易分解的问题。

Description

一种MnO-SiO2绝缘包覆的金属软磁粉芯制备方法
技术领域
本发明属于金属软磁粉芯领域,特别涉及一种MnO-SiO2绝缘包覆的金属软磁粉芯制备方法。
背景技术
金属软磁粉芯由于具有高的饱和磁感应强度、良好的频率稳定性、优异的直流偏置性能以及低的涡流损耗,被作为开关电源中重要的功能材料,广泛应用于通讯电源、电动汽车、逆变器、变频空调等领域。
制备金属软磁粉芯主要通过对金属磁粉进行绝缘包覆来增大颗粒间的退磁场及降低涡流损耗,提高其抗饱和能力,从而提高其应用频率范围。因此高电阻率、耐高温、均匀的绝缘包覆层成为制备高性能金属软磁粉芯的关键。
目前,金属软磁粉芯的包覆方式主要分为有机包覆和无机包覆,有机包覆方式包覆层较为均匀但存在易老化、不耐高温等缺点;无机包覆方式可分为磷酸钝化和氧化物包覆方式两大类,磷酸钝化层在600℃左右会发生分解,存在同有机包覆方式相似的问题,氧化物包覆方式由于包覆层具有高电阻率、耐高温等优点成为目前金属软磁粉芯包覆方式的优选,但氧化物包覆方式仍存在包覆不均匀、包覆层易脱落等问题。
发明内容
针对上述问题,一方面,本发明公开了一种MnO-SiO2绝缘包覆的金属软磁粉芯制备方法,所述方法包括以下步骤:
向MnO2粉末中加入硅烷偶联剂和H2O的混合液,对MnO2粉末进行改性,使其富羟基化;
向所得改性后的MnO2混合液中加入金属磁粉及乙醇,搅拌后干燥,得到MnO2绝缘包覆的金属磁粉;
将所得MnO2绝缘包覆的金属磁粉过筛,进行筛分造粒,加压制成生坯;
将所得生坯进行升温退火,得到MnO-SiO2绝缘包覆的金属软磁粉芯成品。
进一步地,在所述向MnO2粉末中加入硅烷偶联剂之后,对硅烷偶联剂进行超声分散。
进一步地,所述硅烷偶联剂为KH550。
进一步地,所述向MnO2粉末中加入硅烷偶联剂时,所述MnO2、硅烷偶联剂与H2O的质量比为1:(0.009~0.011):(0.4~0.6)。
进一步地,所述干燥温度为120℃,并保温1h干燥。
进一步地,所述金属磁粉为铁硅铝粉、铁硅粉中的任意一种。
进一步地,所述向所得改性后的MnO2混合液中加入金属磁粉及乙醇时,各组份之间的组份比分别为:金属磁粉100份、MnO2混合液6~16份、乙醇2~5份。
进一步地,所述进行筛分造粒,加压制成生坯具体包括:
称取筛分造粒后的金属磁粉;
向金属磁粉中加入树脂粘结剂和硬脂酸锌,并混合均匀;
用油压机加压压制,制成生坯。
进一步地,所述MnO2绝缘包覆的金属磁粉与树脂粘结剂、硬脂酸锌的质量比为100:(0.25~0.35):(0.35~0.45)。
进一步地,所述油压机采用双向浮动压制方式进行压制。
进一步地,所述压制时的压强为1600-1900MPa,所述生坯密度为5.5~7.0g/cm3
所述将所得生坯进行升温退火,得到MnO-SiO2绝缘包覆的金属软磁粉芯成品的步骤具体包括:
将生坯置于退火炉中,在氮气保护下将退火炉从室温以5℃/min升温速率升温至200℃,保温1h;
随后以5℃/min升温速率升温至900℃,保温3h;
然后随炉冷却至室温,得到MnO-SiO2绝缘包覆的金属软磁粉芯成品。
与现有技术相比,本发明具有以下有益效果:
(1)本发明通过高温退火使MnO2包覆层转变为MnO-SiO2包覆层,MnO-SiO2包覆绝缘层较MnO2绝缘层具有更高的电阻率,有效提高了金属软磁粉芯的抗饱和能力,降低其涡流损耗,提高其应用频率范围,符合磁性元件高频化的趋势。
(2)相对于传统的氧化物包覆方式,通过金属磁粉中的Si与MnO2原位反应生成的MnO-SiO2包覆绝缘层比较均匀、致密;而相对于同样进行原位包覆的磷酸钝化方式,MnO-SiO2包覆层耐高温,不易分解脱落,有效解决了磷酸钝化层高温下易分解的问题。
(3)本发明制备方法中,未加入有机包覆剂且在高温退火时完全分解了树脂粘结剂和硬脂酸锌,并驰豫了压制内应力,最终实现了全无机绝缘层,有效避免了有机绝缘层的老化问题,且MnO2添加量影响MnO-SiO2包覆层厚度,因此通过控制MnO2添加量可以调节软磁粉芯的直流偏置性能和损耗。
(4)本发明制备方法生产成本低、工艺流程简单。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所指出的结构来实现和获得。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是实施例1中制备的铁硅铝软磁粉芯的断面微观形貌图;
图2是实施例2中制备的铁硅铝软磁粉芯的断面微观形貌图;
图3是实施例3中制备的铁硅软磁粉芯的断面微观形貌图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地说明,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
(1)将12gMnO2加入0.12gKH550及6gH2O的混合液中,并机械搅拌1h,得到改性后的MnO2混合液;
(2)向步骤(1)中的混合液中加入300g铁硅铝磁粉及6g乙醇,机械搅拌1h,然后在120℃保温1h进行干燥,得到MnO2绝缘包覆后的铁硅铝粉末;
(3)将步骤(2)所得MnO2绝缘包覆后的铁硅铝粉末过200目筛网,进行筛分造粒,然后称取200g造粒后粉末,并加入0.6g树脂粘结剂和0.8g硬脂酸锌混合均匀,然后用油压机在1860MPa的压强下进行双向浮动压制,制成密度为5.73g/cm3的生坯;
(4)退火处理:将步骤(3)得到的生坯置于退火炉中,并通入氮气,将炉内空气排干净,在氮气的保护下,按照从室温以5℃/min升温速率升温至200℃保温1h,然后以5℃/min升温速率升温至900℃保温3h,之后随炉冷却至室温的热处理工艺进行退火处理,制成铁硅铝软磁粉芯成品。
本实施例制备的铁硅铝软磁粉芯的断面微观形貌如图1所示。可见,粉芯内部结构致密,铁硅铝磁粉间隙均匀包覆有绝缘材料。
本实施例制备的铁硅铝软磁粉芯经绕线测试后得到的磁性能指标如下:
(1)测试频率100kHz及测试电压1V条件下,磁导率μ=28.58;
(2)直流偏置性能:测试频率100kHz,直流偏置磁场100Oe下,磁导率百分比%μ=87.08%;测试频率100kHz,直流偏置磁场200Oe时,磁导率百分比%μ=66.03%;
(3)损耗:测试频率100kHz,测试磁通密度500Gs时,单位体积损耗Pcv=142.07mW/cm3
实施例2
(1)将24gMnO2加入0.24gKH550及12gH2O的混合液中,并机械搅拌1h,得到改性后的MnO2混合液;
(2)向步骤(1)中的混合液中加入300g铁硅铝磁粉及12g乙醇,机械搅拌1h,然后在120℃保温1h进行干燥,得到MnO2绝缘包覆后的铁硅铝粉末;
(3)将步骤(2)所得MnO2绝缘包覆后的铁硅铝粉末过200目筛网,进行筛分造粒,然后称取200g造粒后粉末,并加入0.6g树脂粘结剂和0.8g硬脂酸锌混合均匀,然后用油压机在1860MPa的压强下进行双向浮动压制,制成密度为5.58g/cm3的生坯;
(4)退火处理:将步骤(3)得到的生坯置于退火炉中,并通入氮气,将炉内空气排干净,在氮气的保护下,按照从室温以5℃/min升温速率升温至200℃保温1h,然后以5℃/min升温速率升温至900℃保温3h,之后随炉冷却至室温的热处理工艺进行退火处理,制成铁硅铝软磁粉芯成品。
本实施例制备的铁硅铝软磁粉芯的断面微观形貌如图1所示。可见,粉芯内部结构致密,铁硅铝磁粉间隙均匀包覆有绝缘材料。
本实施例制备的铁硅铝软磁粉芯经绕线测试后得到的磁性能指标如下:
(1)测试频率100kHz及测试电压1V条件下,磁导率μ=22.04;
(2)直流偏置性能:测试频率100kHz,直流偏置磁场100Oe下,磁导率百分比%μ=90.1%;测试频率100kHz,直流偏置磁场200Oe时,磁导率百分比%μ=73.08%;
(3)损耗:测试频率100kHz,测试磁通密度500Gs时,单位体积损耗Pcv=251.04mW/cm3
实施例3
(1)将30gMnO2加入0.3gKH550及15gH2O的混合液中,并机械搅拌1h,得到改性后的MnO2混合液;
(2)向步骤(1)中的混合液中加入300g铁硅磁粉及15g乙醇,机械搅拌1h,然后在120℃保温1h进行干燥,得到MnO2绝缘包覆后的铁硅粉末;
(3)将步骤(2)所得MnO2绝缘包覆后的铁硅铝粉末过200目筛网,进行筛分造粒,然后称取200g造粒后粉末,并加入0.6g树脂粘结剂和0.8g硬脂酸锌混合均匀,然后用油压机在1860MPa的压强下进行双向浮动压制,制成密度为6.08g/cm3的生坯;
(4)退火处理:将步骤(3)得到的生坯置于退火炉中,并通入氮气,将炉内空气排干净,在氮气的保护下,按照从室温以5℃/min升温速率升温至200℃保温1h,然后以5℃/min升温速率升温至900℃保温3h,之后随炉冷却至室温的热处理工艺进行退火处理,制成铁硅软磁粉芯成品。
本实施例制备的铁硅软磁粉芯的断面微观形貌如图1所示。可见,粉芯内部结构致密,铁硅磁粉间隙均匀包覆有绝缘材料。
本实施例制备的铁硅软磁粉芯经绕线测试后得到的磁性能指标如下:
(1)测试频率100kHz及测试电压1V条件下,磁导率μ=19.07;
(2)直流偏置性能:测试频率100kHz,直流偏置磁场100Oe下,磁导率百分比%μ=92.2%;测试频率100kHz,直流偏置磁场200Oe时,磁导率百分比%μ=83.69%;
(3)损耗:测试频率100kHz,测试磁通密度500Gs时,单位体积损耗Pcv=511.84mW/cm3
通过上述制备方法得到MnO-SiO2绝缘包覆的金属软磁粉芯,具备以下优势:
(1)本发明通过高温退火使MnO2包覆层转变为MnO-SiO2包覆层,MnO-SiO2包覆绝缘层较MnO2绝缘层具有更高的电阻率,有效提高了金属软磁粉芯的抗饱和能力,降低其涡流损耗,提高其应用频率范围,符合磁性元件高频化的趋势。
(2)相对于传统的氧化物包覆方式,通过金属磁粉中的Si与MnO2原位反应生成的MnO-SiO2包覆绝缘层比较均匀、致密;而相对于同样进行原位包覆的磷酸钝化方式,MnO-SiO2包覆层耐高温,不易分解脱落,有效解决了磷酸钝化层高温下易分解的问题。
(3)本发明制备方法中,未加入有机包覆剂且在高温退火时完全分解了树脂粘结剂和硬脂酸锌,并驰豫了压制内应力,最终实现了全无机绝缘层,有效避免了有机绝缘层的老化问题,且MnO2添加量影响MnO-SiO2包覆层厚度,因此通过控制MnO2添加量可以调节软磁粉芯的直流偏置性能和损耗。
(4)本发明制备方法生产成本低、工艺流程简单。
尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (12)

1.一种MnO-SiO2绝缘包覆的金属软磁粉芯制备方法,其特征在于,所述方法包括以下步骤:
向MnO2粉末中加入硅烷偶联剂和H2O的混合液,对MnO2粉末进行改性,使其富羟基化;
向所得改性后的MnO2混合液中加入金属磁粉及乙醇,搅拌后干燥,得到MnO2绝缘包覆的金属磁粉;
将所得MnO2绝缘包覆的金属磁粉过筛,进行筛分造粒,加压制成生坯;
将所得生坯进行升温退火,得到MnO-SiO2绝缘包覆的金属软磁粉芯成品。
2.根据权利要求1所述的MnO-SiO2绝缘包覆的金属软磁粉芯制备方法,其特征在于,在所述向MnO2粉末中加入硅烷偶联剂之后,对硅烷偶联剂进行超声分散。
3.根据权利要求1所述的MnO-SiO2绝缘包覆的金属软磁粉芯制备方法,其特征在于,所述硅烷偶联剂为KH550。
4.根据权利要求1所述的MnO-SiO2绝缘包覆的金属软磁粉芯制备方法,其特征在于,所述向MnO2粉末中加入硅烷偶联剂时,所述MnO2、硅烷偶联剂与H2O的质量比为1:0.009~0.011:0.4~0.6。
5.根据权利要求1所述的MnO-SiO2绝缘包覆的金属软磁粉芯制备方法,其特征在于,所述干燥温度为120℃,并保温1h干燥。
6.根据权利要求1所述的MnO-SiO2绝缘包覆的金属软磁粉芯制备方法,其特征在于,所述金属磁粉为铁硅铝粉、铁硅粉中的任意一种。
7.根据权利要求1所述的MnO-SiO2绝缘包覆的金属软磁粉芯制备方法,其特征在于,所述向所得改性后的MnO2混合液中加入金属磁粉及乙醇时,各组份之间的组份比分别为:金属磁粉100份、MnO2混合液6~16份、乙醇2~5份。
8.根据权利要求1所述的MnO-SiO2绝缘包覆的金属软磁粉芯制备方法,其特征在于,所述进行筛分造粒,加压制成生坯具体包括:
称取筛分造粒后的金属磁粉;
向金属磁粉中加入树脂粘结剂和硬脂酸锌,并混合均匀;
用油压机加压压制,制成生坯。
9.根据权利要求8所述的MnO-SiO2绝缘包覆的金属软磁粉芯制备方法,其特征在于,所述MnO2绝缘包覆的金属磁粉与树脂粘结剂、硬脂酸锌的质量比为100:0.25~0.35:0.35~0.45。
10.根据权利要求8所述的MnO-SiO2绝缘包覆的金属软磁粉芯制备方法,其特征在于,所述油压机采用双向浮动压制方式进行压制。
11.根据权利要求8所述的MnO-SiO2绝缘包覆的金属软磁粉芯制备方法,其特征在于,所述压制时的压强为1600-1900MPa,所述生坯密度为5.5~7.0g/cm3
12.根据权利要求1-11任一所述的MnO-SiO2绝缘包覆的金属软磁粉芯制备方法,其特征在于,所述将所得生坯进行升温退火,得到MnO-SiO2绝缘包覆的金属软磁粉芯成品的步骤具体包括:
将生坯置于退火炉中,在氮气保护下将退火炉从室温以5℃/min升温速率升温至200℃,保温1h;
随后以5℃/min升温速率升温至900℃,保温3h;
然后随炉冷却至室温,得到MnO-SiO2绝缘包覆的金属软磁粉芯成品。
CN202210056647.0A 2022-01-18 2022-01-18 一种MnO-SiO2绝缘包覆的金属软磁粉芯制备方法 Pending CN114512323A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210056647.0A CN114512323A (zh) 2022-01-18 2022-01-18 一种MnO-SiO2绝缘包覆的金属软磁粉芯制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210056647.0A CN114512323A (zh) 2022-01-18 2022-01-18 一种MnO-SiO2绝缘包覆的金属软磁粉芯制备方法

Publications (1)

Publication Number Publication Date
CN114512323A true CN114512323A (zh) 2022-05-17

Family

ID=81549804

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210056647.0A Pending CN114512323A (zh) 2022-01-18 2022-01-18 一种MnO-SiO2绝缘包覆的金属软磁粉芯制备方法

Country Status (1)

Country Link
CN (1) CN114512323A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115312316A (zh) * 2022-08-23 2022-11-08 湖南大学 一种高频高功率用低损耗软磁复合材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115312316A (zh) * 2022-08-23 2022-11-08 湖南大学 一种高频高功率用低损耗软磁复合材料及其制备方法

Similar Documents

Publication Publication Date Title
CN102623121B (zh) 一种铁硅材料及μ90铁硅磁粉芯的制造方法
CN106583709B (zh) 一种具备核壳结构的铁硅合金复合粉末及其制备方法
WO2014116004A1 (ko) Fe계 비정질 금속분말의 제조방법 및 이를 이용한 비정질 연자성 코어의 제조방법
WO2019029146A1 (zh) 一种耐高温热处理的金属软磁粉芯的制备方法
CN110246679B (zh) 一种基于有机/无机复合绝缘工艺的金属软磁粉芯制备方法
EP0179557B1 (en) Improvements in or relating to magnetic powder compacts
CN102744403A (zh) 一种纳米晶磁粉芯的制备方法
CN111029126B (zh) 一种铁基金属软磁复合材料全无机耐高温绝缘粘结方法
CN107275032A (zh) 一种铁硅金属软磁粉芯的制备方法
CN109103010B (zh) 一种提高磁粉芯绝缘层致密度的材料及其方法
WO2023165096A1 (zh) 一种一体成型电感用低损耗粉末及其制备方法
CN114512323A (zh) 一种MnO-SiO2绝缘包覆的金属软磁粉芯制备方法
CN102303115B (zh) 一种铁硅材料及μ26铁硅磁粉芯的制造方法
CN113223844B (zh) 一种粉末包覆方法
CN117612818A (zh) 一种模压电感用纳米晶混合磁粉芯及其制备方法
CN112530656A (zh) 一种低损耗铁硅磁粉芯的制备方法
CN110783091B (zh) 一种纳米晶FeSiBCr磁粉芯的制备方法
JP2004319652A (ja) 磁心の製造方法およびその磁心
CN113451039B (zh) 一种FeSi基水雾化铁硅铬软磁粉芯及其制备方法
CN113410020B (zh) 一种FeSiCr磁粉芯及其制备方法
CN104036903A (zh) 一种铁硅镍磁粉芯的制备方法
WO2019029145A1 (zh) 一种硅树脂
CN110957096A (zh) 一种铁硅铝磁芯及其制备工艺
CN110047638B (zh) 一种包覆氧化锌绝缘层的铁基软磁复合材料及其制备方法
CN113658769A (zh) 一种高频高Q值FeSiAl@MnZn铁氧体软磁复合磁粉芯及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination