CN114507849A - 一种兼顾稳定性与拉曼强度的表面增强拉曼基底及其制备方法 - Google Patents

一种兼顾稳定性与拉曼强度的表面增强拉曼基底及其制备方法 Download PDF

Info

Publication number
CN114507849A
CN114507849A CN202210141525.1A CN202210141525A CN114507849A CN 114507849 A CN114507849 A CN 114507849A CN 202210141525 A CN202210141525 A CN 202210141525A CN 114507849 A CN114507849 A CN 114507849A
Authority
CN
China
Prior art keywords
substrate
silver
raman
metal
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210141525.1A
Other languages
English (en)
Other versions
CN114507849B (zh
Inventor
曹燕强
王鑫鑫
钱继松
蒋立勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN202210141525.1A priority Critical patent/CN114507849B/zh
Publication of CN114507849A publication Critical patent/CN114507849A/zh
Application granted granted Critical
Publication of CN114507849B publication Critical patent/CN114507849B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Abstract

本发明公开了一种兼顾高稳定性和高拉曼强度的表面增强拉曼基底及其制备方法,属于分子识别和纳米制备领域,针对常规技术中稳定性与拉曼信号强度无法同时满足的难点,提出了一种创新的兼顾稳定性与拉曼强度的表面增强拉曼基底及制备方法。本发明使用具有纳米间隙的银枝晶结构,使用原子层沉积在金属纳米间隙之间引入均匀的纳米级厚度的氧化物,精确控制厚度,在完全包裹银的前提下,不填满纳米间隙,以此制备超薄氧化物包裹的银纳米枝晶结构。此结构中的保护层不仅可以稳定金属银基底,还可以引入额外的化学增强效果,同时提高了SERS基底的稳定性与拉曼信号强度,使得超薄氧化物包裹的银纳米枝晶结构同时具备高稳定性与高拉曼信号强度。

Description

一种兼顾稳定性与拉曼强度的表面增强拉曼基底及其制备 方法
技术领域
本发明属于分子识别和纳米制备领域,尤其涉及一种兼顾高稳定性和高拉曼强度的表面增强拉曼基底及其制备方法。
背景技术
拉曼光谱是一种研究分子振动能级的光谱技术,但普通拉曼光谱强度较弱,表面增强拉曼散射(SERS)光谱技术可实现拉曼信号几个数量级的增强,在分子识别与痕量分析技术领域具有巨大的应用前景。SERS增强机制主要可分为物理增强和化学增强两种。化学增强是探测分子与基底在强光作用下发生电荷转移,这导致的SERS增强因子大约在10-100量级。物理增强是基于金银等贵金属在可见光范围内激发表面等离激元共振,产生增强的局域电场,该机制引起的增强因子可达106~107,甚至更高,是SERS的主要增强的机制。但是金属银化学稳定性较差,在空气中易被氧化、硫化,不耐高温,这限制了银基SERS衬底的实际应用。原子层沉积技术(ALD)是通过将气相前驱体脉冲交替地通入反应器并在沉积基体表面上发生化学吸附反应而形成薄膜的一种方法, ALD具有优异的三维贴合性和大面积的均匀性和精确、简单的膜厚控制(仅与反应循环次数有关),因此原子层沉积被广泛用来提升金属银基衬底的稳定性。但是,金属表面的局域电场强度随距离增大而指数减小,因此,现有技术中包裹保护层都是以牺牲拉曼信号强度为代价来提高金属银基底的稳定性。
发明内容
本发明提供了一种兼顾高稳定性和高拉曼强度的表面增强拉曼基底及其制备方法,使用具有纳米间隙的银枝晶结构,使用原子层沉积在金属纳米间隙之间引入均匀的纳米级厚度的氧化物,精确控制厚度,在完全包裹银的前提下,不填满纳米间隙,以此制备超薄氧化物包裹的银纳米枝晶结构,此结构中的保护层不仅可以稳定金属银基底,还可以引入额外的化学增强效果,同时提高了SERS基底的稳定性与拉曼信号强度,使得超薄氧化物包裹的银纳米枝晶结构同时具备高稳定性与高拉曼信号强度。
为达到以上目的,本发明采用以下方案:
一种兼顾高稳定性和高拉曼强度的表面增强拉曼基底,所述表面增强拉曼基底为导电基底上用电化学沉积的方法制备的金属纳米枝晶,在金属纳米间隙之间使用原子层沉积生长厚度可控的氧化物层,获得超薄氧化物包裹的金属枝晶结构。
以上所述结构中,所述金属纳米枝晶为银纳米枝晶,所述氧化物层厚度为1-10nm。
一种兼顾高稳定性和高拉曼强度的表面增强拉曼基底的制备方法,包括以下步骤:
(1)衬底的准备:可选用ITO、FTO、铜箔等导电材料作为衬底,使用有机溶剂和去离子水超声清洗干净;
(2)金属枝晶的沉积:使用电化学沉积的方法,电流密度为1-30 mA/cm2, 沉积时间为30-300秒,在上述得到的衬底上沉积获得金属银枝晶,用去离子水冲洗后自然晾干;
(3)ALD沉积氧化物薄膜:将上述沉积后的金属枝晶基底转移到ALD反应腔中,通过循环次数精确控制厚度,沉积1-10 nm的氧化物薄膜(如氧化锌、氧化钛等),形成氧化物薄膜包裹的银枝晶结构;
所述ALD沉积氧化锌参数为:
反应室温度:室温 ~100 oC;
反应源:沉积氧化锌采用二乙基锌和水,源温均为室温;
脉冲和清洗时间:金属源和水源的脉冲都为1~5 s;每次金属源脉冲之后,都紧接着用高纯氮气清洗4~10 s,冲掉反应副产物和残留的反应源。
所述ALD沉积氧化钛参数为:
反应室温度:室温 ~100 oC;
反应源:沉积氧化锌采用四氯化钛和水,四氯化钛和水均为室温;
脉冲和清洗时间:金属源和水源的脉冲都为1~5 s;每次金属源脉冲之后,都紧接着用高纯氮气清洗4~10 s,冲掉反应副产物和残留的反应源。
有益效果:本发明提供了一种兼顾高稳定性和高拉曼强度的表面增强拉曼基底及其制备方法,利用原子层沉积技术优异的三维共形性、精确控制厚度的优势,在银金属枝晶的表面均匀包裹一层超薄氧化物薄,通过循环次数精确控制厚度,在完全包裹银枝晶的前提下,不填满银枝晶中的间隙。由于银枝晶中的间隙依然存在,并且结合氧化物的化学增强效果,使得银枝晶的表面增强拉曼效应得到提升;表面的氧化层可以隔绝外部环境,防止金属银的氧化,提升基底的稳定;氧化层保护层还可以提高银枝晶的热稳定性,在200 ℃下烘烤也保持结构性能的稳定;优异的稳定性使得该SERS基底可以循环使用,使用200℃烘烤即可简单分解去除探测分子。
附图说明
图1为本发明实施例中银纳米枝晶的扫描电镜照片;
图2为本发明实施例中包裹10循环氧化锌的银纳米枝晶的X射线光电子能谱;
图3为本发明实施例中不同循环氧化锌包裹的银纳米枝晶用于探测亚甲基蓝分子(Methylene blue, MB)的拉曼图谱;
图4为本发明实施例中银纳米枝晶包裹10循环氧化锌前后的热稳定对比;
图5为本发明实施例中(a)未包裹和(b)10循环氧化锌包裹的银纳米枝晶在200 oC烘烤30 分钟后的SEM照片;
图6为本发明实施例中氧化锌包裹的银纳米枝晶循环使用的效果。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明:
实施例1
一种兼顾高稳定性和高拉曼强度的表面增强拉曼基底的制备方法,包括以下步骤:
(1)将ITO玻璃用丙酮、异丙醇、乙醇和去离子水分别超声清洗5分钟;
(2)以0.01M硝酸银和0.2M柠檬酸为电解液,电流密度为2mA/cm2,沉积时间为180s,在上述得到的衬底上沉积获得金属枝晶,用去离子水冲洗后自然晾干,得到如图1所示的银枝晶的扫描电镜照片;
(3)将上述银枝晶衬底转移到ALD反应腔中,沉积5-50 循环(0.85-8.5 nm)的氧化锌薄膜,形成氧化锌包裹的银枝晶结构(银金属枝晶@氧化锌),ALD沉积氧化锌的参数为:反应室温度:80oC,反应源:沉积氧化锌采用二乙基锌和H2O,二乙基锌和H2O均为室温,脉冲和清洗时间:金属源和水源的脉冲都为2 s;每次金属源脉冲之后,都紧接着用高纯氮气清洗8s,冲掉反应副产物和残留的反应源;图2为10循环氧化锌包裹的银金属枝晶的X射线光电子能谱,在表面可以同时探测到金属银和氧化锌的成分信号,证实银表面包裹上了一层超薄氧化锌;
(4)将上述银金属枝晶@氧化锌结构在浓度为10-4M的MB溶液中浸泡3小时,用去离子水冲洗后用高纯氮气吹干;
(5)使用拉曼测试来表征MB分子的信号,如图3所示,单纯的银枝晶本身具有较强的拉曼信号,进行氧化锌包裹后,厚度较小时(5-15循环),拉曼信号略有提升,10循环时拉曼信号最强,这是由于氧化锌具有化学增强的效果,银枝晶中纳米间隙的物理增强结合氧化锌的化学增强效果,使得拉曼信号强度上升。但随着包裹层厚度的增加,使得拉曼信号急剧减小,这可能是过厚的氧化锌填满了银枝晶中的间隙,使得物理增强效果大大减小,甚至消失。如图3所示,50循环氧化锌包裹的银枝晶中拉曼信号已经非常微弱。
实施例2
一种兼顾高稳定性和高拉曼强度的表面增强拉曼基底的制备方法,包括以下步骤:
(1)将ITO玻璃用丙酮、异丙醇、乙醇和去离子水分别超声清洗5分钟;
(2)以0.01M硝酸银和0.2M柠檬酸为电解液,电流密度为2mA/cm2,沉积时间为180s,用去离子水冲洗后自然晾干;
(3)将上述银枝晶衬底转移到ALD反应腔中,沉积10 循环(~1.7 nm)的氧化锌薄膜,形成氧化锌包裹的银枝晶结构,ALD沉积氧化锌的参数为:
反应室温度:80oC;
反应源:沉积氧化锌采用二乙基锌和H2O,二乙基锌和H2O均为室温;
脉冲和清洗时间:金属源和水源的脉冲都为2 s;每次金属源脉冲之后,都紧接着用高纯氮气清洗8 s,冲掉反应副产物和残留的反应源;
(4)将上述银金属枝晶和银金属枝晶@氧化锌结构在空气氛围中,分别在100、150、200、250 ℃中烘烤30分钟;
(5)将烘烤后的在浓度银金属枝晶和银金属枝晶@氧化锌结构为10-4M的MB溶液中浸泡3小时,用去离子水冲洗后用高纯氮气吹干;
(6)使用拉曼测试来表征MB分子的信号,如图4所示,可见单纯的银枝晶热稳定性较差,150℃以上的温度烘烤后拉曼信号急剧下降,进行ZnO包裹后,使得银枝晶的热稳定性大大提升,在200 ℃的高温下烘烤后,性能没有出现衰减。通过扫描电镜可以发现,如图5所示,单纯的银枝晶经过烘烤后枝晶结构已不复存在,而10循环氧化锌包裹的银枝晶结构非常稳定。
实施例3
一种兼顾高稳定性和高拉曼强度的表面增强拉曼基底的制备方法,包括以下步骤:
(1)将ITO玻璃用丙酮、异丙醇、乙醇和去离子水分别超声清洗5分钟;
(2)以0.01M硝酸银和0.2M柠檬酸为电解液,电流密度为2mA/cm2,沉积时间为180s,用去离子水冲洗后自然晾干;
(3)将上述银枝晶衬底转移到ALD反应腔中,沉积20 循环(~3.4 nm)的氧化锌薄膜,形成氧化锌包裹的银枝晶结构,ALD沉积氧化锌的参数为:
反应室温度:80oC;
反应源:沉积氧化锌采用二乙基锌和H2O,二乙基锌和H2O均为室温;
脉冲和清洗时间:金属源和水源的脉冲都为2 s;每次金属源脉冲之后,都紧接着用高纯氮气清洗8 s,冲掉反应副产物和残留的反应源;
(4)将银金属枝晶@氧化锌结构为10-4 M的MB溶液中浸泡3小时,用去离子水冲洗后用高纯氮气吹干;
(5)使用拉曼测试来表征MB分子的信号,随后将负载有MB分子的银金属枝晶@氧化锌在空气中烘烤30分钟,再次进行拉曼表征,由于MB分子在高温下分解,可以发现此时无MB分子的拉曼信号,如图6所示;
(6)重复步骤4和5,进行负载MB分子、拉曼表征、高温烘烤与拉曼表征,结果如图6所示,表明银金属枝晶@氧化锌可用于重复使用,经过6次使用后性能没有衰减。
实施例4
一种兼顾高稳定性和高拉曼强度的表面增强拉曼基底的制备方法,包括以下步骤:
(1)将FTO玻璃用丙酮、异丙醇、乙醇和去离子水分别超声清洗8分钟;
(2)以0.02M硝酸银和0.1M柠檬酸为电解液,电流密度为1 mA/cm2,沉积时间为300s,用去离子水冲洗后自然晾干;
(3)将上述银枝晶衬底转移到ALD反应腔中,沉积2 nm的氧化钛薄膜,形成氧化钛包裹的银枝晶结构,ALD沉积氧化钛的参数为:
反应室温度:90oC;
反应源:沉积氧化钛采用四氯化钛和H2O,四氯化钛和H2O均为室温;
脉冲和清洗时间:金属源和水源的脉冲都为3 s;每次金属源脉冲之后,都紧接着用高纯氮气清洗8 s,冲掉反应副产物和残留的反应源。
(4)将银金属枝晶@氧化钛结构为10-6 M的罗丹明B溶液中浸泡3小时,用去离子水冲洗后用高纯氮气吹干;
(5)使用拉曼测试来表征罗丹明B分子的信号。
实施例5
一种兼顾高稳定性和高拉曼强度的表面增强拉曼基底的制备方法,包括以下步骤:
(1)将铜箔用丙酮、异丙醇、乙醇和去离子水分别超声清洗10分钟;
(2)以0.03M硝酸银和0.1M柠檬酸为电解液,电流密度为20 mA/cm2,沉积时间为300 s,用去离子水冲洗后自然晾干。
(3)将上述银枝晶衬底转移到ALD反应腔中,沉积1 nm的氧化钛薄膜,形成氧化钛包裹的银枝晶结构,ALD沉积氧化钛的参数为:
反应室温度:60oC;
反应源:沉积氧化钛采用四氯化钛和H2O,四氯化钛和H2O均为室温;
脉冲和清洗时间:金属源和水源的脉冲都为5 s;每次金属源脉冲之后,都紧接着用高纯氮气清洗10 s,冲掉反应副产物和残留的反应源。
(4)将5微升10-6 M的甲基紫溶液滴在银金属枝晶@氧化钛结构上,在空气中自然晾干;使用拉曼测试来表征甲基紫分子的信号。
以上仅是本发明的优选实施例,将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是对本领域的普通技术人员来说,在不脱离本发明构思的前提下,做出的若干变形和改进都属于本发明的保护。

Claims (9)

1.一种兼顾高稳定性和高拉曼强度的表面增强拉曼基底,其特征在于,所述表面增强拉曼基底为导电基底上用电化学沉积的方法制备的具有纳米间隙的金属纳米枝晶,在金属纳米间隙之间使用原子层沉积生长厚度可控的氧化物层,获得超薄氧化物包裹的金属枝晶结构。
2.根据权利要求1所述的兼顾高稳定性和高拉曼强度的表面增强拉曼基底,其特征在于,所述金属纳米枝晶为银纳米枝晶。
3.根据权利要求1所述的兼顾高稳定性和高拉曼强度的表面增强拉曼基底,其特征在于,所述氧化物层厚度为1-10 nm。
4.一种兼顾高稳定性和高拉曼强度的表面增强拉曼基底的制备方法,其特征在于,包括以下步骤:
(1)衬底的准备:选用导电材料作为衬底,将选用的衬底清洗干净;
(2)金属枝晶的沉积:使用电化学沉积的方法,在上述得到的衬底上沉积获得金属枝晶,用去离子水冲洗后自然晾干;
(3)ALD沉积氧化物薄膜:将上述沉积后的金属枝晶基底转移到ALD反应腔中,通过循环次数精确控制厚度,沉积1-10 nm的氧化物薄膜,形成氧化物薄膜包裹的银枝晶结构。
5.根据权利要求4所述的兼顾高稳定性和高拉曼强度的表面增强拉曼基底的制备方法,其特征在于,步骤(2)中所述金属枝晶为银枝晶。
6.根据权利要求5所述的兼顾高稳定性和高拉曼强度的表面增强拉曼基底的制备方法,其特征在于,步骤(2)中电化学沉积的电流密度为1-30 mA/cm2,沉积时间为30-300秒。
7.根据权利要求4所述的兼顾高稳定性和高拉曼强度的表面增强拉曼基底的制备方法,其特征在于,步骤(3)中所述氧化物为氧化锌或氧化钛。
8.根据权利要求7所述的兼顾高稳定性和高拉曼强度的表面增强拉曼基底的制备方法,其特征在于,步骤(3)中ALD沉积氧化锌参数为:
反应室温度:室温 ~100℃;
反应源:沉积氧化锌采用二乙基锌和水,源温均为室温;
脉冲和清洗时间:金属源和水源的脉冲都为1~5 s;每次金属源脉冲之后,都紧接着用高纯氮气清洗4~10 s,冲掉反应副产物和残留的反应源。
9.根据权利要求7所述的兼顾高稳定性和高拉曼强度的表面增强拉曼基底的制备方法,其特征在于,步骤(3)中所述ALD沉积氧化钛参数为:
反应室温度:室温 ~100 oC;
反应源:沉积氧化锌采用四氯化钛和水,四氯化钛和水均为室温;
脉冲和清洗时间:金属源和水源的脉冲都为1~5 s;每次金属源脉冲之后,都紧接着用高纯氮气清洗4~10 s,冲掉反应副产物和残留的反应源。
CN202210141525.1A 2022-02-16 2022-02-16 一种兼顾稳定性与拉曼强度的表面增强拉曼基底及其制备方法 Active CN114507849B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210141525.1A CN114507849B (zh) 2022-02-16 2022-02-16 一种兼顾稳定性与拉曼强度的表面增强拉曼基底及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210141525.1A CN114507849B (zh) 2022-02-16 2022-02-16 一种兼顾稳定性与拉曼强度的表面增强拉曼基底及其制备方法

Publications (2)

Publication Number Publication Date
CN114507849A true CN114507849A (zh) 2022-05-17
CN114507849B CN114507849B (zh) 2024-04-26

Family

ID=81550781

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210141525.1A Active CN114507849B (zh) 2022-02-16 2022-02-16 一种兼顾稳定性与拉曼强度的表面增强拉曼基底及其制备方法

Country Status (1)

Country Link
CN (1) CN114507849B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102181891A (zh) * 2011-04-08 2011-09-14 温州大学 银纳米枝晶表面增强拉曼散射基底及其制备方法和用途
CN104181143A (zh) * 2014-08-08 2014-12-03 清华大学 一种高稳定性表面增强拉曼基片及其制备方法
CN104746049A (zh) * 2015-04-07 2015-07-01 南京大学 利用ald制备金属纳米间隙的表面增强拉曼散射基底的方法
CN104789939A (zh) * 2015-03-17 2015-07-22 清华大学 一种表面增强拉曼散射基底及其制备方法
KR20160025122A (ko) * 2014-08-26 2016-03-08 부산대학교 산학협력단 표면증강 라만산란 활성을 갖는 금 및 은이 코팅된 바이메탈 나노덴드라이트를 이용한 바이오센서 및 이의 제조방법
CN105973865A (zh) * 2016-01-29 2016-09-28 中国科学院合肥物质科学研究院 一种Au纳米树枝晶表面增强拉曼散射基底及其制备方法
KR101932195B1 (ko) * 2017-10-27 2018-12-24 한국과학기술원 표면강화 라만 분광용 기판의 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102181891A (zh) * 2011-04-08 2011-09-14 温州大学 银纳米枝晶表面增强拉曼散射基底及其制备方法和用途
CN104181143A (zh) * 2014-08-08 2014-12-03 清华大学 一种高稳定性表面增强拉曼基片及其制备方法
KR20160025122A (ko) * 2014-08-26 2016-03-08 부산대학교 산학협력단 표면증강 라만산란 활성을 갖는 금 및 은이 코팅된 바이메탈 나노덴드라이트를 이용한 바이오센서 및 이의 제조방법
CN104789939A (zh) * 2015-03-17 2015-07-22 清华大学 一种表面增强拉曼散射基底及其制备方法
CN104746049A (zh) * 2015-04-07 2015-07-01 南京大学 利用ald制备金属纳米间隙的表面增强拉曼散射基底的方法
CN105973865A (zh) * 2016-01-29 2016-09-28 中国科学院合肥物质科学研究院 一种Au纳米树枝晶表面增强拉曼散射基底及其制备方法
KR101932195B1 (ko) * 2017-10-27 2018-12-24 한국과학기술원 표면강화 라만 분광용 기판의 제조방법

Also Published As

Publication number Publication date
CN114507849B (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
Guan et al. In-situ anchoring Ag through organic polymer for configuring efficient plasmonic BiVO4 photoanode
Ganapathy et al. Improved performance of dye-sensitized solar cells with TiO2/alumina core–shell formation using atomic layer deposition
Huang et al. Co3O4-modified TiO2 nanotube arrays via atomic layer deposition for improved visible-light photoelectrochemical performance
Hou et al. Hot electron-driven photocatalytic water splitting
Mozaffari et al. An investigation on the effect of electrodeposited nanostructured ZnO on the electron transfer process efficiency of TiO2 based DSSC
Cioffi et al. Electrosynthesis and analytical characterisation of polypyrrole thin films modified with copper nanoparticlesElectronic supplementary information (ESI) available: experimental and Poisson distributions of the distances between 1st, 2nd and 3rd neighbouring crystals. See http://www. rsc. org/suppdata/jm/b0/b009857o
Zhu et al. Fabrication and photoelectrochemical properties of ZnS/Au/TiO 2 nanotube array films
Choi et al. Interfacial band-edge engineered TiO 2 protection layer on Cu 2 O photocathodes for efficient water reduction reaction
US20090275143A1 (en) Nanostructure array and methods of use for explosive detection
CN104746049A (zh) 利用ald制备金属纳米间隙的表面增强拉曼散射基底的方法
Wang et al. Retracted: Dual Effects of Nanostructuring and Oxygen Vacancy on Photoelectrochemical Water Oxidation Activity of Superstructured and Defective Hematite Nanorods
US10844499B2 (en) Aqueous solution method for manufacturing palladium doped electrode
Kouhestanian et al. Electrodeposited ZnO thin film as an efficient alternative blocking layer for TiCl4 pre-treatment in TiO2-based dye sensitized solar cells
Zeng et al. Characteristics of a dye-sensitized solar cell based on an anode combining ZnO nanostructures with vertically aligned carbon nanotubes
Kruszyńska et al. Atomic Layer Engineering of Aluminum‐Doped Zinc Oxide Films for Efficient and Stable Perovskite Solar Cells
Lou et al. Molecular-scale interface engineering of metal nanoparticles for plasmon-enhanced dye sensitized solar cells
Wang et al. Construction of Al-ZnO/CdS photoanodes modified with distinctive alumina passivation layer for improvement of photoelectrochemical efficiency and stability
US20150122639A1 (en) Chemically Passivated Zinc Oxide Photoelectrode for Photoelectrochemical Water Splitting
Keikhaei et al. Fabrication of copper oxide thin films by galvanostatic deposition from weakly acidic solutions
Peng et al. Recent progress on post-synthetic treatments of photoelectrodes for photoelectrochemical water splitting
CN114507849B (zh) 一种兼顾稳定性与拉曼强度的表面增强拉曼基底及其制备方法
Zhang et al. Van Der Waals Heterojunction Modulated Charge Collection for H2O2 Production Photocathode
KR20130105149A (ko) 환원 그래핀 옥사이드의 제조 방법
CN109560163B (zh) 一种基于量子点修饰的纳米线探测器
Kyesmen et al. Effects of film thickness and coating techniques on the photoelectrochemical behaviour of hematite thin films

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant