CN114507353A - 有机杂化钙钛矿/金属有机框架材料的制备方法及应用 - Google Patents

有机杂化钙钛矿/金属有机框架材料的制备方法及应用 Download PDF

Info

Publication number
CN114507353A
CN114507353A CN202210036447.9A CN202210036447A CN114507353A CN 114507353 A CN114507353 A CN 114507353A CN 202210036447 A CN202210036447 A CN 202210036447A CN 114507353 A CN114507353 A CN 114507353A
Authority
CN
China
Prior art keywords
framework material
organic framework
metal
organic
hybrid perovskite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210036447.9A
Other languages
English (en)
Other versions
CN114507353B (zh
Inventor
谢爱娟
仲之阳
姜世新
李梦露
王姣杰
林佳琪
潘婕
朱仕超
罗士平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN202210036447.9A priority Critical patent/CN114507353B/zh
Publication of CN114507353A publication Critical patent/CN114507353A/zh
Application granted granted Critical
Publication of CN114507353B publication Critical patent/CN114507353B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Biochemistry (AREA)
  • Polymers & Plastics (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明属于纳米功能材料与电化学非酶传感器领域,具体涉及一种有机杂化钙钛矿/金属有机框架材料的制备方法及应用。先制备金属有机框架材料,再制备卤化铅/金属有机框架材料,最后制得有机杂化钙钛矿/金属有机框架材料。由有机杂化钙钛矿与金属有机框架材料复合制得有机杂化钙钛矿/金属有机框架材料,制备过程简单,易操作,将其应用于电化学非酶传感器技术领域,在针对原儿茶酸的分析检测中,该类有机杂化钙钛矿/金属有机框架材料都具有良好的电化学响应信号。

Description

有机杂化钙钛矿/金属有机框架材料的制备方法及应用
技术领域
本发明属于纳米功能材料与电化学非酶传感器领域,具体涉及一种有机杂化钙钛矿/金属有机框架材料的制备方法及应用。
背景技术
近年来,新的钙钛矿结构杂合物不断被发现,其中,有机杂化钙钛矿作为钙钛矿家族的一员正在不断发展壮大。有机杂化钙钛矿材料指的是有机、无机组元通过特定的自组装方式合成的类钙钛矿结构材料,有机阳离子层穿插在交替堆叠的无机层间,发挥两种组元的性质特征,使材料的性能可设计、可控制,这类材料可成为特定功能器件甚至分子器件的关键材料,在微电子、光学、电化学、生物等领域具有极大的应用潜力。在这类杂合物体系中,有机和无机组分丰富的组成和结构变化,必然使类钙钛矿结构的有机无机杂合物呈现出独特的物理化学性质,为发挥二者的优越性,科学工作者们已研究出很多衍生型结构、性能优越的有机杂化钙钛矿,并且已在太阳能电池器件领域得到广泛应用,但是目前对于有机杂化钙钛矿材料电化学性质的研究报道却很少。
沸石咪唑酯框架结构材料(Zeolitic-Imidazolate-Framework,ZIF)作为金属有机框架(Metal-Organic-Framework,MOF)的分支,因其独特的配位方式使其成为具有与其他MOF材料所不同的类沸石拓扑结构。ZIF材料不但拥有常规MOF材料孔隙度高以及比表面积大等特点,还具备传统沸石的热稳定性与化学稳定性,其优异性的性能使其在储存气体与分离、化学传感器、光催化等许多方面具有潜在的应用性价值。因此,ZIF材料在催化方面应用的优越性,启发了更多的科研工作者探究ZIF复合材料的催化性能。
原儿茶酸,即3,4-二羟基苯甲酸,是一种天然存在于许多蔬菜中的水溶性酚酸类物质,并且是很多中药里的有效活性成分。其不仅具有显著降低心肌耗氧量,抗血小板凝集,抑菌、镇痛等药理作用,还具有抗氧化和神经保护作用。此外,多项研究表明,原儿茶酸在肝细胞培养中具有明显抗HBV的作用。因此,对原儿茶酸的敏感检测对于分析和治疗都具有重要意义。
目前国内检测原儿茶酸的技术主要有薄层扫描法、高效液相色谱法、分光光度法、荧光测定法及电化学方法。然而非电化学方法因其检测仪器造价成本昂贵且不具有便携性。
发明内容
本发明提供了一种有机杂化钙钛矿/金属有机框架材料的制备方法及应用。本发明的有机杂化钙钛矿/金属有机框架材料的制备方法是按以下步骤进行:
(1)金属有机框架材料的制备:将一定量的钴盐加入小分子醇溶剂中,超声条件下混合均匀形成溶液a;将一定量的咪唑类有机配体溶解到上述相同小分子醇溶液中,超声条件下混合均匀形成溶液b;在溶液b处于磁力搅拌条件下,将溶液a快速加入至溶液b中并混合搅拌8小时,反应结束后将所得混合溶液离心处理,所得的固体沉淀物用无水乙醇和去离子水分别洗涤3次,然后置于玻璃培养皿中放入烘箱60℃的环境下干燥,得到金属有机框架Co-ZIF材料;
其中,钴盐是六水合硝酸钴或四水合乙酸钴,有机配体是2-甲基咪唑或2-羧基咪唑,两者摩尔比为1:3。
小分子醇溶剂为甲醇或乙醇,其用量为10-30mL。
(2)卤化铅/金属有机框架材料的制备:将一定量的铅盐溶于含有Co-ZIF的去离子水中,超声混合均匀形成溶液c;将一定量的含有卤素的钾盐试剂溶于去离子水中,超声混合均匀形成溶液d;在磁力搅拌条件下,将溶液c和d混合在一起,将混合溶液反应2小时后离心处理,所得固体产物用无水乙醇和去离子水分别洗涤3次,然后置于玻璃培养皿中放入烘箱60℃的环境下干燥,得到卤化铅/金属有机框架材料;
其中,铅盐试剂为硝酸铅或醋酸铅,含有卤素的钾盐试剂为溴化钾、氯化钾或碘化钾;
铅盐与Co-ZIF的质量比为2:1;铅盐与含有卤素的钾盐的摩尔比为1:2。
(3)有机杂化钙钛矿/金属有机框架材料的制备:将一定量的有机胺水溶液与上述含有相同卤素的酸混合,在冰水浴条件下搅拌2小时后蒸发掉水溶剂,并用无水乙醚洗涤,冷却干燥收集卤化铵前驱体;将已制备好的卤化铅/金属有机框架材料溶于含有卤化铵前驱体的乙醇溶液中,磁力搅拌30分钟后,离心干燥收集固体产物,即有机杂化钙钛矿/金属有机框架材料。
其中,有机胺水溶液为脂肪胺水溶液,含有卤素的酸为氢溴酸、盐酸或氢碘酸,两者体积比为1:2;卤化铅/金属有机框架材料与卤化铵前驱体的质量比为1:2。
本发明制备的有机杂化钙钛矿/金属有机框架材料作为电化学非酶传感器材料用于检测原儿茶酸。
本发明的有益效果为:
本发明制备的材料由有机杂化钙钛矿与金属有机框架材料复合而成,材料新颖且制备过程简单,易操作,并将其应用于电化学非酶传感器技术领域,在针对原儿茶酸的分析检测中,该类有机杂化钙钛矿/金属有机框架材料都具有良好的电化学响应信号,具有创新意义。
附图说明:
图1为实施例1中金属有机框架材料的扫描电镜图。
图2为实施例1中有机杂化钙钛矿/金属有机框架材料的扫描电镜图。
图3为实施例2中金属有机框架材料的扫描电镜图。
图4为实施例1和实施例3中所制备的PbCl2的XRD图。
图5为实施例1和实施例4、实施例5不同卤素的有机杂化钙钛矿对原儿茶酸的电化学响应信号图。
图6为实施例1、比较例1和比较例2中不同材料对原儿茶酸的电化学响应信号图。
具体实施方式
下面结合具体实施例对本发明做进一步说明,以下实施例旨在说明本发明而不是对本发明的进一步限定。
实施例1
(1)金属有机框架材料的制备
将1mmol六水合硝酸钴加入到10mL甲醇溶剂中,超声条件下混合均匀形成溶液a;将3mmol 2-甲基咪唑溶解到10mL甲醇溶液中,超声条件下混合均匀形成溶液b;在溶液b处于磁力搅拌条件下,将溶液a快速加入至溶液b中并混合搅拌8小时,反应结束后将所得混合溶液离心处理,所得的固体沉淀物用无水乙醇和去离子水分别洗涤3次,然后置于玻璃培养皿中放入烘箱60℃的环境下干燥,得到金属有机框架Co-ZIF材料。其扫描电镜图如图1所示。
(2)卤化铅/金属有机框架材料的制备
将1mmol硝酸铅溶于含有0.5g Co-ZIF的10mL去离子水中,超声混合均匀形成溶液c;将2mmol氯化钾溶于10mL去离子水中,超声混合均匀形成溶液d;在磁力搅拌条件下,将溶液c和d混合在一起,将混合溶液反应2小时后离心处理,所得的固体产物用无水乙醇和去离子水分别洗涤3次,然后置于玻璃培养皿中放入烘箱60℃的环境下干燥,得到PbCl2/Co-ZIF材料;
(3)有机杂化钙钛矿/金属有机框架材料的制备
将5mL 10mol/L的正丁胺CH3(CH2)3NH2水溶液与10mL 12mol/L盐酸混合,在冰水浴条件下搅拌2小时后蒸发掉水溶剂,并用无水乙醚洗涤,冷却干燥收集CH3(CH2)3NH3Cl;将上述步骤(2)已制备好的PbCl2/Co-ZIF材料溶于含有卤化铵即CH3(CH2)3NH3Cl前驱体的0.5mol/L乙醇溶液中,磁力搅拌30分钟后,离心干燥收集固体产物CH3(CH2)3NH3PbCl3/Co-ZIF,其扫描电镜图如图2所示。
附图1和图2分别为所制备的金属有机框架材料与有机杂化钙钛矿/金属有机框架材料的扫描电镜图。其中,从图1看出,该制备方法合成了具有立方体结构的颗粒状金属有机框架材料;图2的形貌表明有机杂化钙钛矿与金属有机框架材料的良好复合。
实施例2
本实施例与实施例1不同的是:在步骤(1)的金属有机框架材料制备中,仅将所使用的金属盐改为四水合乙酸钴、有机配体改为2-羧基咪唑、溶剂改为乙醇,但上述试剂用量不变且流程步骤不变。
附图3为实施例2所制备的金属有机框架材料电镜图。从图中可以看出,该制备方法也是呈立方体结构颗粒状,与实施例1形貌相似。
实施例3
本实施例与实施例1不同的是:在步骤(2)的制备过程中,仅将铅盐换成醋酸铅,但该试剂用量不变且流程步骤不变,即分别将1mmol醋酸铅和2mmol氯化钾分别溶于10mL去离子水中,超声混合均匀形成溶液,在磁力搅拌条件下,将两溶液混合在一起,反应2小时后离心处理,所得的固体产物用无水乙醇和去离子水分别洗涤3次,然后置于玻璃培养皿中放入烘箱60℃的环境下干燥,即可得到PbCl2材料。
附图4为实施例1和实施例3中所制备的PbCl2的XRD图。从图中可以看出,以两种不同的铅盐制备的PbCl2,与PbCl2的XRD标准卡片PDF#26-1150相比较,都成功制备出了材料PbCl2材料,且晶型相似。
实施例4
(1)金属有机框架材料的制备同实施例1。
(2)卤化铅/金属有机框架材料的制备
将1mmol硝酸铅溶于含有0.5g Co-ZIF的10mL去离子水中,超声混合均匀形成溶液c;将2mmol溴化钾溶于10mL去离子水中,超声混合均匀形成溶液d;在磁力搅拌条件下,将溶液c和d混合在一起,将混合溶液反应2小时后离心处理,所得的固体产物用无水乙醇和去离子水分别洗涤3次,然后置于玻璃培养皿中放入烘箱60℃的环境下干燥,得到PbBr2/Co-ZIF材料;
(3)有机杂化钙钛矿/金属有机框架材料的制备
将5mL 10mol/L的正丁胺CH3(CH2)3NH2水溶液与10mL 12mol/L盐酸混合,在冰水浴条件下搅拌2小时后蒸发掉水溶剂,并用无水乙醚洗涤,冷却干燥收集CH3(CH2)3NH3Br;将上述步骤(2)已制备好的PbBr2/Co-ZIF材料溶于含有卤化铵即CH3(CH2)3NH3Br前驱体的0.5mol/L乙醇溶液中,磁力搅拌30分钟后,离心干燥收集固体产物,即CH3(CH2)3NH3PbBr3/Co-ZIF。
实施例5
(1)金属有机框架材料的制备同实施例1。
(2)卤化铅/金属有机框架材料的制备
将1mmol硝酸铅溶于含有0.5g Co-ZIF的10mL去离子水中,超声混合均匀形成溶液c;将2mmol碘化钾溶于10mL去离子水中,超声混合均匀形成溶液d;在磁力搅拌条件下,将溶液c和d混合在一起,将混合溶液反应2小时后离心处理,所得的固体产物用无水乙醇和去离子水分别洗涤3次,然后置于玻璃培养皿中放入烘箱60℃的环境下干燥,得到PbI2/Co-ZIF材料;
(3)有机杂化钙钛矿/金属有机框架材料的制备
将5mL 10mol/L的正丁胺CH3(CH2)3NH2水溶液与10mL 12mol/L盐酸混合,在冰水浴条件下搅拌2小时后蒸发掉水溶剂,并用无水乙醚洗涤,冷却干燥收集CH3(CH2)3NH3I;将上述步骤(2)已制备好的PbI2/Co-ZIF材料溶于含有卤化铵即CH3(CH2)3NH3I前驱体的0.5mol/L乙醇溶液中,磁力搅拌30分钟后,离心干燥收集固体产物,即CH3(CH2)3NH3PbI3/Co-ZIF。
应用例
室温下,采用三电极体系在CHI 760E电化学工作站进行电化学检测。其中以玻碳电极作为工作电极、铂片电极作为对电极、饱和甘汞电极作为参比电极。用循环伏安法研究了上述实施例中所制备材料对原儿茶酸样品的电化学行为。
以实施例1为例,通过将5mg CH3(CH2)3NH3PbCl3/Co-ZIF材料分散在2mL无水乙醇中并超声处理0.5h来形成悬浮液,并用移液枪移取5μL的悬浮液至玻碳电极表面上,然后置于红外灯下烘干,即可得到CH3(CH2)3NH3PbCl3/Co-ZIF材料修饰电极。之后,在电解液为pH=7的磷酸缓冲盐溶液中进行循环伏安测试,电势区间记录在0.1至0.8V之间,扫描速率为100mV/s。
电化学测试结果表明:含有不同卤素的有机杂化钙钛矿对于在磷酸缓冲溶液体系下检测原儿茶酸,均产生了不同程度的电化学响应,说明该类材料具有良好的电化学性能(附图(5))。
比较例1
本比较例与实施例1不同的是:仅实行步骤(1)的操作制备金属有机框架材料。电化学测试结果表明:对于在磷酸缓冲溶液体系下检测原儿茶酸,有机杂化钙钛矿/金属有机框架材料的电化学响应信号明显高于备金属有机框架材料,有机杂化钙钛矿/金属有机框架材料具有更为良好的电化学性能(附图(6))。
比较例2
本比较例与实施例1不同的是:在不制备金属有机框架材料的情况下,仅制备有机杂化钙钛矿材料,具体制备方法如下。
(1)卤化铅的制备
将1mmol硝酸铅溶于含有0.5g Co-ZIF的10mL去离子水中,超声混合均匀形成溶液c;将2mmol氯化钾溶于10mL去离子水中,超声混合均匀形成溶液d;在磁力搅拌条件下,将溶液c和d混合在一起,将混合溶液反应2小时后离心处理,所得的固体产物用无水乙醇和去离子水分别洗涤3次,然后置于玻璃培养皿中放入烘箱60℃的环境下干燥,得到PbCl2材料;
(2)有机杂化钙钛矿的制备
将5mL 10mol/L的正丁胺CH3(CH2)3NH2水溶液与10mL 12mol/L盐酸混合,在冰水浴条件下搅拌2小时后蒸发掉水溶剂,并用无水乙醚洗涤,冷却干燥收集CH3(CH2)3NH3Cl;将上述步骤(2)已制备好的PbCl2材料溶于含有卤化铵即CH3(CH2)3NH3Cl前驱体的0.5mol/L乙醇溶液中,磁力搅拌30分钟后,离心干燥收集固体产物,即CH3(CH2)3NH3PbCl3
电化学测试结果表明:对于在磷酸缓冲溶液体系下检测原儿茶酸,有机杂化钙钛矿/金属有机框架材料的电化学响应信号明显高于有机杂化钙钛矿材料,有机杂化钙钛矿/金属有机框架材料具有更为良好的电化学性能(附图(6))。
以上所述仅是本发明的优选实施方式,并不用于对本发明做任何形式上的限制。对于本领域的技术人员来说,在不脱离本发明技术构思前提下所得到的改进和变换,例如仅更改原料试剂添加比例、反应时长和操作流程等,也应包含在本发明的保护范围之内。

Claims (8)

1.一种有机杂化钙钛矿/金属有机框架材料的制备方法,其特征在于,所述制备方法步骤如下:
(1)金属有机框架材料的制备
将钴盐加入小分子醇溶剂中,超声条件下混合均匀形成溶液a;将咪唑类有机配体溶解到相同小分子醇溶液中,超声条件下混合均匀形成溶液b;在磁力搅拌条件下,将溶液a快速加入溶液b中并混合搅拌8小时,反应结束后将所得混合溶液离心处理,所得固体沉淀物用无水乙醇和去离子水分别洗涤3次,然后置于玻璃培养皿中放入60℃烘箱干燥,得到金属有机框架Co-ZIF材料;
(2)卤化铅/金属有机框架材料的制备
将铅盐溶于含有Co-ZIF的去离子水中,超声混合均匀形成溶液c;将含有卤素的钾盐溶于去离子水中,超声混合均匀形成溶液d;在磁力搅拌条件下,将溶液c和d混合,将混合溶液反应2小时后离心处理,所得的固体产物用无水乙醇和去离子水分别洗涤3次,然后置于玻璃培养皿中放入60℃烘箱干燥,得到卤化铅/金属有机框架材料;
(3)有机杂化钙钛矿/金属有机框架材料的制备
将有机胺水溶液与步骤(2)含有相同卤素的酸混合,在冰水浴条件下搅拌2小时后蒸发掉水溶剂,并用无水乙醚洗涤,冷却干燥收集卤化铵前驱体;将步骤(2)制备的卤化铅/金属有机框架材料溶于含有卤化铵前驱体的乙醇溶液中,磁力搅拌30分钟后,离心干燥收集固体产物,即有机杂化钙钛矿/金属有机框架材料。
2.根据权利要求1所述的有机杂化钙钛矿/金属有机框架材料的制备方法,其特征在于,步骤(1)所述钴盐为六水合硝酸钴或四水合乙酸钴,咪唑类有机配体为2-甲基咪唑或2-羧基咪唑;钴盐与咪唑类有机配体的摩尔比为1:3。
3.根据权利要求1所述的有机杂化钙钛矿/金属有机框架材料的制备方法,其特征在于,步骤(1)所述小分子醇溶剂为甲醇或乙醇,其用量为10-30mL。
4.根据权利要求1所述的有机杂化钙钛矿/金属有机框架材料的制备方法,其特征在于,步骤(2)所述铅盐为硝酸铅或醋酸铅,含有卤素的钾盐为溴化钾、氯化钾或碘化钾。
5.根据权利要求1所述的有机杂化钙钛矿/金属有机框架材料的制备方法,其特征在于,步骤(2)所述铅盐与Co-ZIF的质量比为2:1;铅盐与含有卤素的钾盐的摩尔比为1:2。
6.根据权利要求1所述的有机杂化钙钛矿/金属有机框架材料的制备方法,其特征在于,步骤(3)所述有机胺水溶液为脂肪胺水溶液,含有卤素的酸为氢溴酸、盐酸或氢碘酸。
7.根据权利要求1所述的有机杂化钙钛矿/金属有机框架材料的制备方法,其特征在于,步骤(3)所述有机胺水溶液与含有卤素的酸的体积比为1:2;卤化铅/金属有机框架材料与卤化铵前驱体的质量比为1:2。
8.一种根据权利要求1-7任一项所述方法制备的有机杂化钙钛矿/金属有机框架材料的应用,其特征在于,所述有机杂化钙钛矿/金属有机框架材料作为电化学非酶传感器材料用于检测原儿茶酸。
CN202210036447.9A 2022-01-13 2022-01-13 有机杂化钙钛矿/金属有机框架材料的制备方法及应用 Active CN114507353B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210036447.9A CN114507353B (zh) 2022-01-13 2022-01-13 有机杂化钙钛矿/金属有机框架材料的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210036447.9A CN114507353B (zh) 2022-01-13 2022-01-13 有机杂化钙钛矿/金属有机框架材料的制备方法及应用

Publications (2)

Publication Number Publication Date
CN114507353A true CN114507353A (zh) 2022-05-17
CN114507353B CN114507353B (zh) 2023-05-23

Family

ID=81549673

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210036447.9A Active CN114507353B (zh) 2022-01-13 2022-01-13 有机杂化钙钛矿/金属有机框架材料的制备方法及应用

Country Status (1)

Country Link
CN (1) CN114507353B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116493017A (zh) * 2023-04-27 2023-07-28 河北科技大学 CeO2改性双钙钛矿催化剂的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103700769A (zh) * 2013-12-03 2014-04-02 常州大学 一种有机/无机杂化钙钛矿太阳能电池及其制备方法
CN106634986A (zh) * 2016-11-09 2017-05-10 南京理工大学 一种提高钙钛矿钙钛矿稳定性的金属有机框架复合方法
CN112397652A (zh) * 2020-11-26 2021-02-23 方金丹 一种基于mai@zif-8的钙钛矿太阳能电池的制备方法
CN113201339A (zh) * 2021-04-09 2021-08-03 广东工业大学 一种钙钛矿量子点与金属有机框架复合发光材料及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103700769A (zh) * 2013-12-03 2014-04-02 常州大学 一种有机/无机杂化钙钛矿太阳能电池及其制备方法
CN106634986A (zh) * 2016-11-09 2017-05-10 南京理工大学 一种提高钙钛矿钙钛矿稳定性的金属有机框架复合方法
CN112397652A (zh) * 2020-11-26 2021-02-23 方金丹 一种基于mai@zif-8的钙钛矿太阳能电池的制备方法
CN113201339A (zh) * 2021-04-09 2021-08-03 广东工业大学 一种钙钛矿量子点与金属有机框架复合发光材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG DW ETAL: ""Encapsulation of CH3NH3PbBr3 Perovskite Quantum Dots in MOF-5 Microcrystals as a Stable Platform for Temperature and Aqueous Heavy Metal Ion Detection"", 《INORGANIC CHEMISTRY》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116493017A (zh) * 2023-04-27 2023-07-28 河北科技大学 CeO2改性双钙钛矿催化剂的制备方法
CN116493017B (zh) * 2023-04-27 2024-03-22 河北科技大学 CeO2改性双钙钛矿催化剂的制备方法

Also Published As

Publication number Publication date
CN114507353B (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
Al‐Kutubi et al. Electrosynthesis of metal–organic frameworks: challenges and opportunities
CN105985362B (zh) 一种制备沸石咪唑酯骨架结构材料的方法
CN108816287B (zh) Uio-66原位固载羧基功能化离子液体复合材料及其制备和应用
CN109632908B (zh) 三维多孔结构C@NiCo2O4@PPy复合材料及其制备方法和应用
CN102030767B (zh) 一种超分子金属有机骨架化合物材料
CN109092364B (zh) 一种铜金属有机骨架模拟酶材料及其制备与应用
CN110467821B (zh) 一种Co-MOF/壳聚糖/氧化石墨烯手性复合材料的制备方法和应用
CN111440328B (zh) 一种硼酸修饰的金属氧化物纳米阵列-mof复合材料、其制备方法及应用
CN105628764A (zh) 一种检测尿酸的电化学传感器及其制备和应用
CN106053571B (zh) 离子液体基聚脂质体-金纳米粒子复合物的制备及应用
CN111146452B (zh) 一种卟啉沸石咪唑框架杂化电催化剂及其制备方法和应用
CN114507353B (zh) 有机杂化钙钛矿/金属有机框架材料的制备方法及应用
CN111905827A (zh) 镍基异质复合材料的制备方法及在催化甲醇氧化上的应用
CN108774323A (zh) 一种基于四齿羧酸配体的Zr的金属有机骨架材料和制备方法及其应用
Udourioh et al. Current trends in the synthesis, characterization and application of metal-organic frameworks
CN114230807B (zh) 手性镍基配合物的制备方法及其电化学检测葡萄糖的应用
CN103467367B (zh) 一种对过氧化氢具有电催化活性的钴配合物
CN113278156B (zh) 镍基异构金属有机框架材料的制备方法及其应用
CN102989499B (zh) 一种用于制备对叔丁基苯甲醛的催化剂及制备方法
CN110702759B (zh) 一种检测甲胎蛋白的zif-8复合材料电化学免疫传感器及其制备方法和应用
Wei et al. A novel electrochemical sensor based on DUT-67/ZnCo2O4-MWCNTs modified glassy carbon electrode for the simultaneous sensitive detection of dopamine and uric acid
CN116376892A (zh) 一种基于亲水中空层状双金属氢氧化物原位封装酶的方法
CN111398379A (zh) 一种电化学手性传感检测酪氨酸对映体的方法
CN111484629A (zh) 一种MOFs型分子印迹聚合物及其制备方法、农药残留荧光检测方法
CN114957684B (zh) 一种TCPP(Ni)-Co电极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant