CN114487488A - 一种用于原子力显微镜材料表征的微顶推装置及其使用方法 - Google Patents

一种用于原子力显微镜材料表征的微顶推装置及其使用方法 Download PDF

Info

Publication number
CN114487488A
CN114487488A CN202210183720.0A CN202210183720A CN114487488A CN 114487488 A CN114487488 A CN 114487488A CN 202210183720 A CN202210183720 A CN 202210183720A CN 114487488 A CN114487488 A CN 114487488A
Authority
CN
China
Prior art keywords
limiting
pushing device
afm
loading module
type mechanical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210183720.0A
Other languages
English (en)
Inventor
许福
李志康
戴博韬
刘易洲
丁燕怀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN202210183720.0A priority Critical patent/CN114487488A/zh
Publication of CN114487488A publication Critical patent/CN114487488A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/36DC mode
    • G01Q60/363Contact-mode AFM
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/38Probes, their manufacture, or their related instrumentation, e.g. holders

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种用于原子力显微镜材料表征的微顶推装置及其使用方法,顶推装置和AFM替换底座,顶推装置设置在AFM替换底座上。该顶推装置包括AFM替换底座、螺杆、六角锁紧螺母、上部装配式卡扣、下部装配式壁筒、限位及加载模块、螺杆式机械顶推装置、实验样品、探针、AFM悬臂、限位钢片、限位孔位。螺杆式机械顶推装置顶端与卡扣嵌套连接。螺杆式机械顶推装置放置在在AFM扫描管上方,AFM替换底座起到增高坐垫的作用。本发明用于与AFM联用获取材料的表面形貌信息、动力学响应、粘附力、动态模量、耗散值等数据。本发明通过螺杆式机械顶推装置可以精确控制实验样品的向上位移和速度,同时采用限位片较为精确地控制实验样品向上的最大位移。

Description

一种用于原子力显微镜材料表征的微顶推装置及其使用方法
技术领域
本发明涉及一种顶推装置及其使用方法,具体涉及一种用于原子力显微镜材料表征的微顶推装置及其使用方法,属于微观材料领域。
背景技术
传统的力学实验研究难以获取材料在变形过程中对应的微观结构演化图像,而通过分子模拟虽然可以提供重要的原子或分子尺度的信息,但这些模拟通常基于严苛的极限条件,如理想的高应变率、超低温度或极小的样品尺寸等,难以为实验所验证。原位观测材料表面在变形过程中的力、电、热、磁、光等性质变化,是研究材料这些性质变化对应所的材料结构机理的重要途径。当原位观测的尺度达到纳米级甚至原子级时,这种观测所得到的信息,可为材料的各种理论和模拟研究提供重要依据和验证。
原子力显微镜(Atomic Force Microscopy,AFM)是一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。AFM可以在空气和液体环境下对材料纳米区域的物理化学性质、形貌进行原子级分辨率探测,或直接进行纳米操作。它通过检测待测样品表面和微型力敏感元件之间的极微弱的原子间相互作用力来研究物质的表面结构及性质。将对微弱力极端敏感的微悬臂一端固定,另一端的微小针尖接近样品,这时针尖将与样品相互作用,作用力将使得微悬臂发生形变或运动状态发生变化。扫描样品时,利用传感器检测这些变化,可获得作用力分布信息,从而以纳米级分辨率获得表面形貌结构信息及表面粗糙度信息。
迄今,AFM已经被广泛应用于材料研究,AFM能被广泛应用的一个重要原因是它具有开放性,在AFM基本操作系统基础上,通过改变探针、成像模式或针尖与样品间的作用力可以测量样品的多种性质,由此产生的AFM的衍生功能模式包括:摩擦力、导电性、表面电势、热、电化学、电容、磁力、静电力、化学力、相位移、纳米压痕、纳米加工等。因此,AFM除了获取材料表面形貌信息外,其在微纳米力学表征方面也有很好的表现。其中,AFM的PeakForce Quantitative Nano mechanical Mapping(QNM-AFM)模式是一种重要材料结构表征手段,其中PF和QNM分别代表PeakForce Peak和定量纳米力学,通过测量尖端的瞬时力能实现动态模量、刚度、粘附力、变形和耗散能等的表征,具有力学性能的高分辨率表征、对针尖和样品无损、各种材料数据明确定量的优势。同时,PeakForce QNM提供的微纳米力学表征结果据有助于研究人员探索材料的微观结构。
结合AFM的高精度、多功能特性,通过原位升温等方式可以获取材料在热的作用下结构的演化图像。然而,在变形过程中(如受拉)进行原位观测通常受到诸如样品尺寸、设备测试区空间等因素的影响,尤其难以在纳米尺度捕捉到变形过程中,特别是不同的形变状态下结构演化的细节。另一方面,如果能在材料变形过程中的某一恒定应变状态下,即应力松弛过程中,基于AFM实时表征材料的微纳米尺度的各种性质变化,并基于相应的变化分析材料的结构演化信息,将可望在材料研究领域,特别是材料流变行为的本质等方面取得重要突破。
专利申请号CN201611112345.1《与纳米压痕仪联用的非晶合金薄带拉伸装置及其使用方法》和专利申请号CN201611112339.6《与纳米压痕仪联用的非晶合金薄带拉伸装置及其使用方法》公开了与纳米压痕仪配合使用的材料拉伸装置,但该装置仅适用于有较大工作空间的纳米压痕仪,仅能实现材料在不同拉伸应力状态下及应力松弛过程中压痕硬度的表征。理想中的实现材料在上述变形过程中、流变过程中包括力学性质在内的其他各类性质变化的装置,需要能够实现可控且精度高的连续变形,并且能够与AFM的各种模式联用。本发明与AFM联用的材料微顶推装置可以满足上述需求。
发明内容
为实现材料在变形过程中、流变过程中可控且精度高的连续变形,并且能够与AFM的各种模式联用,本发明提供一种用于原子力显微镜材料表征的微顶推装置及其使用方法。本发明提供的装置及其使用方法能够实现AFM各种模式获取材料的信息,可较为精确地获取选定区域在应力松弛过程中不同时间的表征结果。
根据本发明提供的第一种实施方案,一种用于原子力显微镜材料表征的微顶推装置,其特征在于:顶推装置和AFM替换底座;顶推装置设置在AFM替换底座上;该顶推装置包括AFM替换底座、螺杆、六角锁紧螺母、上部装配式卡扣、下部装配式壁筒、限位及加载模块、螺杆式机械顶推装置、实验样品、探针、AFM悬臂、限位片、限位孔位;其中,螺杆式机械顶推装置位于AFM替换底座间,内置限位及加载模块,其顶端与上部装配式卡扣与螺杆式机械顶推装置嵌套连接;上部装配式卡扣、预留限位孔位,通过插入设计好的限位钢片来进行限位,实验样品架在上部装配式卡扣上,并用粘合性强的固/液体固定;薄膜样品与实验样品结合之后固定挡板位于底座一端并与底座整体连接后上端与探针接触。
在本发明中,所述螺杆式机械顶推装置包括包括螺丝杆装置、卡扣、下部装配式壁筒、限位及加载模块。限位及加载模块设置在装置内部。卡扣设置在螺丝杆装置上方并与螺丝杆装置连接。
在本发明中,所述卡扣为可装配式的装置并与螺杆式机械顶推装置嵌套连接。所述卡扣与螺杆式机械顶推装置嵌套连接处设有限位孔位。限位孔位高度为0.1-1.0mm,优选为0.2-0.5mm,更优选为0.3-0.4mm。作为优选,该装置设有两个限位孔位,两个限位孔位以螺杆式机械顶推装置中心线为对称轴对称设置。
在本发明中,该装置还包括限位片。限位片设置在限位孔位处,并穿过限位孔位和限位及加载模块。所述限位片厚度为0.1-1.0mm。优选的是,限位片的数量为1-10片,改变限位孔位处设置的限位片的数量实现不同的限位及加载模块上行最大位移限位。优选的是,所述限位片材料为金属。
在本发明中,所述螺杆式机械顶推装置为圆筒状。
在本发明中,该装置与原子力显微镜连接,原子力显微镜(AFM)包括AFM替换底座、AFM悬臂和探针;所述螺杆式机械顶推装置设置在AFM替换底座间;AFM悬臂设置在螺杆式机械顶推装置一侧,探针设置在螺杆式机械顶推装置上方并与AFM悬臂连接。
根据本发明的第二种实施方案,提供一种用于原子力显微镜材料表征的微顶推装置的使用方法。
一种用于原子力显微镜材料表征的微顶推装置的使用方法,该方法包括以下步骤:
1)将螺杆式机械顶推装置置于AFM替换底座上,实验样品固定于卡扣上;
2)螺丝杆装置为螺杆式机械顶推装置提供上旋动力,推动限位及加载模块向上移动;
3)限位及加载模块推动实验样品中间部位产生向上的位移,AFM悬臂控制探针对实验样品进行各种性能的表征。
4)重复步骤2)、3),改变限位及加载模块的位移,AFM对实验样品处于不同弯曲状态时的各种性能进行表征。
在本发明中,步骤2)具体为:控制螺杆的螺纹数量推动限位及加载模块(5)上旋量,控制限位及加载模块(5)移动的速度和向上位移。
在本发明中,步骤3)具体为:限位及加载模块推动实验样品中间部位产生向上的位移,限位片限制限位及加载模块上行的最大位移。优选的是,限位片的数量为1-10片,改变限位片的数量,实现不同的限位及加载模块上行最大位移限位。
在本发明中,由螺丝杆装置使螺杆式机械顶推装置发生向上的位移量,螺杆式机械顶推装置内置限位及加载模块在六角锁紧螺母向上旋动下在螺杆式机械顶推装置内向上移动。当限位及加载模块顶部到达实验样品底部位置时,实验样品在中间部位产生向上的位移,从而使得实验样品处于向上的受力弯曲状态,使实验样品顶部处于拉应力状态。在此基础上由AFM对其进行性能表征。在本发明中,卡扣为可装配式卡扣,方便拆装,便于更换样品,同时也便于样品在实验开始前和实验结束后进行其他性能表征。
在本发明中,在卡扣与螺杆式机械顶推装置结合部,限位及加载模块顶部中心位置设置限位孔位,并在限位孔位中设置限位片。限位片穿过限位孔位和限位及加载模块中心,限位及加载模块底部向上位移至一定高度时,限位片限制其位移。另外,可以通过增加或减少限位片的数量,实现限位及加载模块向上的不同最大位移。通过限位片一方面可以使实验样品的向上位移得到较为精确的控制,同时防止对AFM的探针和悬臂造成伤害。
在本发明中,当限位及加载模块顶部接触到实验样品底部时,限位及加载模块中部的空隙刚好到达限位孔位处,此时向限位孔位和限位及加载模块空隙中插入限位片限制限位及加载模块向上的最大位移(或限位片原本就存在并穿过限位孔位和限位及加载模块,只是限位及加载模块向下的位移收到限制。)
在本发明中,采用双控模式,一方面通过螺杆式机械顶推装置内的螺杆的螺纹数量换算关系推算得到限位及加载模块上行的位移和速度。另一方面通过限位片,实现限位及加载模块的最大位移限制。进而由AFM获取材料的表面形貌信息、动力学响应、粘附力、动态模量、耗散值等数据。
与现有技术相比,本发明具有以下优点:
1、装置外形尺寸小,安装拆卸方便,与AFM联用获取材料的表面形貌信息、动力学响应、粘附力、动态模量、耗散值等数据;
2、卡扣为可装配式,方便拆装和更换样品,也便于样品在实验开始前和结束后进行其他性能的表征;
3、通过螺丝杆装置可以精确控制实验样品的向上位移和速度。
4、通过限位片可以较为精确地控制实验样品向上的最大位移。
附图说明
图1为本发明与原子力显微镜联用的材料微顶推装置的结构示意图;
图2为本发明与原子力显微镜联用的材料微顶推装置的俯视图;
图3为本发明与原子力显微镜联用的材料微顶推装置螺杆式机械顶推装置处的结构示意图;
图4为本发明与原子力显微镜联用的材料微顶推装置螺杆式机械顶推装置的侧视图;
图5为本发明与原子力显微镜联用的材料微顶推装置螺杆式机械顶推装置的剖面图;
附图标记:A:材料微顶推装置;B:AFM替换底座;1:AFM替换底座、2:螺杆、3:六角锁紧螺母、4:上部装配式卡扣、5:限位及加载模块、6:螺杆式机械顶推装置、7:六角锁紧螺母、8:实验样品、9:探针、10:AFM悬臂、11:限位钢片、12:限位孔位、13:下部装配式壁筒。
具体实施方式
根据本发明的第一种实施方案,提供一种用于原子力显微镜材料表征的微顶推装置。
一种用于原子力显微镜材料表征的微顶推装置,其特征在于:顶推装置和AFM替换底座;顶推装置设置在AFM替换底座上;该顶推装置包括AFM替换底座、螺杆、六角锁紧螺母、上部装配式卡扣、限位及加载模块、螺杆式机械顶推装置、六角锁紧螺母、实验样品、探针、AFM悬臂、限位片、限位孔位、下部装配式壁筒;其中,螺杆式机械顶推装置位于AFM替换底座间,内置限位及加载模块,其顶端与上部装配式卡扣与螺杆式机械顶推装置嵌套连接;上部装配式卡扣、预留限位孔位,通过插入设计好的限位钢片来进行限位,实验样品架在上部装配式卡扣上,并用粘合性强的固/液体固定;薄膜样品与实验样品结合之后固定挡板位于底座一端并与底座整体连接后上端与探针接触。
优选的是,所述螺杆式机械顶推装置包括螺丝杆装置、卡扣、下部装配式壁筒、限位及加载模块。限位及加载模块设置在装置内部。卡扣设置在螺丝杆装置上方并与螺杆上部连接。
优选的是,卡扣为可装配式的装置并与螺杆式机械顶推装置嵌套连接。所述卡扣与螺杆式机械顶推装置嵌套连接处设有限位孔位。限位孔位高度为0.1-1.0mm,优选为0.2-0.5mm,更优选为0.3-0.4mm。作为优选,该装置设有两个限位孔位,两个限位孔位以螺杆式机械顶推装置中心线为对称轴对称设置。
在本发明中,该装置A还包括限位片11;限位片11设置在限位孔位12处,并穿过限位孔位12和限位及加载模块5;所述限位片11厚度为0.1-1.0mm;优选的是,限位片11的数量为1-10片,改变限位孔位12处设置的限位片11的数量实现不同的限位及加载模块上行最大位移限位;优选的是,所述限位片11材料为金属。
在本发明中,所述螺杆式机械顶推装置6为圆筒状。
根据本发明的第二种实施方案,提供一种用于原子力显微镜材料表征的微顶推装置的使用方法。
一种用于原子力显微镜材料表征的微顶推装置的使用方法,该方法包括以下步骤:
1)将螺杆式机械顶推装置置于AFM替换底座上,实验样品固定于卡扣上;
2)螺丝杆装置为螺杆式机械顶推装置提供上旋动力,推动限位及加载模块向上移动;
3)限位及加载模块推动实验样品中间部位产生向上的位移,AFM悬臂控制探针对实验样品进行各种性能的表征。
4)重复步骤2)、3),改变限位及加载模块的位移,AFM对实验样品处于不同弯曲状态时的各种性能进行表征。
优选的是,步骤2)具体为:控制螺杆的螺纹数量推动限位及加载模块(5)上旋量,控制限位及加载模块(5)移动的速度和向上位移。
优选的是,步骤3)具体为:限位及加载模块推动实验样品中间部位产生向上的位移,限位片限制限位及加载模块上行的最大位移。优选的是,限位片的数量为1-10片,改变限位片的数量,实现不同的限位及加载模块上行最大位移限位。
实施例1
一种用于原子力显微镜材料表征的微顶推装置,顶推装置A和AFM替换底座B;顶推装置A设置在AFM替换底座B上。该顶推装置包括AFM替换底座、螺杆、六角锁紧螺母、上部装配式卡扣、限位及加载模块、螺杆式机械顶推装置、六角锁紧螺母、实验样品、探针、AFM悬臂、限位片、限位孔位、下部装配式壁筒;其中,螺杆式机械顶推装置位于AFM替换底座间,内置限位及加载模块,其顶端与上部装配式卡扣与螺杆式机械顶推装置嵌套连接;上部装配式卡扣、预留限位孔位,通过插入设计好的限位钢片来进行限位,实验样品架在上部装配式卡扣上,并用粘合性强的固/液体固定;薄膜样品与实验样品结合之后固定挡板位于底座一端并与底座整体连接后上端与探针接触。
实施例2
重复实施例1,只是所述螺杆式机械顶推装置包括螺丝杆装置、卡扣、下部装配式壁筒、限位及加载模块。限位及加载模块设置在装置内部。卡扣设置在螺丝杆装置上方并螺杆上部连接。
实施例3
重复实施例2,只是所述卡扣202为可装配式的装置并与螺杆式机械顶推装置2嵌套连接。所述卡扣202与螺杆式机械顶推装置2嵌套连接处设有限位孔位12;限位孔位12高度为3.0mm;该装置设有两个限位孔位12,两个限位孔位12以筒体201中心线为对称轴对称设置。
实施例4
重复实施例3,只是该装置A还包括限位片11;限位片11设置在限位孔位12处,并穿过限位孔位12和限位及加载模块5。所述限位片11厚度为0.06mm,数量为5片。所述限位片11材料为金属。
实施例5
重复实施例4,只是所述螺杆式机械顶推装置2为圆筒状。
实施例6
一种用于原子力显微镜材料表征的微顶推装置的使用方法,使用实施例5中的装置,该方法为:将螺杆式机械顶推装置6置于AFM替换底座1上,实验样品固定于卡扣202上。螺丝杆装置为螺杆式机械顶推装置提供上旋动力,推动限位及加载模块向上移动。同时在限位孔位12中放入5片厚度为0.06mm的限位片11,使得实验样品中间部位向上的位移为0.3mm,AFM悬臂控制探针对实验样品进行各种性能的表征。控制系统调节螺丝杆上旋量向螺杆式机械顶推装置6改变限位及加载模块5的位移,同时在限位孔位12中放入5片厚度为0.06mm的限位片11,使实验样品中间部位向上的位移为0.3mm,AFM悬臂控制探针对实验样品进行表面形貌信息、动力学响应、粘附力、动态模量、耗散值等数据的表征。

Claims (9)

1.一种用于原子力显微镜材料表征的微顶推装置,其特征在于:顶推装置(A)和AFM替换底座(B);顶推装置(A)设置在AFM替换底座(B)上;该顶推装置(A)包括AFM替换底座(1)、螺杆(2)、六角锁紧螺母(3)、上部装配式卡扣(4)、限位及加载模块(5)、螺杆式机械顶推装置(6)、六角锁紧螺母(7)、实验样品(8)、探针(9)、AFM悬臂(10)、限位钢片(11)、限位孔位(12)、下部装配式壁筒(13);其中,螺杆式机械顶推装置(6)位于AFM替换底座(1)间,内置限位及加载模块(5),其顶端与上部装配式卡扣(4)与螺杆式机械顶推装置(6)嵌套连接;上部装配式卡扣(4)、预留限位孔位(12),通过插入设计好的限位钢片(11)来进行限位,实验样品(8)架在上部装配式卡扣(4)上,并用粘合性强的固/液体固定;薄膜样品与实验样品(8)结合之后固定挡板位于底座一端并与底座整体连接后上端与探针(9)接触。
2.根据权利要求1所述的顶推装置,其特征在于:所述螺杆式机械顶推装置(6)包括螺丝杆装置(201)、卡扣(202)、下部装配式壁筒(13)、限位及加载模块(5);其中限位及加载模块(5)设置在螺丝杆装置(201)内部,加载模块(5)与螺杆(2)上部嵌套连接,卡扣(202)设置在螺丝杆装置(201)上方并与螺丝杆装置(201)连接。
3.根据权利要求2所述的顶推装置,其特征在于:所述螺丝杆装置(201)包括螺杆(2)、六角锁紧螺母(3)、六角锁紧螺母(7)和下部装配式壁筒(13),六角锁紧螺母(7)和下部装配式壁筒通过焊缝焊接而成,六角锁紧螺母(3)与螺杆(2)下部由摩擦力锁紧连接;所述卡扣(202)为可装配式的设置并与螺丝杆装置(201)嵌套连接;所述卡扣(202)与螺丝杆装置(201)嵌套连接处设有限位孔位(12);优选的是,限位孔位高度为0.1-1.0mm,优选为0.2-0.5mm,更优选为0.3-0.4mm;作为优选,该装置设有两个限位孔位(12),两个限位孔位(12)以筒体(201)中心线为对称轴对称设置。
4.根据权利要求2或3所述的装置,其特征在于:该装置(A)还包括限位片(11);限位片(11)设置在限位孔位(12)处,并穿过限位孔位(12)和限位及加载模块(5);所述限位片(11)厚度为0.1-1.0mm;优选的是,限位片(11)的数量为1-10片,改变限位孔位(12)处设置的限位片(11)的数量实现不同的限位及加载模块(5)上行最大位移限位;作为优选,所述限位片(11)材料为金属。
5.根据权利要求2-4中任一项所述的装置,其特征在于:所述螺杆式机械顶推装置(6)为圆筒状。
6.一种用于原子力显微镜材料表征的微顶推装置的使用方法或使用权利要求1-5中任一项装置的方法,该方法包括以下步骤:
1)将螺杆式机械顶推装置(6)置于AFM替换底座(B)上,实验样品(8)固定于卡扣(202)上;
2)螺丝杆装置(201)在六角锁紧螺母(7)旋动下发生转动上移,限位及加载模块(5)向上移动;
3)限位及加载模块(5)推动实验样品中间部位产生向上的位移,AFM悬臂(10)控制探针(9)对实验样品进行各种性能的表征;
4)重复步骤2)、3),改变限位及加载模块(5)的位移,AFM对处于不同弯曲状态时的实验样品各种性能进行表征。
7.根据权利要求6所述的方法,其特征在于:步骤2)具体为:螺丝杆装置(201)为螺杆式机械顶推装置(6)提供上旋动力,推动限位及加载模块(5)向上移动;同时控制螺杆(2)螺纹数量推动限位及加载模块(5)上旋量,控制限位及加载模块(5)移动的速度和向上位移。
8.根据权利要求6或7所述的方法,其特征在于:步骤3)具体为:限位及加载模块(5)推动实验样品(8)中间部位产生向上的位移,限位片(11)限制限位及加载模块(5)上行的最大位移。
9.根据权利要求8所述的方法,其特征在于:所述限位片(11)的数量为1-10片,改变限位片(11)的数量,实现不同的限位及加载模块(5)上行位移限位。
CN202210183720.0A 2022-02-28 2022-02-28 一种用于原子力显微镜材料表征的微顶推装置及其使用方法 Pending CN114487488A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210183720.0A CN114487488A (zh) 2022-02-28 2022-02-28 一种用于原子力显微镜材料表征的微顶推装置及其使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210183720.0A CN114487488A (zh) 2022-02-28 2022-02-28 一种用于原子力显微镜材料表征的微顶推装置及其使用方法

Publications (1)

Publication Number Publication Date
CN114487488A true CN114487488A (zh) 2022-05-13

Family

ID=81484893

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210183720.0A Pending CN114487488A (zh) 2022-02-28 2022-02-28 一种用于原子力显微镜材料表征的微顶推装置及其使用方法

Country Status (1)

Country Link
CN (1) CN114487488A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006133089A (ja) * 2004-11-05 2006-05-25 National Institute For Materials Science 超高真空走査型プローブ顕微鏡
CN103018491A (zh) * 2012-11-27 2013-04-03 北京大学 可用于原子力显微镜的薄膜材料微挠曲加载装置及方法
CN103234813A (zh) * 2013-04-28 2013-08-07 北京科技大学 一种平行力连续自加载装置样品及试验方法
CN107014688A (zh) * 2017-06-09 2017-08-04 中国科学院新疆理化技术研究所 一种原位观察材料断裂行为的方法
CN107997937A (zh) * 2017-12-22 2018-05-08 上海中医药大学附属岳阳中西医结合医院 一种推拿手法模拟系统
CN112730896A (zh) * 2020-12-21 2021-04-30 湘潭大学 一种与原子力显微镜联用的材料微顶推装置及其使用方法
CN112746631A (zh) * 2021-01-19 2021-05-04 湘潭大学 一种与afm联用的材料微顶推装置及其使用方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006133089A (ja) * 2004-11-05 2006-05-25 National Institute For Materials Science 超高真空走査型プローブ顕微鏡
CN103018491A (zh) * 2012-11-27 2013-04-03 北京大学 可用于原子力显微镜的薄膜材料微挠曲加载装置及方法
CN103234813A (zh) * 2013-04-28 2013-08-07 北京科技大学 一种平行力连续自加载装置样品及试验方法
CN107014688A (zh) * 2017-06-09 2017-08-04 中国科学院新疆理化技术研究所 一种原位观察材料断裂行为的方法
CN107997937A (zh) * 2017-12-22 2018-05-08 上海中医药大学附属岳阳中西医结合医院 一种推拿手法模拟系统
CN112730896A (zh) * 2020-12-21 2021-04-30 湘潭大学 一种与原子力显微镜联用的材料微顶推装置及其使用方法
CN112746631A (zh) * 2021-01-19 2021-05-04 湘潭大学 一种与afm联用的材料微顶推装置及其使用方法

Similar Documents

Publication Publication Date Title
CN111366460A (zh) 微纳米压痕测试装置及方法
US20100180356A1 (en) Nanoindenter
CN108760548B (zh) 双行程混合驱动微纳米压痕/划痕测试装置
CN204255775U (zh) 服役温度下材料双轴静动态性能在线测试平台
CN202305330U (zh) 基于拉伸/压缩模式的扫描电镜下原位高频疲劳材料力学测试平台
CN100470230C (zh) 悬浮式低维材料静动态微力拉伸实验机
CN107064198A (zh) 量程可调式原位微纳米压痕/划痕测试装置及方法
Lu et al. A multi-step method for in situ mechanical characterization of 1-D nanostructures using a novel micromechanical device
CN101793911B (zh) 一种基于扫描电镜的纳米压痕系统
CN201653804U (zh) 一种基于扫描电镜的纳米压痕系统
CN100489485C (zh) 微力学测试仪及其测试方法
JPH11503516A (ja) 走査型プローブ顕微鏡用の応力セル
CN105158057A (zh) 多场耦合下原位三轴拉伸疲劳测试装置及方法
CN111060415A (zh) 考虑力传感器变形的原位压痕测试装置与方法
CN112746631A (zh) 一种与afm联用的材料微顶推装置及其使用方法
Geng et al. A probe-based force-controlled nanoindentation system using an axisymmetric four-beam spring
Qu et al. MEMS-based platforms for multi-physical characterization of nanomaterials: A review
JP4376858B2 (ja) 超微小硬さ等測定装置および測定方法
CN112730896A (zh) 一种与原子力显微镜联用的材料微顶推装置及其使用方法
CN202057559U (zh) 基于双位移检测的微纳米尺度原位压痕测试装置
CN114487488A (zh) 一种用于原子力显微镜材料表征的微顶推装置及其使用方法
Li et al. Quantitative measurements of frictional properties of n-alkanethiols on Au (111) by scanning force microscopy
CN218629285U (zh) 一种用于原子力显微镜的微顶推装置
CN214409049U (zh) 一种与原子力显微镜联用的材料微顶推装置
Van Vliet Instrumentation and experimentation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220513