CN114478653B - 基于低共熔溶剂制备的钴基催化剂及在饮料中葡萄糖传感的应用 - Google Patents

基于低共熔溶剂制备的钴基催化剂及在饮料中葡萄糖传感的应用 Download PDF

Info

Publication number
CN114478653B
CN114478653B CN202210224998.8A CN202210224998A CN114478653B CN 114478653 B CN114478653 B CN 114478653B CN 202210224998 A CN202210224998 A CN 202210224998A CN 114478653 B CN114478653 B CN 114478653B
Authority
CN
China
Prior art keywords
cobalt
glucose
catalyst
eutectic solvent
based catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210224998.8A
Other languages
English (en)
Other versions
CN114478653A (zh
Inventor
徐玲
马珍珍
刘冰
焦桓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN202210224998.8A priority Critical patent/CN114478653B/zh
Publication of CN114478653A publication Critical patent/CN114478653A/zh
Application granted granted Critical
Publication of CN114478653B publication Critical patent/CN114478653B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2213At least two complexing oxygen atoms present in an at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/06Cobalt compounds
    • C07F15/065Cobalt compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medicinal Chemistry (AREA)
  • Catalysts (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本发明公开了一种基于低共熔溶剂制备的钴基催化剂及在饮料中葡萄糖传感的应用,该催化剂的结构单元为Co3(BDC)3DMU2,其中DMU表示1,3‑二甲基脲,BDC表示两个羧基上失去质子的对苯二甲酸根。该电催化剂制备的传感器具有良好的葡萄糖检测性能,线性范围宽(10~2000μM),最小检测限(3.2μM,S/N=3),在碱性溶液(0.01M NaOH)中的检测响应小于4s。此外,所制备的传感器对葡萄糖检测具有较高的选择性、稳定性和重复性,可进一步应用于饮料中葡萄糖的检测。

Description

基于低共熔溶剂制备的钴基催化剂及在饮料中葡萄糖传感的 应用
技术领域
本发明属于电化学葡萄糖传感的技术领域,具体涉及一基于低共熔溶剂制备的钴基催化剂材料,以及在饮料中葡萄糖传感的应用,属检测应用领域。
背景技术
葡萄糖是自然界分布最广且最为重要的一种单糖。葡萄糖加强记忆,刺激钙质吸收和增加细胞间的沟通。但是太多会提高胰岛素的浓度,导致糖尿病;糖尿病已经成为严重危害我国人民健康并给社会带来沉重经济负担的重大疾病。科学家们还没有找到能根治糖尿病的手段或方法。因此,糖尿病的治疗应强调综合管治,且须终身维持。因此,找到合适的葡萄糖传感器对糖尿病的管理和治疗有重要意义。
金属有机框架(MOF)材料是由金属离子和有机配体通过配位键键合自组装形成的具有周期性网络结构的配合物。MOF由于结构的多样性、可调的孔隙率、丰富的金属位点等优势,使其在吸附、催化、传感器、药物运输等领域表现出极大的应用潜力。以过渡金属,如铁、钴、镍、铜作为金属源,其成本低、活性高、在碱性条件下长期稳定性优异等优点,使得其合成的MOF在电催化方面具有良好的应用前景。离子热合成法是采用离子液体(ILs)代替水或常规有机溶剂作为反应介质合成MOF的一种绿色合成方法,其与水热和溶剂热合成相比具有安全性高、绿色环保及其结构的功能化调控等优越性,使其成为合成MOF的研究热点。低共熔溶剂(DESs)作为ILs的一种,是将一定摩尔比的季铵盐和氢键给体混合加热搅拌形成的溶液。通过调节两者的类型便可得到不同类型的DESs。DESs除具有凝固点低、溶解性强、导电性好等ILs共性之外,还具有对低极性化合物的溶解性小、价格低廉、可生物降解、可根据不同反应的对DES组成进行修饰等特点。使用DESs可提供不同氢键给体,例如OH-、NH-、Cl-等有机官能团,可以合成一些具有特定功能的MOFs。
作为候选的催化剂材料之一,钴基材料,例如纳米结构的氧化钴、钴基金属有机框架材料、磷酸盐、硫化物及其相关的杂化物,在实验和理论上已被证实在碱性条件下对电化学葡萄糖传感有良好的催化活性。。
发明内容
本发明所要解决的技术问题在于提供一种基于低共熔溶剂制备的钴基催化剂,并为该催化剂提供一种新的在电化学传感中的应用。
解决上述技术问题所采用的技术方案是:该电催化剂的结构式为Co3(BDC)3DMU2,其中DMU表示1,3-二甲基脲,H2-BDC表示对苯二甲酸,BDC表示两个羧基上失去质子的对苯二甲酸根,属于三斜晶系,空间群为P 1,晶胞参数为a=8.70890(10) Å、b=10.2028(2) Å、c=11.0360(2) Å、α=115.779(2) °、β=94.8800(10) °、γ=106.2790(10) °,晶胞体积V=822.95(2) Å3,Z=1。
本发明催化剂的制备方法为:将Co(NO3)2·6H2O、对苯二甲酸、氯化胆碱和1,3-二甲基脲按摩尔比为2:1:5:10混合,100 ℃反应3天,冷却至室温,经DMF、乙醇清洗得到紫色透明的六边形晶体,即为基于低共熔溶剂制备的钴基催化剂。将催化剂研磨得到的粉末分散在乙醇中,超声形成均匀的悬浮液。然后将催化剂的悬浮液和Nafion分别涂于GCE表面,室温干燥得到工作电极。
本发明的有益效果如下:
1. 本发明制备的钴基电催化剂,应用于饮料中葡萄糖传感,有较小的检测限、较宽的检测范围和较快的响应时间。
2.本发明的电催化剂利用1,3-二甲基脲和氯化胆碱混合的低共熔溶剂制备制备工艺简单,成本低廉,环境友好,适合大规模生产应用,符合绿色化学的要求。
附图说明
图1是本发明钴基催化剂的结构示意图。
图2是本发明化合物在0.01 MNaOH中的循环伏安图。
图3是本发明化合物制备的工作电极在0.01 M NaOH中连续滴加葡萄糖的安培曲线图。
图4是本发明化合物制备的工作电极的电流与葡萄糖浓度的校准曲线。
图5是化合物制备的工作电极响应时间曲线。
图6是化合物制备的工作电极在0.6 V下加入100 μM葡萄糖、10 μM D-Man、D-Fru、DL-AA、BA对工作电极进行干扰试验。
图7是化合物制备的工作电极在0.01 M NaOH中存在下对1.0 mM葡萄糖在4 ℃下不同储存天数下电流的变化的柱状图比较。
图8是五个平行电极的电流响应柱状图。
实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例
将0.1164 g(0.4 mmol) Co(NO3)2·6H2O、0.0332 g(0.2 mmol)对苯二甲酸、0.1396 g(1 mmol)氯化胆碱、0.1762 g(2 mmol)1,3-二甲基脲依次加入25 mL聚四氟乙烯内衬的反应釜中,然后将反应釜放置于烘箱中,在100 ℃下反应3天,冷却至室温。经DMF、乙醇清洗,得到紫色透明的六边形的钴基催化剂,该催化剂的结构单元为Co3(BDC)3DMU2,其中DMU表示1,3-二甲基脲,H2-BDC表示对苯二甲酸,BDC表示两个羧基上失去质子的对苯二甲酸根,属于三斜晶系,空间群为P 1,晶胞参数为a=8.70890(10) Å、b=10.2028(2) Å、c=11.0360(2) Å、α=115.779(2) °、β=94.8800(10) °、γ=106.2790(10) °,晶胞体积V=822.95(2) Å3,Z=1。如图1所示,两个独立的Co1和Co2中心具有不同的配位几何构型,其中Co1为六配位构型,与其配位的六个原子分别来源于六个BDC2-配体的氧原子,形成扭曲的八面体构型。Co2为五配位模式,与五个氧原子(分别来自于四个BDC2-配体和一个DMU)相连,形成扭曲的四方锥构型。
实施例
实施例1中基于低共熔溶剂制备的钴基催化剂在饮料中葡萄糖传感的应用。
1.工作电极制备
将直径为5 mm的玻碳电极(GCE)在麂皮用0.5 μm、50 nm氧化铝粉末上抛光,再用HNO3(Vwater:VHNO3 = 1:1)、无水乙醇和超纯水通过超声处理。将5 mg研磨的Co-MOF粉末分散在1 mL乙醇中,超声20分钟形成均匀的悬浮液。然后将10 μL Co-MOF悬液(5 mg/mL)和5 μLNafion (5 wt%)分别涂于GCE表面,室温干燥得到基于该催化剂的工作电极。
2.葡萄糖检测
发明人利用循环伏安技术(Cyclic Voltammetry, CV)测试上述工作电极在含有不同浓度葡萄糖电解液中的氧化还原行为,同时确定样品的催化稳定性。测试过程中,扫速为10 mV/s,灵敏度为10−4,观察氧化过程电流变化情况。对制备的工作电极在含和不含葡萄糖(1 mM)的0 .01MNaOH溶液中的循环伏安测试图,加入葡萄糖后的电流值增高,结果见附图2,说明了该催化剂制备的工作电极对葡萄糖有良好的响应。
发明人利用安培i-t曲线技术(Amperometrici-t Curve)监测所制工作电极对葡萄糖浓度变化的响应情况,计算样品以电化学方式检测葡萄糖时的检测限及灵敏度,表征样品检测葡萄糖时的选择性。首先。选择安培i-t曲线应用电压的尝试范围。经过测试之后,我们选定0.6 V为测试电压。在0.6 V 的恒电位状态下,在浓度为 0.01M的 NaOH 溶液中不断搅拌,待电流稳定后加入不同浓度的葡萄糖溶液,通过记录电流变化,具体如附图3和4所示,测定葡萄糖的线性范围为 1.0×10-5 ~ 2×10-3M,检出限为3.2×10-6M(S/N=3),灵敏度为155.59 μA∙mM-1∙cm-2,说明该催化剂制备的工作电极线性范围良好,检测限低,灵敏度高。
抗干扰检测葡萄糖
选择甘露糖(D-Man)、果糖(D-Fru)、DL-天冬氨酸(DL-AA)、巴比妥酸(BA)等生物干扰物作为干扰物,用安培法评价化合物的选择性。如附图6所示,当添加葡萄糖时,电流响应明显,干扰物质的响应可以忽略不计。与葡萄糖的明显响应电流相比,干扰的响应电流不显著。说明内源性生物分子和一些同时存在的糖不会产生干扰信号,该催化剂制备的工作电极对葡萄糖检测具有良好的抗干扰性能。
稳定性测试
将制备的工作电极置于4℃冰箱中保存,制备的工作电极每3天用安培法检测1 mM的葡萄糖。由附图7可知,化合物工作电极在4℃下保存15天,仍能保持77.33%的电流。说明该该催化剂制备的工作电极具有长期的稳定性。
重现性测试
独立检测5个平行工作电极对葡萄糖的安培响应,相对标准偏差(RSD)小于8.68%。结果见附图8,说明,该催化剂制备的工作电极作为电化学葡萄糖传感器具有较高的重现性。
真实样品检测
用50 mL 0.01 M NaOH稀释50 μL模拟血清,记录添加不同浓度葡萄糖后的反应。由计算可知,本研究加标样品的加标回收率在98.34% ~ 104.84%之间,计算得到的RSD <3%。相对标准偏差(RSD)较小,说明该催化剂制备的工作电极在饮料中葡萄糖传感器的实际应用中具有良好的可靠性。

Claims (2)

1.一种基于低共熔溶剂制备的钴基催化剂,其特征在于:该催化剂的结构单元为Co3(BDC)3DMU2,其中DMU表示1,3-二甲基脲,BDC表示两个羧基上失去质子的对苯二甲酸根;该催化剂属于三斜晶系,空间群为P 1,晶胞参数为a=8.70890(10) Å、b=10.2028(2) Å、c=11.0360(2) Å、α=115.779(2) °、β=94.8800(10) °、γ=106.2790(10) °,晶胞体积V=822.95(2) Å3,Z=1;该催化剂的制备方法为:将Co(NO3)2·6H2O和对苯二甲酸按照摩尔比为2:1,溶于氯化胆碱和1,3-二甲基脲混合的低共熔溶剂中,100 ℃反应3天,冷却至室温,经DMF、乙醇清洗,得到基于低共熔溶剂合成的钴基催化剂。
2.权利要求1所述的基于低共熔溶剂制备的钴基催化剂应用于饮料中葡萄糖检测。
CN202210224998.8A 2022-03-09 2022-03-09 基于低共熔溶剂制备的钴基催化剂及在饮料中葡萄糖传感的应用 Active CN114478653B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210224998.8A CN114478653B (zh) 2022-03-09 2022-03-09 基于低共熔溶剂制备的钴基催化剂及在饮料中葡萄糖传感的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210224998.8A CN114478653B (zh) 2022-03-09 2022-03-09 基于低共熔溶剂制备的钴基催化剂及在饮料中葡萄糖传感的应用

Publications (2)

Publication Number Publication Date
CN114478653A CN114478653A (zh) 2022-05-13
CN114478653B true CN114478653B (zh) 2024-04-30

Family

ID=81485407

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210224998.8A Active CN114478653B (zh) 2022-03-09 2022-03-09 基于低共熔溶剂制备的钴基催化剂及在饮料中葡萄糖传感的应用

Country Status (1)

Country Link
CN (1) CN114478653B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106290511A (zh) * 2016-08-16 2017-01-04 哈尔滨工业大学 一种无酶葡萄糖电化学传感器的制备方法
CN109632908A (zh) * 2019-02-13 2019-04-16 天津商业大学 三维多孔结构C@NiCo2O4@PPy复合材料及其制备方法和应用
CN111537589A (zh) * 2020-05-13 2020-08-14 山东大学 一种基于钴基金属有机框架无酶葡萄糖传感器检测葡萄糖的方法
CN114058025A (zh) * 2021-12-07 2022-02-18 石河子大学 一种铜单质/铜基金属有机框架材料的制备方法及用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106290511A (zh) * 2016-08-16 2017-01-04 哈尔滨工业大学 一种无酶葡萄糖电化学传感器的制备方法
CN109632908A (zh) * 2019-02-13 2019-04-16 天津商业大学 三维多孔结构C@NiCo2O4@PPy复合材料及其制备方法和应用
CN111537589A (zh) * 2020-05-13 2020-08-14 山东大学 一种基于钴基金属有机框架无酶葡萄糖传感器检测葡萄糖的方法
CN114058025A (zh) * 2021-12-07 2022-02-18 石河子大学 一种铜单质/铜基金属有机框架材料的制备方法及用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
De-Xin Hu et al.."Three Ni/Co(II) complexes with 4,40-bipyridine and benzoic acid derivatives as mixed coligands: Hydrothermal syntheses, structures, and magnetisms".《Inorganica Chimica Acta》.2007,第360卷第4077-4084页. *

Also Published As

Publication number Publication date
CN114478653A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
Lopa et al. A Ni-based redox-active metal-organic framework for sensitive and non-enzymatic detection of glucose
Salimi et al. Nanomolar detection of hydrogen peroxide on glassy carbon electrode modified with electrodeposited cobalt oxide nanoparticles
Persson A chemically modified graphite electrode for electrocatalytic oxidation of reduced nicotinamide adenine dinucleotide based on a phenothiazine derivative, 3-β-naphthoyl-toluidine blue O
Salimi et al. Electroless deposition of vanadium–Schiff base complex onto carbon nanotubes modified glassy carbon electrode: Application to the low potential detection of iodate, periodate, bromate and nitrite
CN106442686A (zh) 一种手性金属有机框架聚合物传感器及其制备方法和应用
Zhang et al. A heterometallic sensor based on Ce@ Zn-MOF for electrochemical recognition of uric acid
Guerra et al. Electrochemical behavior of copper porphyrin synthesized into zeolite cavity: a sensor for hydrazine
CN109759143B (zh) 一种Co3O4 NP/CD/Co-MOF复合材料的制备方法和应用
Arul et al. Surfactant-free solvothermal synthesis of Cu-MOF via protonation-deprotonation approach: A morphological dependent electrocatalytic activity for therapeutic drugs
CN114230807B (zh) 手性镍基配合物的制备方法及其电化学检测葡萄糖的应用
Wu et al. Anion-regulated cobalt coordination polymer: Construction, electrocatalytic hydrogen evolution and L-cysteine electrochemical sensing
CN114478653B (zh) 基于低共熔溶剂制备的钴基催化剂及在饮料中葡萄糖传感的应用
Qu et al. Two novel coordination polymers and their hybrid materials with Ag nanoparticles for non-enzymatic detection of glucose
Vittal et al. Cobalt oxide electrodes-problem and a solution through a novel approach using cetyltrimethylammonium bromide (CTAB)
CN114778636B (zh) 一种同时测定对苯二酚和邻苯二酚的复合电极的制备方法
CN109283163B (zh) 基于钙-金属有机骨架材料作为荧光探针检测l-半胱氨酸的方法
Chen et al. Construction of a novel Co-based coordination polymer and its study of non-enzymatic glucose sensors
CN115356388A (zh) 一种硫化锌钴双金属有机框架材料及其制备方法和在电化学检测葡萄糖中的应用
CN113564634B (zh) 一种含有保护层的her催化剂及其制备的电极
Zhuang et al. Synthesis, characterization and performance of a new copper complex as electrocatalyst of hydrogen peroxide and nitrite
Kukovec et al. A cobalt (ii) coordination polymer with 6-aminonicotinate and 1, 2-bis (4-pyridyl) ethane as a new electrochemical sensor for determination of dopamine
CN112415066B (zh) 一种用于检测重金属离子的基于钴配合物及其在电分析化学传感器中的应用
CN112964762B (zh) 一种用于制备检测Cr(VI)的电化学传感器工作电极的多酸基配合物及其应用
Liang et al. Two new 6-nitrobenzimidazole ligand-modified polymolybdate-based metal–organic complexes with excellent capacitive and electrocatalytic performances
Majeed et al. MOF-based electrochemical sensors for hydrogen peroxide

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant