CN114478047A - 一种防泄漏蜂窝状等级孔陶瓷基光热储存材料及制备方法 - Google Patents

一种防泄漏蜂窝状等级孔陶瓷基光热储存材料及制备方法 Download PDF

Info

Publication number
CN114478047A
CN114478047A CN202210047769.3A CN202210047769A CN114478047A CN 114478047 A CN114478047 A CN 114478047A CN 202210047769 A CN202210047769 A CN 202210047769A CN 114478047 A CN114478047 A CN 114478047A
Authority
CN
China
Prior art keywords
honeycomb
aluminum nitride
storage material
graded
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210047769.3A
Other languages
English (en)
Inventor
刘向雷
王浩蕾
宣益民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN202210047769.3A priority Critical patent/CN114478047A/zh
Publication of CN114478047A publication Critical patent/CN114478047A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种防泄漏蜂窝状等级孔陶瓷基光热储存材料及制备方法,按照质量百分比计包括以下组分:40%‑75%的导热强化材料、0.5%‑1%的光热材料和25%‑60%的相变材料;导热强化材料是由氮化铝粉末和氮化铝晶须通过冷冻溶剂混合、凝固并升华制得的具有上下连通蜂窝状结构的材料。本发明通过冷冻液叔丁醇与氮化铝陶瓷粉末和晶须球磨混合制成陶瓷浆料,叔丁醇在自下而上的温度梯度方向上凝固形成垂直晶体,随后晶体在低压下升华留下孔隙。本发明采用氮化铝陶瓷材料作为导热增强体,显著提高了相变基体的热导率,百分之八十孔隙率之下热导率达21W/m‑K;设计的蜂窝状等级孔解决了相变材料相变泄露问题,同时与氮化钛纳米颗粒集成,实现了95%的全光谱吸收率。

Description

一种防泄漏蜂窝状等级孔陶瓷基光热储存材料及制备方法
技术领域
本发明属于储能材料,尤其涉及一种防泄漏蜂窝状等级孔陶瓷基光热储存材料及制备方法。
背景技术
发展可再生能源成为了当今重点关注的问题。太阳能因为清洁安全,储量丰富而成为可再生能源中考虑的重点对象。由于自然原因,昼夜交替、阴晴不定导致太阳能具有间歇不连续性,导致能量获取和利用在时间和空间不匹配。储热技术可有效解决这一问题,其中相变储热利用物质的相变特性进行热量的存储和释放,储热密度高,装置结构紧凑且现变过程接近等温,易于控制。但是,相变储热中的核心相变材料吸光能力弱,热导率低,固液相变时出现泄漏问题严重阻碍了相变储热在太阳能利用中的发展。在相变材料加入金银等金属颗粒可有效提高光谱吸收率,但是价格昂贵不利于大规模应用。目前提高相变材料热导率的手段主要是添加高导热填料或者将相变材料注入多孔基体中,高导热填料和多孔基体常采用碳基和金属材料,它们在高温下容易被氧化且易受熔盐腐蚀,因此需要选用耐腐蚀的陶瓷作为导热增强材料。对于相变材料固液相变过程中的泄露问题,可采用封装的方式,但是这样会增加传热介质与相变材料之间的热阻,降低传热效率的同时增加成本。对此,发展一种低成本具有高效吸光性、快速导热且防泄露的陶瓷基光热储存材料十分重要。
发明内容
发明目的:本发明的第一目的是提供一种防泄漏的具有蜂窝状等级孔的陶瓷基光热储存材料;本发明的第二目的在于提供上述陶瓷基光热储存材料的制备方法。
技术方案:本发明的一种防泄漏蜂窝状等级孔陶瓷基光热储存材料,按照质量百分比计包括以下组分:40%-75%的导热强化材料、0.5%-1%的光热材料和25%-60%的相变材料;其中,所述导热强化材料是由氮化铝粉末和氮化铝晶须通过冷冻溶剂混合、凝固并升华制得的具有上下连通蜂窝状结构的材料。
进一步的,所述相变材料包括石蜡、糖醇或硝酸盐中的任一种。
进一步的,所述光热材料为氮化钛纳米颗粒。平均粒径为50nm,光热材料为任何一种具有高光谱吸收特性的物质,氮化钛纳米颗粒具有等离激元体特性。
进一步的,所述由氮化铝粉末和氮化铝晶须的质量比为6~7:3~4。氮化铝粉末的粒径为2μm,具有良好的导热性能且耐高温耐腐蚀;单晶体氮化铝晶须的长度为5-15μm,直径为0.1-1μm,加入的氮化铝晶须增强了陶瓷骨架的韧性和导热性能。
上述的防泄漏蜂窝状等级孔陶瓷基光热储存材料的制备方法,(1)取氮化铝粉末、氮化铝晶须、烧结剂、聚乙烯醇缩丁醛酯和冷冻溶剂球磨混合得到浆料;
(2)取浆料置于模具中进行冷冻干燥得到生坯;
(3)将生胚置于热压炉中加热烧结得到蜂窝状等级孔氮化铝骨架;
(4)将氮化铝骨架上滴氮化钛与乙醇混合液,再置于马弗炉中烧制,得到蜂窝状氮化铝-氮化钛骨架,然后将氮化铝-氮化钛骨架与相变材料置于烘箱中浸渍,得到防泄漏蜂窝状等级孔陶瓷基光热储存材料。
进一步的,所述步骤(1)中,烧结剂、聚乙烯醇缩丁醛酯和冷冻溶剂的质量比为3:1:15~18。
进一步的,所述烧结剂为氧化钇、氧化铝、氧化镧、氟化钇、氟化钙中的任意一种;所述冷冻溶剂为叔丁醇。
进一步的,所述步骤(2)中,冷冻干燥的条件为真空度5-6Pa,温度-55~-50℃。
进一步的,所述步骤(3)中,加热烧结温度为1900~2000℃,保温时间为3~5h。骨架生胚的加热在惰性气体中进行,述惰性气氛优选为氮气、氩气、氦气中的一种,特别优选为氮气。
进一步的,所述步骤(4)中,氮化钛和乙醇的质量比为1~5:100。
进一步的,浸渍方法优选为真空浸渍,烘箱温度和时间由相变材料种类决定。
本发明的材料中,采用冷冻干燥方法制备了具有蜂窝状的上下贯通陶瓷基结构,冷冻液叔丁醇与氮化铝陶瓷粉末和晶须球磨混合制成陶瓷浆料,叔丁醇在自下而上的温度梯度方向上凝固形成垂直晶体,随后晶体在低压下升华留下孔隙形成定向蜂窝状陶瓷胚体。生胚经过高温烧结致密度增加,强度提高。晶体缺陷少的单晶体氮化铝晶须可减少声子的散射结合蜂窝状结构,极大提高了复合相变材料在纵向方向上的导热性,改进了因相变材料低导致的储/释热速率低的问题。形成的垂直孔细密,具有良好的抗泄露效果,解决了相变材料相变过程的泄露问题。另外,上下贯通的结构为相变材料提供了更多空间,保证了高蓄热密度。
该光热储存材料可以太阳辐射作为直接能源供应,并能高效全光谱吸收太阳辐射,内部蜂窝状等级孔快速吸收光之后可以通过自身连续的高导热通路将热量传输至整体,嵌入孔中的相变材料吸收热量进行储存。氮化钛优良的全光谱吸收特性与等级孔氮化铝骨架的高导热性以及相变材料的高蓄热密度实现了高效快速的光热转换与能量存储一体化,避免了储热系统的复杂性。本发明中的蜂窝状等级孔骨架可在相变材料作为支撑,可起到良好的防泄漏作用。
有益效果:与现有技术相比,本发明的显著优点为:(1)本发明采用具有良好高温稳定性的氮化铝陶瓷材料作为导热增强体,显著提高了相变基体的热导率,百分之八十孔隙率之下热导率达21W/m-K;(2)本发明所述的蜂窝状等级孔具有高开孔率,为相变材料提供了更多空间,与石蜡复合时,石蜡质量占比可达60%,在200℃温差下焓值达379J/g;(3)本发明设计制备的蜂窝状等级孔解决了相变材料相变泄露问题;(4)本发明将复合材料与氮化钛纳米颗粒集成,实现了95%的全光谱吸收率,加上骨架的高导热性,使得所述的光热储存材料具有高效的光热转换与热量储存能力。
附图说明
图1为实施例1中制备的蜂窝状等级孔氮化铝骨架形貌图;
图2为蜂窝状等级孔氮化铝骨架、石蜡、氮化铝骨架复合石蜡、氮化铝骨架负载氮化钛纳米颗粒复合石蜡全光谱平均吸收率;
图3为蜂窝状等级孔氮化铝骨架纵向热导率随孔隙率变化图。
具体实施方式
下面结合附图和实施例对本发明的技术方案作进一步详细说明。
实施例1
取7g平均粒径 2μm的氮化铝粉末、3g长度10μm,直径为0.5μm氮化铝晶须,0.3g氧化钇、0.1g聚乙烯醇缩丁醛酯,加入15.53g的叔丁醇,球磨混合2h;将球磨混合均匀的浆料倒入底部是铜板,四周是橡胶的模具中;
将倒入浆料的模具放入冷冻干燥箱进行冷冻干燥,-50℃冷冻两小时后,抽真空至5Pa进行干燥,两天后取出样品,脱去模具,制得生胚;将制备的生胚置于热压炉中氮气气氛下加热至1950℃,保温4小时,烧结后得到具有良好强度和硬度的蜂窝状等级孔氮化铝骨架,参见图3,采用激光导热仪测得孔隙率为80%时热导率为21W/m-K。配置质量比为1:100的氮化钛纳米颗粒和乙醇混合液,将制备的氮化铝骨架置于230℃加热台上反复滴4次氮化钛纳米颗粒与乙醇混合液,再置于350℃的马弗炉中烧制两小时,得到蜂窝状氮化铝-氮化钛骨架。
通过以上实验可以成功制得具有高热导率与高光谱吸收的蜂窝状氮化铝-氮化钛骨架,参见图1,a为横断面形貌,b为纵向断面形貌,孔隙率为80%,热导率为21W/m-K。将制备的氮化铝-氮化钛骨架与固体石蜡置于80℃烘箱中浸渍2小时,得到防泄漏蜂窝状等级孔陶瓷基光热储存材料。石蜡填充率为99%,质量占比60%,复合材料焓值达379J/g。
参见图2的对比可知,本发明实现了95%的全光谱吸收率,使得所述的光热储存材料具有高效的光热转换与热量储存能力。
实施例2
取6g平均粒径 2μm的氮化铝粉末、4g长度5μm,直径为1μm氮化铝晶须,0.3g氧化钇、0.1g聚乙烯醇缩丁醛酯,加入16.54g的叔丁醇,球磨混合2h;将球磨混合均匀的浆料倒入底部是铜板,四周是橡胶的模具中;
将倒入浆料的模具放入冷冻干燥箱进行冷冻干燥,-55℃冷冻两小时后,抽真空至6Pa进行干燥,两天后取出样品,脱去模具,制得生胚;将制备的生胚置于热压炉中氮气气氛下加热至1900℃,保温3小时,烧结后得到具有良好强度和硬度的蜂窝状等级孔氮化铝骨架。配置质量比为3:100的氮化钛纳米颗粒和乙醇混合液,将制备的氮化铝骨架置于230℃加热台上反复滴5次氮化钛纳米颗粒与乙醇混合液,再置于350℃的马弗炉中烧制两小时,得到蜂窝状氮化铝-氮化钛骨架。
将制备的氮化铝-氮化钛骨架与糖醇置于80℃烘箱中浸渍2小时,得到防泄漏蜂窝状等级孔陶瓷基光热储存材料。
实施例3
取7g平均粒径 2μm的氮化铝粉末、3g长度15μm,直径为0.1μm氮化铝晶须,0.3g氧化钇、0.1g聚乙烯醇缩丁醛酯,加入15.53g的叔丁醇,球磨混合2h;将球磨混合均匀的浆料倒入底部是铜板,四周是橡胶的模具中;
将倒入浆料的模具放入冷冻干燥箱进行冷冻干燥,-50℃冷冻两小时后,抽真空至5Pa进行干燥,两天后取出样品,脱去模具,制得生胚;将制备的生胚置于热压炉中氮气气氛下加热至2000℃,保温4小时,烧结后得到具有良好强度和硬度的蜂窝状等级孔氮化铝骨架。配置质量比为5:100的氮化钛纳米颗粒和乙醇混合液,将制备的氮化铝骨架置于230℃加热台上反复滴4次氮化钛纳米颗粒与乙醇混合液,再置于350℃的马弗炉中烧制两小时,得到蜂窝状氮化铝-氮化钛骨架。
将制备的氮化铝-氮化钛骨架与固体石蜡置于80℃烘箱中浸渍2小时,得到防泄漏蜂窝状等级孔陶瓷基光热储存材料。
通过以上实施例制备的蜂窝状等级孔陶瓷基光热储存材料经试验测试可知,本发明采用高导热陶瓷如氮化铝、碳化硅作为导热增强材料,具有耐高温、耐腐蚀稳定性,克服了碳基材料高温易氧化,金属材料受熔盐腐蚀的问题。且设计制备的多孔结构在相变材料可以起到支撑作用,达到防泄漏的效果。具有等离子体特性的氮化钛纳米颗粒,在可见光及近红外波段高效吸收,与陶瓷骨架集成,骨架可同时进行吸光与传热,显著提高了光热转换效率,与相变材料复合进一步实现了光热转换与热能存储一体化。

Claims (10)

1.一种防泄漏蜂窝状等级孔陶瓷基光热储存材料,其特征在于,按照质量百分比计包括以下组分:40%-75%的导热强化材料、0.5%-1%的光热材料和25%-60%的相变材料;其中,所述导热强化材料是由氮化铝粉末和氮化铝晶须通过冷冻溶剂混合、凝固并升华制得的具有上下连通蜂窝状结构的材料。
2.根据权利要求1所述的一种防泄漏蜂窝状等级孔陶瓷基光热储存材料,其特征在于:所述相变材料包括石蜡、糖醇或硝酸盐中的任一种。
3.根据权利要求1所述的一种防泄漏蜂窝状等级孔陶瓷基光热储存材料,其特征在于:所述光热材料为氮化钛纳米颗粒。
4.根据权利要求1所述的一种防泄漏蜂窝状等级孔陶瓷基光热储存材料,其特征在于:所述由氮化铝粉末和氮化铝晶须的质量比为6~7:3~4。
5.一种权利要求1-4任一项所述的防泄漏蜂窝状等级孔陶瓷基光热储存材料的制备方法,其特征在于,包括以下步骤:
(1)取氮化铝粉末、氮化铝晶须、烧结剂、聚乙烯醇缩丁醛酯和冷冻溶剂球磨混合得到浆料;
(2)取浆料置于模具中进行冷冻干燥得到生坯;
(3)将生胚置于热压炉中加热烧结得到蜂窝状等级孔氮化铝骨架;
(4)将氮化铝骨架上滴氮化钛与乙醇混合液,再置于马弗炉中烧制,得到蜂窝状氮化铝-氮化钛骨架,然后将氮化铝-氮化钛骨架与相变材料置于烘箱中浸渍,得到防泄漏蜂窝状等级孔陶瓷基光热储存材料。
6.根据权利要求5所述的防泄漏蜂窝状等级孔陶瓷基光热储存材料的制备方法,其特征在于:所述步骤(1)中,烧结剂、聚乙烯醇缩丁醛酯和冷冻溶剂的质量比为3:1:15~18。
7.根据权利要求6所述的防泄漏蜂窝状等级孔陶瓷基光热储存材料的制备方法,其特征在于:所述烧结剂为氧化钇、氧化铝、氧化镧、氟化钇、氟化钙中的任意一种;所述冷冻溶剂为叔丁醇。
8.根据权利要求5所述的防泄漏蜂窝状等级孔陶瓷基光热储存材料的制备方法,其特征在于:所述步骤(2)中,冷冻干燥的条件为真空度5-6Pa,温度-55~-50℃。
9.根据权利要求5所述的防泄漏蜂窝状等级孔陶瓷基光热储存材料的制备方法,其特征在于:所述步骤(3)中,加热烧结温度为1900~2000℃,保温时间为3~5h。
10.根据权利要求5所述的防泄漏蜂窝状等级孔陶瓷基光热储存材料的制备方法,其特征在于:所述步骤(4)中,氮化钛和乙醇的质量比为1~5:100。
CN202210047769.3A 2022-01-17 2022-01-17 一种防泄漏蜂窝状等级孔陶瓷基光热储存材料及制备方法 Pending CN114478047A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210047769.3A CN114478047A (zh) 2022-01-17 2022-01-17 一种防泄漏蜂窝状等级孔陶瓷基光热储存材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210047769.3A CN114478047A (zh) 2022-01-17 2022-01-17 一种防泄漏蜂窝状等级孔陶瓷基光热储存材料及制备方法

Publications (1)

Publication Number Publication Date
CN114478047A true CN114478047A (zh) 2022-05-13

Family

ID=81511429

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210047769.3A Pending CN114478047A (zh) 2022-01-17 2022-01-17 一种防泄漏蜂窝状等级孔陶瓷基光热储存材料及制备方法

Country Status (1)

Country Link
CN (1) CN114478047A (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101709119A (zh) * 2009-07-27 2010-05-19 张世忠 一种相变储能塑料
CN102531660A (zh) * 2010-12-31 2012-07-04 中国科学院金属研究所 一种以叔丁醇基冷冻升华法制备多孔陶瓷的方法
CN103086733A (zh) * 2013-01-16 2013-05-08 汕头大学 一种AlN晶须/Al2O3陶瓷基复合材料基板及其制备工艺
CN104072111A (zh) * 2013-03-29 2014-10-01 北京市理化分析测试中心 一种氧化铝蜂窝陶瓷的制备方法
CN105777169A (zh) * 2016-03-11 2016-07-20 河北中瓷电子科技有限公司 电子封装用氮化铝晶须增强氮化铝陶瓷复合材料及制法
CN111056846A (zh) * 2019-12-06 2020-04-24 西安交通大学 一种采用冷冻干燥和燃烧合成法快速制备的定向多孔氮化铝蜂窝陶瓷及其方法
CN111116209A (zh) * 2019-12-06 2020-05-08 西安交通大学 一种定向多孔氮化硅蜂窝陶瓷及其快速制备方法
CN112280538A (zh) * 2020-10-28 2021-01-29 武汉科技大学 一种晶须增韧相变蓄热微胶囊及其制备方法
CN112390653A (zh) * 2020-11-16 2021-02-23 中国工程物理研究院材料研究所 一种基于冷冻浇注成型的陶瓷粉体制备方法
CN112521158A (zh) * 2020-11-27 2021-03-19 南京航空航天大学 一种仿骨头等级孔陶瓷基光热储存材料及制备方法
CN112592695A (zh) * 2020-11-27 2021-04-02 南京航空航天大学 一种类贝壳结构仿生型复合相变储热材料及其制备方法
JP2022060905A (ja) * 2020-10-05 2022-04-15 株式会社U-Map AlN粒子分散樹脂成形体及びその製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101709119A (zh) * 2009-07-27 2010-05-19 张世忠 一种相变储能塑料
CN102531660A (zh) * 2010-12-31 2012-07-04 中国科学院金属研究所 一种以叔丁醇基冷冻升华法制备多孔陶瓷的方法
CN103086733A (zh) * 2013-01-16 2013-05-08 汕头大学 一种AlN晶须/Al2O3陶瓷基复合材料基板及其制备工艺
CN104072111A (zh) * 2013-03-29 2014-10-01 北京市理化分析测试中心 一种氧化铝蜂窝陶瓷的制备方法
CN105777169A (zh) * 2016-03-11 2016-07-20 河北中瓷电子科技有限公司 电子封装用氮化铝晶须增强氮化铝陶瓷复合材料及制法
CN111056846A (zh) * 2019-12-06 2020-04-24 西安交通大学 一种采用冷冻干燥和燃烧合成法快速制备的定向多孔氮化铝蜂窝陶瓷及其方法
CN111116209A (zh) * 2019-12-06 2020-05-08 西安交通大学 一种定向多孔氮化硅蜂窝陶瓷及其快速制备方法
JP2022060905A (ja) * 2020-10-05 2022-04-15 株式会社U-Map AlN粒子分散樹脂成形体及びその製造方法
CN112280538A (zh) * 2020-10-28 2021-01-29 武汉科技大学 一种晶须增韧相变蓄热微胶囊及其制备方法
CN112390653A (zh) * 2020-11-16 2021-02-23 中国工程物理研究院材料研究所 一种基于冷冻浇注成型的陶瓷粉体制备方法
CN112521158A (zh) * 2020-11-27 2021-03-19 南京航空航天大学 一种仿骨头等级孔陶瓷基光热储存材料及制备方法
CN112592695A (zh) * 2020-11-27 2021-04-02 南京航空航天大学 一种类贝壳结构仿生型复合相变储热材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
XIAOLEI LIU: "high thermal conductivity and high energy density compatible latent heat thermal energy storage enabled by porous AlN ceramics composites", 《INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER》 *
吴其胜: "《新能源材料 第2版》", 31 July 2017 *
章桥新等: "氮化铝晶须的形态和结晶方向", 《中国有色金属学报》 *

Similar Documents

Publication Publication Date Title
Xu et al. Bifunctional biomorphic SiC ceramics embedded molten salts for ultrafast thermal and solar energy storage
CN107326211A (zh) 一种高体份陶瓷‑金属层状复合材料及其制备方法
CN107935572B (zh) 一种具有特殊微结构的陶瓷材料及其制备方法
CN112521158B (zh) 一种仿骨头等级孔陶瓷基光热储存材料及制备方法
CN1830602A (zh) 一种制备高导热SiCp/Al电子封装材料的方法
CN104628392B (zh) 一种致密氮化铝-氮化硼复合材料的制备方法
CN105272229A (zh) 含烧绿石相锆酸钆粉体的陶瓷及其制备方法
CN103124882A (zh) 集热接收器及太阳能热发电装置
CN103119378A (zh) 集热接收器及太阳能热发电装置
US20210384426A1 (en) Phase change thermal storage ceramic and preparation method thereof
CN112592695A (zh) 一种类贝壳结构仿生型复合相变储热材料及其制备方法
CN115677364A (zh) 一种多层次碳化锆增强碳基复合材料及其制备方法和应用
CN114292628A (zh) 仿竹子相变储热材料及制备方法
Wang et al. MXene reconciles concurrent enhancement of thermal conductivity and mechanical robustness of SiC-based thermal energy storage composites
Xu et al. Al/Al2O3 form-stable phase change material for high temperature thermal energy storage
CN107940782A (zh) 一种低成本的太阳能热发电显热‑潜热复合储热陶瓷及其制备方法
CN101805201B (zh) 一种高抗热震性多孔碳化硅陶瓷的制备方法
CN114478047A (zh) 一种防泄漏蜂窝状等级孔陶瓷基光热储存材料及制备方法
Xu et al. Low‐temperature and pressureless in‐situ self‐assembled SiCw/SiC composite ceramics for solar thermal absorber and storage integration
CN116589299B (zh) 一种仿生年轮结构的多孔碳化硅陶瓷骨架及其制备方法和在高性能复合相变材料中的应用
CN116396089B (zh) 一种三维碳化硅/碳化钼陶瓷骨架增强碳基复合材料及其制备方法和应用
US20230117192A1 (en) Preparation method for w-cu composite plate with cu phase in finger-shaped gradient distribution
CN110373593B (zh) 一种碳氮化钛基复合金属陶瓷材料微波烧结工艺
CN104162661A (zh) 一种Al2O3-TiC-TiN微米复合陶瓷刀具材料及其微波烧结方法
CN101759436A (zh) 一种基于新型纳米四组份烧结助剂的碳化硅陶瓷制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220513

RJ01 Rejection of invention patent application after publication