CN114457435A - 一种静电纺丝装置及其应用 - Google Patents

一种静电纺丝装置及其应用 Download PDF

Info

Publication number
CN114457435A
CN114457435A CN202210143629.6A CN202210143629A CN114457435A CN 114457435 A CN114457435 A CN 114457435A CN 202210143629 A CN202210143629 A CN 202210143629A CN 114457435 A CN114457435 A CN 114457435A
Authority
CN
China
Prior art keywords
spinning
unit
gas
liquid
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210143629.6A
Other languages
English (en)
Inventor
陈柔羲
王湘麟
朱健
陈明伊
曾元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Huaxina Micro Technology Co.,Ltd.
Original Assignee
Southwest University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University of Science and Technology filed Critical Southwest University of Science and Technology
Priority to CN202210143629.6A priority Critical patent/CN114457435A/zh
Publication of CN114457435A publication Critical patent/CN114457435A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0069Electro-spinning characterised by the electro-spinning apparatus characterised by the spinning section, e.g. capillary tube, protrusion or pin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

本发明涉及一种静电纺丝装置及其应用,所述静电纺丝装置包括至少两个供液单元,各所述供液单元包括储液器和调节件,所述调节件与所述储液器连通,用于调节所述储液器的物质流出速率;依次连接的静态混合器、纺丝喷头和电压发生器,所述静态混合器与每个所述储液器分别连通;及,接收单元,所述接收单元对应所述纺丝喷头设置,用于收集从所述纺丝喷头流出的物质。本发明中,通过设置多个带有调节件的供液单元,通过控制纺丝原液的流速连续制备不同的纺丝液,可以实现连续快速进行纳米纤维的制备,同时,使用本发明的装置,不需要更换溶液供液单元元件,节省了耗材成本。

Description

一种静电纺丝装置及其应用
技术领域
本发明属于纳米纤维制备领域,尤其涉及一种静电纺丝装置及其应用。
背景技术
纳米纤维不但具备纳米颗粒的尺寸微小、比表面积高等特性,同时它还有机械稳定性好、纤维连续性好等优点。同时,由纳米纤维堆积而成的具有三维立体多孔结构的纳米纤维膜材料具有孔径小、孔隙率高、连通性好、堆积密度可控等优点,因而可以作为纳米科学和技术的基本构筑基元,广泛应用于环境、能源、生物医学、信息等领域。
纳米纤维的制备方法主要分为三大类。第一类为分子技术制备法,报导较多的是单管或多管纳米碳管束的制备采用的方法为CVD法;第二类为纺丝制备法,主要包括聚合物喷射静电拉伸纺丝法、熔喷法、海岛型多组分纺丝法、单螺杆混抽法和原纤化法;第三类为生物制备法,即利用细菌培养出更加细小的纤维素。其中,静电纺丝法、熔喷法、原纤化法以及双组分复合纺丝法是几种主要的以产业化的纳米纤维制备技术。比较其工艺特征以及产品特点可知,静电纺丝法以其制造装置简单、纺丝成本低廉、可纺物质种类繁多、工艺可控等优点,被公认为具有批量制造超细纳米纤维材料的最具潜力的重要方法之一。
新材料的快速发展和更新迭代,决定着研发速度也必须加快。然而,基于科学设计的材料制备一直是纳米纤维研发与应用的基础,传统的“经验指导实验”的试错法一直占据着纳米纤维研发的主流,导致新型纳米纤维材料的研发周期长、成本高、效率低。
CN106435779A公开了一种纳米纤维制备装置,该发明的纳米纤维制备装置包括一供液组件、一喷射组件、一供电组件和一接受组件,所述供液组件向所述喷射组件供液,所述喷射组件中的溶液通过金属导线与供电组件相连,所述喷射组件在所述供液组件的驱动下喷射溶液至所述接受组件,所述喷射组件包括一梯台状喷头,所述梯台状喷头的顶面以及相对的两侧面均具有数组平行排列的圆形微孔,溶液从所述平行排列的圆形微孔喷出后在电场力的作用下以平行排列的方式喷射在接受组件上,从而制备出高取向性的纳米纤维。所述纳米纤维制备装置结构简单,纺丝效率高。该发明的缺点在于不能得到可设计的多组分纳米纤维。
CN106215987A公开了一种多通道并流微流体芯片及基于该芯片的线性多相异质结构纤维的可控纺丝方法,该发明由在水凝胶湿纺工艺或静电纺丝工艺中供不同纺丝溶液单独流通的若干根分流毛细管和一根汇聚各分流毛细管流出的各纺丝溶液的汇流毛细管组成,各分流毛细管一端以相同深度从汇流毛细管一端口平行嵌插入汇流毛细管内固定,且对汇流毛细管的承插端口进行密封,各分流毛细管的另一端为整个多通道并流微流体芯片的入口,汇流毛细管的另一端为整个多通道并流微流体芯片的出口。该发明还提供了基于上述多通道并流微流体芯片的线性多相异质结构米纤维的可控纺丝方法。本发明能以降低微流体芯片的工艺难度和成本,提高实用耐用性,以连续、快速、便利的制作出各种线性多相异质结构微纳米纤维。该发明的缺点在于虽然提供了多通道并流微流体芯片,但是在纺丝时并不能控制不同通道纺丝溶液的速率,无法得到不同组分的纳米纤维。
综上所述,开发一种可以短时间内连续制备不同组分纳米纤维的静电纺丝高通量实验制备装备及其应用至关重要。
发明内容
针对现有技术的不足,本发明的目的在于提供一种静电纺丝装置及其应用,所述静电纺丝装置可以连续快速进行不同组分纳米纤维的制备。
为达此目的,本发明提供一种静电纺丝装置,所述静电纺丝装置包括:
至少两个供液单元,各所述供液单元包括储液器和调节件,所述调节件与所述储液器连通,用于调节所述储液器的物质流出速率;
依次连接的静态混合器、纺丝喷头和电压发生器,所述静态混合器与每个所述储液器分别连通;及,
接收单元,所述接收单元对应所述纺丝喷头设置,用于收集从所述纺丝喷头流出的物质。
可选地,所述静态混合器包括混合器壳体,所述混合器壳体形成液体流道,所述液体流道包括混合通道和至少两条进液通道,至少所述两条进液通道的一端与至少两个所述储液器一一对应连通,所述进液通道的另一端均与所述混合通道的一端连接,所述纺丝喷头包括喷头壳体,所述喷头壳体形成一条与所述混合通道的另一端连通的纺丝液流道。
可选地,所述静态混合器包括混合器壳体,所述混合器壳体内形成至少两条输液通道,至少两条所述输液通道的一端与至少两个所述储液器一一对应连通,所述纺丝喷头包括喷头壳体,所述喷头壳体形成至少两条纺丝液流道,至少两条所述纺丝液流道与至少两条所述输液通道的另一端一一对应连通。
可选地,所述接收单元具有至少一个纤维接收部,所述接收单元可活动地设置,以使得至少一个所述纤维接收部能够依次经过所述纺丝喷头的喷射区域。
可选地,所述供液单元的数目为2~5;和/或,
所述纺丝喷头的材质包括金属单质或合金;和/或,
所述电压发生器的正极与纺丝喷头连接;和/或,
所述电压发生器的负极和接收单元连接;和/或,
所述电压发生器的正极可产生0~60KV的正极静电电压,所述电压发生器的负极可产生-60~0KV的负极静电电压。
可选地,所述静电纺丝装置还包括机电控制单元,所述机电控制单元与所述调节件电性连接,用于控制所述调节件调节所述储液器中的物质进入所述静态混合器的输送速率和维持所述输送速率的输送时间;和/或,
所述静电纺丝装置还包括机电控制单元,所述机电控制单元与所述接收单元电性连接,用以控制所述接收单元运动以接收纺丝。
可选地,所述静电纺丝装置还包括架体,所述供液单元、所述静态混合器、所述纺丝喷头、所述电压发生器与所述接收单元均安装在所述架体上,所述架体上还安装有光照系统单元、抽风换气单元、环境温湿度系统单元中的至少一种。
可选地,所述静电纺丝装置还包括机电控制单元,所述机电控制单元与所述光照系统单元电性连接,用以控制所述光照系统单元开关;和/或,
所述静电纺丝装置还包括机电控制单元,所述机电控制单元与所述环境温湿度系统单元电性连接,用以控制所述环境温湿度系统单元调节纺丝环境的温度和湿度;和/或,
所述静电纺丝装置还包括机电控制单元,所述机电控制单元与所述抽风换气单元电性连接,用以控制所述抽风换气单元开启,以排除挥发出的溶剂。
此外,本发明提供一种制备纳米纤维的方法,包括以下步骤:
将多种纺丝原液中的至少一种所述纺丝原液的流速进行不等设置后,进行纺丝,得到纳米纤维。
可选地,将多种纺丝原液中的至少一种所述纺丝原液的流速进行不等设置后,进行纺丝的步骤包括:
将多种纺丝原液中的至少一种所述纺丝原液的流速进行不等设置;
将多种纺丝液混合后得到所述纺丝液;
将所述纺丝液进行纺丝。
本发明中,通过设置多个带有调节件的供液单元,通过控制纺丝原液的流速连续制备不同的纺丝液,可以实现连续快速进行纳米纤维的制备,同时,使用本发明的装置,不需要更换溶液供液单元元件,节省了耗材成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅为本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是本发明第一实施例静电纺丝装置图;
图2是本发明静态混合器和纺丝喷头的一实施例剖面图;
图3是本发明静态混合器和纺丝喷头的另一实施例剖面图;
图4是本发明静态混合器和纺丝喷头的又一实施例的剖面图;
图5是实施例7所得的纳米纤维的扫描电镜图;
图6是对比例1所得的纳米纤维的扫描电镜图;
图7是本发明第二实施例静电纺丝装置示例性的结构图;
图8是本发明第二实施例中机电单元结构示意图。
附图标号说明:
标号 名称 标号 名称
1 供液单元 101 储液器
102 调节件 2 静态混合器
201 混合器壳体 202 液体流道
2021 进液通道 2022 混合通道
2023 凸起件 203 输液通道
3 纺丝喷头 301 喷出件
302 喷头驱动结构 303 喷头壳体
304 纺丝液流道 4 电压发生器电
5 接收单元 501 固定轴
502 滚盘 503 接收驱动机构
504 轮盘 505 纤维接收
6 输液管 7 架体
701 纺丝架 702 纺丝柜
8 光照系统单元 9 抽风换气单元
10 环境温湿度系统单元 11 机电控制单元
111 处理器 112 通信总线
113 用户接口 114 网络接口
115 存储器
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,若本发明实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示) 下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本发明实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,全文中出现的“和/或”的含义,包括三个并列的方案,以“A和/或B”为例,包括A方案、或B方案、或A和B同时满足的方案。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
基于背景技术中,现有静电纺丝装置无法连续制备不同组分的纳米纺丝的技术缺陷,为达此目的,本发明提供一种静电纺丝装置,如图1所示,所述静电纺丝装置包括:
至少两个供液单元1,各所述供液单元1包括储液器101和调节件102,所述调节件102与所述储液器101连通,用于调节所述储液器101的物质流出速率;依次连接的静态混合器2、纺丝喷头3和电压发生器电4,所述静态混合器2与每个所述储液器101分别连通;及,接收单元5,所述接收单元5 对应所述纺丝喷头3设置,用于收集从所述纺丝喷头3流出的物质。图1至图8为本发明提出的静电纺丝装置的具体实施例。
本发明中,通过设置多个带有调节件102的供液单元1,通过纺丝原液的流速连续制备不同的纺丝液,可以实现连续快速进行纳米纤维的制备,同时,使用本发明的装置,不需要更换溶液供液单元1元件,节省了耗材成本。
使用高粘度的纺丝原液在极低的流速下,如果仅仅依靠简单的扩散作用或者简单混合是很难混合均匀的,因此,在本发明中一实施例中,如图2所示,所述静态混合器2包括混合器壳体201,所述混合器壳体201形成液体流道202,所述液体流道202包括混合通道2022和至少两条进液通道2021,至少两条所述进液通道2021的一端与至少两个所述储液器101一一对应连通,且每一个所述进液通道2021的另一端均与所述混合通道2022的一端连接,所述纺丝喷头3包括喷头壳体303,所述喷头壳体303形成一条与所述混合通道2022的另一端连通的纺丝液流道304。
需要说明的是,图2中,进液通道2021的具体数量与储液器101对应,可以是2条,也可以是3、4、5等等,当然,条数越多,代表均相纺丝的成分更复杂。
通过设置与储液器101一一对应的进液通道2021和将所有进液通道2021 连接的混合通道2022,可以实现将不同纺丝原液的动态条件下充分混合,短时间并可以得到均相纳米纺丝,提高制备效率。
在本发明中,所述混合通道2022的内壁沿液体流向方向设置多个凸起件 2023,用于将经过所述混合通道2022的液体混合,进一步提高混合效率。
在本发明中,如图3~图4所示,所述静态混合器2包括混合器壳体201,所述混合器壳体201内形成至少两条输液通道203,至少两条所述输液通道 203的一端与所述储液器101一一对应连通,所述纺丝喷头3包括喷头壳体 303,所述喷头壳体303形成至少两条纺丝液流道304,至少两条所述纺丝液流道304与至少两条所述输液通道203的另一端一一对应连通。
纺丝原液通过设置隔离的输液通道203往纺丝喷头3输送不同的纺丝原液,可以用于制备非均相纺丝产品。
具体地,在本发明中,至少两条所述输液通道203在所述混合壳体内并行设置,例如如图3所示,所述混合壳体内形成两条并行的输液通道203。
具体地,在本发明中,至少两条所述输液通道203层层套设,每两条相邻的所述输液通道203之间存在间隙,例如如图4所示,所述混合壳体内形成两条套设的所述输液通道203,两条所述输液通道203之间存在间隙。采取上述设置可以制备出由不同组分层层套嵌的非均相纺丝。
需要说明的是,至少两条可以是两条及以上,例如图3和图4中的输液通道203可以是两条,具体数量与储液器101对应,也可以是3、4、5等等,当然,条数越多,代表非均相纺丝的成分更复杂。
在本发明中,所述静态混合器2的长度和内径可根据纺丝工艺灵活设置。具体地,所述静态混合器2的长度为1~10cm,例如2cm、3cm、4cm、5cm、 6cm、7cm、8cm、9cm等。在本发明中,所述静态混合器2的内径为1-5mm,例如1.5mm、2mm、2.5mm、3mm、3.5mm、4mm、4.5mm等。将参数控制在上述范围可以使得制备的纺丝直径更加均匀。
需要说明的是,在本发明中,图2~图4所示的所述静态混合器2与所述纺丝喷头3连接方式既可以是可拆卸的分体式连接,采用是一体式连接。
在本发明中,所述接收单元5具有至少一个纤维接收部,所述接收单元5 可活动地设置,以使得至少一个所述纤维接收部能够依次经过所述纺丝喷头3 的喷射区域。本发明中,通过将接收单元5活动设置,可以使纺丝喷头3流出的不同组分的纳米纺丝分别收集,也可在一个纤维接收部接收满纳米纺丝时进行及时更换。
本发明中,所述接收单元5包括与每个所述纤维接收部连接的接收驱动机构503,用以驱动所述纤维接收部至少一个依次经过所述纺丝喷头3的喷射区域。
例如,如图1所示,所述接收单元5包括固定轴501和外接于所述固定轴501且可相对于所述固定轴501转动的滚盘502,所述纺丝喷头3在所述滚盘502喷射的位置即为纤维接收部,所述滚盘502与所述接收驱动机构503 连接。还例如,如图5所示,所述接收单元5包括两个分隔设置且可转动的轮盘504及纤维接收带505,所述纤维接收带505自两端的部分分别缠绕于所述两个轮盘504上,对应地,所述纺丝喷头3在所述纤维接收带505的喷射区域即为纤维接收部,采用图7设计时,可以进一步扩大纳米丝产品的接收面积,增大接收量。进一步,两个所述轮盘504中,至少其中一个与所述接收驱动机构503连接,所述接收驱动机构503可带动所述轮盘504转动。
在本发明中,所述供液单元1的数目为2~5,例如2、3、4、5。
需要说明的是,本发明中储液器101指的是可用于储存液体的容器,在基于实现储存功能的基础上,容器的选择不限,例如注射管等。本发明中的调节件102在基于实现调节储存器中液体的功能上,选择不限,比如流量调节阀门、推进泵等等。
在本发明中,所述储液器101与所述静态混合器2采用输液管6进行连通,所述输液管6的制备材料为塑料,例如聚乙烯、聚丙烯和聚氯乙烯中的至少一种。
在本发明中,所述纺丝喷头3的材质包括金属单质或合金。
在本发明中,所述电压发生器电4的正极与纺丝喷头3连接,使电压发生器电4为的纺丝喷头3提供正压。
在本发明中,所述电压发生器电4的负极可外接或者和所述接收单元5 连接。
在本发明中,所述电压发生器电4的正极可产生0~60KV的正极静电电压,例如5KV、10KV、15KV、20KV、25KV、30KV、35KV、40KV、 45KV、50KV、55KV等。所述电压发生器电4的负极可产生-60~0KV的负极静电电压,例如_5KV、-10KV、-15KV、-20KV、-25KV、-30 KV、-35KV、-40KV、-45KV、-50KV、-55KV等。在静电纺丝装置运转时,正极静电电压大于负极静电电压。
本发明中,如图7所示,所述静电纺丝装置还包括架体7,所述供液单元 1、所述静态混合器2、所述纺丝喷头3、所述电压发生器电4与所述接收单元5均安装在所述架体7上,所述架体7上还安装有光照系统单元8、抽风换气单元9、环境温湿度系统单元10中的至少一种。本发明通过设置光照系统单元8调节的纺丝环境的亮度,设置抽风换气单元9使抽取纺丝过程中的溶剂挥发,设置环境温湿度系统单元10调控纺丝环境中的温度和湿度。
具体地,所述架体7包括纺丝架701与所述纺丝架701连接的纺丝柜702,所述供液单元1、所述静态混合器2、所述纺丝喷头3、所述电压发生器电4 与所述接收单元5、所述光照系统单元8、所述抽风换气单元9和所述环境温湿度系统10均安装在所述纺丝架701。
在本发明中,所述纺丝喷头3包括喷出纺丝的喷出件301与所述喷出件 301连接的喷头驱动结构302,所述喷头驱动机构302用以驱动所述喷出件301 进行移动,使所述喷出件301的喷射区域对准所述纤维接收部,所述静态混合器2与所述喷出件301连接,相应地,所述喷出件301形成与所述静态混合器连通的纺丝液流道304。
具体地,所述光照系统单元8为LED灯,LED灯的位置、亮度可根据要求自由调节。
具体地,所述环境温湿度系统单元10包括温度检测器(图中未示出)、湿度检测器和加热器(图中未示出),所述温度检测器(图中未示出)、所述温度检测器均与所述加热器电性连接,具体地,所述加热器为热风机,所述湿度检测器与所述温度检测器置于所述加热器的内部,所述通过检测数据进行加热,从而达到控制纺丝环境的温度与湿度。
在本发明中,所述静电纺丝装置还包括机电控制单元11,通过设置机电单元可以实现纺丝的自动化控制。具体地,所述静电纺丝单元安装在所述纺丝柜702的内部。
具体地,所述机电控制单元11与所述调节件102电性连接,用于控制所述调节件102调节所述储液器101中的物质进入所述静态混合器2的输送速率和维持所述输送速率的输送时间。
具体地,所述机电控制单元11与所述接收单元5电性连接,进一步,所述机电控制单元11与所述接收驱动机构503连接,用以控制所述接收单元5 运动以接收纺丝,具体地,通过控制接收单元5运动使所述纤维接收部以此经过所述纺丝喷头3的喷射区域;
具体地,所述机电控制单元11与所述喷出件301电性连接,进一步,所述机电控制单元11与所述喷头驱动机构302连接,用于控制喷出件301移动的方向和速度。
具体地,所述机电控制单元11与所述光照系统单元8电性连接,用以控制所述光照系统单元8开关。
具体地,所述机电控制单元11与所述环境温湿度系统单元10电性连接,具体地,所述机电控制单元11同时与所述温度检测器、湿度检测器和加热器连接,多用以控制所述环境温湿度系统单元10调节纺丝环境的温度和湿度。
具体地,所述机电控制单元11与所述抽风换气单元9电性连接,用以控制所述抽风换气单元9开启,以排除挥发出的溶剂。
参照图8,所述机电控制单元11包括:处理器111,例如中央处理器111 (CentralProcessing Unit,CPU),通信总线112、用户接口113,网络接口 114,存储器115。其中,通信总线112用于实现这些组件之间的连接通信。用户接口113可以包括显示屏(Display)、输入单元比如键盘(Keyboard),可选用户接口113还可以包括标准的有线接口、无线接口。网络接口114可选的可以包括标准的有线接口、无线接口(如无线保真(WIreless-FIdelity,WI-FI)接口)。存储器115可以是高速的随机存取存储器115(Random Access Memory,RAM)存储器115,也可以是稳定的非易失性存储器115(Non-Volatile Memory,NVM),例如磁盘存储器115。存储器115可选的还可以是独立于前述处理器111的存储装置。
本领域技术人员可以理解,图8中示出的结构并不构成对机电单元的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
存储器115中可以包括操作系统、数据存储模块、网络通信模块、用户接口模块以及静电纺丝控制程序,所述静电纺丝控制程序包括调节件控制模块、接收单元控制模块、光照系统控制模块、环境温湿度控制模块、抽风换气单元控制模块和喷头件控制模块中的至少一种。
其中,所述调节件102控制模块用于控制所述调节件102调节所述储液器101中的物质进入所述静态混合器2的输送速率和维持所述输送速率的输送时间。
所述接收单元控制模块用以控制所述接收单元5运动以接收纺丝;
所述喷头件控制模块用于控制喷头件移动的方向和速度。
所述光照系统控制模块用以控制所述光照系统单元8开关。
环境温湿度控制模块用以控制所述环境温湿度系统单元10调节纺丝环境的温度和湿度。
抽风换气单元9控制模块用以控制所述抽风换气单元9开启,以排除挥发出的溶剂。
在图8所示的机电单元中,网络接口114主要用于与其他设备进行数据通信;用户接口113主要用于与用户进行数据交互;本发明机电单元中的处理器111、存储器115可以设置机电单元中,所述机电单元通过处理器111调用存储器115中存储的静电纺丝控制程续。
此外,本发明提供一种采用图1~图8所示的任意设备制备纳米纤维的方法,包括以下步骤:
将多种纺丝原液中的至少一种所述纺丝原液的流速进行不等设置后,进行纺丝,得到纳米纤维。
需要说明的是,流速呈不等设置值的是指在不同的时间段,纺丝原液的流动速度不一样。
本发明中,通过将所述丝原液在混合时的流速呈不等设置制备出不同组分的均相纳米纺丝或非均相纳米纺丝。
在本发明中,采用不同储液器101分别放置不同纺丝原液,采用对应的调节件102分别调控每种所述纺丝原液的出液流速,流速为0~10mL/h,例如0.1mL/h、0.5mL/h、1mL/h、2mL/h、3mL/h、4mL/h、5mL/h、6mL/h、7mL/h、 8mL/h、9mL/h等,其中至少两种的所述纺丝原液的流速不为0。采取上述流速范围可以进一步提高纳米纺丝直径的均匀度。
本发明中,采用纺丝喷头3进行纺丝,所述纺丝喷头3纺丝时静电电压为0~60V,采用接收单元5接收纺丝。
本发明中,所述电压发生器电4可为接收单元5提供-60~0V的电压,使其在0~60V的条件下接收纳米纺丝。当然接收单元5的电压在始终要低于所述纺丝喷头3的电压,在满足也此条件下,所述接收单元5也可以不连接电压发生器电4。
同时,在纺丝过程中,采用抽风换气系统9排出挥发的溶剂,所述环境温湿度系统单元10调节纺丝环境的温度和湿度,在纺丝环境光照条件不佳时,开启光照系统单元进行照明。
在开始纺丝步骤之前,可以在机电控制单元11中输入纺丝参数,具体包括纺丝原液流出速率、喷头件301的移动速率和方向、接收单元5的运动速率、光照亮度和纺丝环境的温度和湿度中、接收单元5的静电电压、纺丝喷头3的静电电压中的至少一种,使其纺丝过程全程自动化控制。
具体地,如需得到非均相的纳米纺丝,将不同的纺丝原液置于不同的储液器101中,采用调节件102调整分别不同纺丝原液的出液速率,采用图3 或图4中的静态混合器2和纺丝喷头3组合,直接进行纺丝即可。
如需得到均相纳米纺丝,则将多种纺丝原液中的至少一种所述纺丝原液的流速进行不等设置后,进行纺丝的步骤包括:
步骤S10:将多种纺丝原液中的至少一种所述纺丝原液的流速进行不等设置;
步骤S20:将多种纺丝液混合得到所述纺丝液;
步骤S30:将所述纺丝液进行纺丝。
制备均相纺丝时,步骤S20中,采用图2中静态混合器和纺丝喷头3进行混合后得到均相的纺丝液。
以下结合具体实施例和附图对本发明的技术方案作进一步详细说明,应当理解,以下实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
本实施例提供一种采用图7的静电纺丝装置制备纳米纤维的方法,包括如下步骤:
(1)调制10wt%的聚丙烯腈(PAN)/N,N-二甲基甲酰胺(DMF)溶液和10wt%的聚偏氟乙烯(PVDF)/DMF溶液,再将0.1wt%(相对于溶质)亚甲基蓝加入PVDF/DMF溶液中进行染色,得到PAN/DMF和PVDF/DMF这两种纺丝原液,并分别置于不同储液器101中;
(2)机电控制单元11通过调节件102将PAN/DMF纺丝原液的出液速率设置为0,0.16,0.32,0.4,0.48,0.64,0.8mL/h,PVDF/DMF纺丝原液以对应设定的梯度出液速率为0.8,0.64,0.48,0.4,0.32,0.16,0mL/h,每组出液速率对应的持续时间为0.5h,再调节纤维接收单元5更换接受接收部的时间并将无纺布附在接受接收部上,再将纺丝喷头3与接收单元5分别与电压发生器电4正极和负极相连接,调节电压为15KV;
(3)开启静电纺丝装置,在不同时间段内,PAN/DMF和PVDF/DMF这两种纺丝原液分别通过不同的纺丝原液从储液器101进入静态混合器2中,混合;
(4)将上述纺丝原液的混合液输送到纺丝喷头3(本实施例使用如图2所示的静态混合器2和纺丝喷头3),进行纺丝,并在在纤维接收部收集纤维,连续制备组分比例分别为0:10、2:8、4:6、5:5、6:4、8:2、10:0的 PAN/PVDF复合纳米纤维(通过所得纳米纤维颜色进行初步判断)。
实施例2
本实施例还提供一种依赖图7的静电纺丝装置制备纳米纤维的方法,所述方法包括如下步骤:
(1)调制10wt%的PVDF/DMF溶液和10wt%的聚乙烯吡咯烷酮(PVP) /DMF溶液,将10wt%(相对于溶质)无机纳米颗粒(SiO2纳米颗粒)和0.1wt%的亚甲基蓝加入PVDF/DMF溶液中,再将10wt%Al2O3纳米颗粒加入PVP/DMF 溶液中,超声分散,得到PAN/SiO2/DMF和PVP/Al2O3/DMF这两种纺丝原液,并分别置于不同储液器101中;
(2)机电控制单元11通过控制调节件102将PAN/DMF纺丝原液的出液速率设置为0,0.16,0.32,0.4,0.48,0.64,0.8mL/h,PVP/DMF纺丝原液以对应设定的梯度出液速率为0.8,0.64,0.48,0.4,0.32,0.16,0mL/h,每组出液速率对应的持续时间为0.5h,再调节纤维接收单元5更换接受纤维接收部的时间并将吸油纸附在纤维接收部上,再将纺丝喷头3与接收单元5分别与电压发生器电4正负极相连接,调节电压为15KV;
(3)开启静电纺丝装置,在不同时间段内,PAN/SiO2/DMF和 PVP/Al2O3/DMF这两种纺丝原液分别通过不同的纺丝原液输送单元进入静态混合器2中,混合;
(4)将上述纺丝原液混合液的输送到纺丝喷头3(本实施例使用的静态混合器2和纺丝喷头3的剖面图如图2所示),在纤维接收部进行纺丝,连续制备组组分比例分别为0:10、2:8、4:6、5:5、6:4、8:2、10:0的 PVDF-SiO2/PVP-Al2O3复合纳米纤维(通过所得纳米纤维颜色进行初步判断)。
实施例3
本实施例与实施例2的区别仅在于将Al2O3纳米颗粒分散液替换为Zn(Ac)2溶液。
实施例4
本实施例还提供一种依赖图7静电纺丝装置制备纳米纤维的方法,所述方法包括如下步骤:
(1)调制10wt%的四乙氧基硅烷(TEOS)的经酸(HCl,1wt%)水解的胶体溶液和10wt%的聚乙烯醇(PVA)水溶液,将10wt%SiO2纳米颗粒和 0.1wt%的亚甲基蓝加入PVA水溶液中,超声分散,得到TEOS和PVA这两种纺丝原液,并分别置于不同储液器101中;
(2)机电控制单元11通过控制纺丝原液输送控制单元将TEOS纺丝原液的出液速率设置为0,0.16,0.32,0.4,0.48,0.64,0.8mL/h,PVA纺丝原液以对应设定的梯度出液速率为0.8,0.64,0.48,0.4,0.32,0.16,0mL/h,每组出液速率对应的持续时间为0.5h,调节纤维接收单元5更换纤维接收部的时间并将无纺布附在纤维接收部上,再将纺丝喷头3与电压发生器电4正极相连接,接收单元5与地线相连接,调节电压25KV;
(3)开启静电纺丝装置,在不同时间段内,TEOS和PVA这两种纺丝原液分别通过不同的纺丝原液输送单元进入静态混合器2中,混合;
(4)将上述纺丝原液混合液输送到纺丝喷头3(本实施例使用的静态混合器2和纺丝喷头3的剖面图如图2所示),在接收单元5进行纺丝,连续制备7 组比例分别为0:10、2:8、4:6、5:5、6:4、8:2、10:0的TEOS/PVA复合纳米纤维。
本实施例还提供了一系列不同形貌的SiO2纳米纤维,制备方法具体包括:将步骤(4)所得的TEOS/PVA纳米纤维进行热处理,热处理在空气气氛下完成,温度为850℃,升温速率为10℃/min。
实施例5
本实施例还提供一种依赖图7静电纺丝装置制备纳米纤维的方法,所述方法包括如下步骤:
(1)调制30wt%的阿拉伯树胶(Gum)水溶液和10wt%的PVA水溶液,将0.1wt%亚甲基蓝加入Gum水溶液,得到Gum和PVA这两种纺丝原液以及水,并分别置于不同储液器101中;
(2)机电控制单元11通过控制调节件102将Gum纺丝原液的出液速率设置为0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9mL/h,PVA纺丝原液以对应设定的梯度出液速率为0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1mL/h,首先控制水的输入速率恒定为0mL/h,每组出液速率对应的持续时间设定为0.5 h,再调节纤维接收部更换接受器的时间并将无纺布附在纤维接收部上,并将纺丝喷头3与电压发生器电4正极相连接,接收单元5与负极相连接,调节电压 25KV;
(3)开启静电纺丝装置,在不同时间段内,Gum和PVA这两种纺丝原液以及水分别通过不同的纺丝原液输送单元进入静态混合器2中,混合;
(4)将上述纺丝原液混合液输送到纺丝喷头3,开启电压进行纺丝,4.5h 后得到9组Gum/PVA复合纳米纤维(本实施例中静态混合器2与纺丝喷头3采用图2结构,其中,静态混合器2含有3条进液通道2011);
(5)在上述(2)基础上,保持Gum、PVA溶液的速率以及持续时间设置不变,仅设置水对应设定的梯度出液速率为0,0.17,0.33,0.5,0.67,0.83, 1.0,1.17,1.33mL/h,调节电压25KV,并开启设备进行纺丝。此阶段亦可完成9组Gum/PVA复合纳米纤维。如此连续制备18组Gum/PVP复合纳米纤维(通过所得纳米纤维颜色进行初步判断)。
实施例6
本实施例还提供一种依赖图7静电纺丝装置制备纳米纤维的方法,所述方法包括如下步骤:
(1)调制10wt%的PAN溶液、10wt%的PVDF溶液和10wt%的聚甲基丙烯酸甲酯(PMMA)溶液,将0.1wt%亚甲基蓝加入PAN溶液,得到PAN、PVDF 和PMMA三种纺丝原液并分别置于不同储液器101中;
(2)机电控制单元11通过控制调节件102将三种纺丝原液的出液速率和持续时间分别设置为0.33mL/h和0.5h,将无纺布附在纤维接收部上,再将纺丝喷头3与电压发生器电4正极相连接,接收单元5与负极相连接,调节电压20 KV;
(3)开启静电纺丝装置,将PAN、PVDF和PMMA三种纺丝原液分别通过不同的储液器101进入静态混合器2中,混合;
(4)将上述纺丝原液混合液输送到纺丝喷头3(本实施例中静态混合器2 与纺丝喷头3采用图2结构,其中,静态混合器2含有3条进液通道2011),在接收单元5进行纺丝,得到质量比为1:1:1的PAN/PVDF/PMMA复合纳米纤维(通过所得纳米纤维颜色进行初步判断)。
实施例7-8
实施例7-8与实施例1的区别在于静态混合器2的不同,实施例7-8使用的静态混合器2和纺丝喷头3分别如图3和图4所示。
实施例9-10
实施例9-10与实施例6的区别在于出液速率不同,实施例9-10的出液速率分别为10mL/h和15mL/h。
对比例1
本对比例与实施例1的区别在于采用现有技术中的静电纺丝装置(例如佛山轻子纳米E02型纺丝机)进行PAN/PVDF复合纳米纤维的制备,具体方法如下:
(1)调制一系列总固含量均为10wt%的PAN/PVDF混合溶液,其中PAN 和PVDF的质量比分别为0:10、2:8、4:6、5:5、6:4、8:2、10:0。七种溶液分别置于七个储液单元中。
(2)取PAN/PVDF质量比为0:10溶液置于纺丝仪上,调节速率为1mL/h,电压20KV。将无纺布附在纤维接收单元上,再将纺丝喷头与电压发生器正极相连接,接收单元与负极相连接。
(3)开启纺丝装置进行纺丝,持续30min可得一个样品。
(4)更换溶液和接收单元,采用相同的参数设置依次对剩余溶液分别纺丝。如此可得组分不同的7种纳米纤维。
对比例2
本实施例与实施例1的区别仅在于,所述静电纺丝装置中不包含静态混合器,供液单元直接与常规单孔喷丝头相连进行纺丝。
性能测试
将实施例1-10和对比例1-2进行如下测试:
(1)制备相应的复合纳米纤维的耗时。
(2)将所得的纳米纤维进行扫描电镜测试。
相关数据汇总于表1中。
表1
Figure BDA0003507125440000171
Figure BDA0003507125440000181
分析表1数据可知,实施例1-4仅仅需要3.5小时便完成7组溶液的纺丝,实施例5需要9小时完成18组溶液的纺丝,而对比例1完成与实施例1相同的纺丝任务,根据经验至少耗时10小时,证明了本发明所述制备方法可以实现连续快速进行纳米纤维的制备。同时,使用本发明的装置,不需要更换溶液存储单元、溶液输送单元,节省了耗材成本。
图5和图6分别是实施例7和对比例1所得的纳米纤维的扫描电镜图,分析图可知只用本发明设备获得的纤维直径更大,并且均匀。
分析实施例9-10和实施例6可知,实施例10无法进行稳定的纺丝过程,难以获得连续纳米纤维,证明出液速率控制在0~10mL/h利于纺丝原液均匀混合,得到性能稳定的纤维。对比例2未设置静态混合器,所得纤维为非均相复合纤维。
申请人声明,本发明通过上述实施例来说明本发明的详细方法,但本发明并不局限于上述详细方法,即不意味着本发明必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围。

Claims (10)

1.一种静电纺丝装置,其特征在于,所述静电纺丝装置包括:
至少两个供液单元,各所述供液单元包括储液器和调节件,所述调节件与所述储液器连通,用于调节所述储液器的物质流出速率;
依次连接的静态混合器、纺丝喷头和电压发生器,所述静态混合器与每个所述储液器分别连通;及,
接收单元,所述接收单元对应所述纺丝喷头设置,用于收集从所述纺丝喷头流出的物质。
2.如权利要求1所述的静电纺丝装置,其特征在于,所述静态混合器包括混合器壳体,所述混合器壳体形成液体流道,所述液体流道包括混合通道和至少两条进液通道,至少所述两条进液通道的一端与至少两个所述储液器一一对应连通,所述进液通道的另一端均与所述混合通道的一端连接,所述纺丝喷头包括喷头壳体,所述喷头壳体形成一条与所述混合通道的另一端连通的纺丝液流道。
3.如权利要求1所述的静电纺丝装置,其特征在于,所述静态混合器包括混合器壳体,所述混合器壳体内形成至少两条输液通道,至少两条所述输液通道的一端与至少两个所述储液器一一对应连通,所述纺丝喷头包括喷头壳体,所述喷头壳体形成至少两条纺丝液流道,至少两条所述纺丝液流道与至少两条所述输液通道的另一端一一对应连通。
4.如权利要求1所述的静电纺丝装置,其特征在于,所述接收单元具有至少一个纤维接收部,所述接收单元可活动地设置,以使得至少一个所述纤维接收部能够依次经过所述纺丝喷头的喷射区域。
5.如权利要求1所述的静电纺丝装置,其特征在于,所述供液单元的数目为2~5;和/或,
所述纺丝喷头的材质包括金属单质或合金;和/或,
所述电压发生器的正极与纺丝喷头连接;和/或,
所述电压发生器的负极和接收单元连接;和/或,
所述电压发生器的正极可产生0~60KV的正极静电电压,所述电压发生器的负极可产生-60~0KV的负极静电电压。
6.如权利要求1所述的静电纺丝装置,其特征在于,所述静电纺丝装置还包括机电控制单元,所述机电控制单元与所述调节件电性连接,用于控制所述调节件调节所述储液器中的物质进入所述静态混合器的输送速率和维持所述输送速率的输送时间;和/或,
所述静电纺丝装置还包括机电控制单元,所述机电控制单元与所述接收单元电性连接,用以控制所述接收单元运动以接收纺丝;和/或,
所述静电纺丝装置还包括机电控制单元,所述机电控制单元与所述纺丝喷头电性连接,用以控制纺丝喷头移动的方向和速度。
7.如权利要求1所述的静电纺丝装置,其特征在于,所述静电纺丝装置还包括架体,所述供液单元、所述静态混合器、所述纺丝喷头、所述电压发生器与所述接收单元均安装在所述架体上,所述架体上还安装有光照系统单元、抽风换气单元、环境温湿度系统单元中的至少一种。
8.如权利要求7所述的静电纺丝装置,其特征在于,所述静电纺丝装置还包括机电控制单元,所述机电控制单元与所述光照系统单元电性连接,用以控制所述光照系统单元开关;和/或,
所述静电纺丝装置还包括机电控制单元,所述机电控制单元与所述环境温湿度系统单元电性连接,用以控制所述环境温湿度系统单元调节纺丝环境的温度和湿度;和/或,
所述静电纺丝装置还包括机电控制单元,所述机电控制单元与所述抽风换气单元电性连接,用以控制所述抽风换气单元开启,以排除挥发出的溶剂。
9.一种制备纳米纤维的方法,其特征在于,包括以下步骤:
将多种纺丝原液中的至少一种所述纺丝原液的流速进行不等设置后,进行纺丝,得到纳米纤维。
10.如权利要求9所述的制备纳米纤维的方法,其特征在于,将多种纺丝原液中的至少一种所述纺丝原液的流速进行不等设置后,进行纺丝的步骤包括:
将多种纺丝原液中的至少一种所述纺丝原液的流速进行不等设置;
将多种纺丝液混合后得到所述纺丝液;
将所述纺丝液进行纺丝。
CN202210143629.6A 2022-02-16 2022-02-16 一种静电纺丝装置及其应用 Pending CN114457435A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210143629.6A CN114457435A (zh) 2022-02-16 2022-02-16 一种静电纺丝装置及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210143629.6A CN114457435A (zh) 2022-02-16 2022-02-16 一种静电纺丝装置及其应用

Publications (1)

Publication Number Publication Date
CN114457435A true CN114457435A (zh) 2022-05-10

Family

ID=81414051

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210143629.6A Pending CN114457435A (zh) 2022-02-16 2022-02-16 一种静电纺丝装置及其应用

Country Status (1)

Country Link
CN (1) CN114457435A (zh)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101225554A (zh) * 2007-01-15 2008-07-23 中国科学院化学研究所 多流体复合静电纺丝装置
CN202187099U (zh) * 2011-06-02 2012-04-11 北京服装学院 内置静态混合器的纺丝组件
CN102500259A (zh) * 2011-10-28 2012-06-20 彭墘精 射嘴静态色浆混合器
CN103451750A (zh) * 2012-05-30 2013-12-18 湖南博弈飞装备新材料研究所 静电纺丝设备及制备中空纳米纤维的方法
CN104894664A (zh) * 2015-05-23 2015-09-09 宁波格林美孚新材料科技有限公司 一种混合超临界气体的熔体静电纺丝装置及工艺
CN106119996A (zh) * 2016-09-07 2016-11-16 厦门大学 用于制备复合纤维膜的同轴电纺多射流喷头
CN107419344A (zh) * 2017-09-06 2017-12-01 陈慧忠 一种防粘连纺丝组件
CN107447262A (zh) * 2017-09-06 2017-12-08 陈慧忠 一种防粘连螺杆挤压机
CN107604450A (zh) * 2017-10-10 2018-01-19 桐乡市易知简能信息技术有限公司 一种熔融静电纺丝装置
CN107829154A (zh) * 2017-11-03 2018-03-23 宁波奉化飞天人精密模具设计有限公司 一种聚合物熔体混合塔
CN109371479A (zh) * 2018-12-21 2019-02-22 青岛科技大学 一种溶液熔体共纺多喷头静电纺丝集成装置
CN110004506A (zh) * 2019-04-17 2019-07-12 中国科学院长春应用化学研究所 一种微流控纺丝装置及方法
CN110339742A (zh) * 2019-07-10 2019-10-18 南方科技大学 高通量直写设备及直写方法、液相法制备系统
CN111441092A (zh) * 2020-05-15 2020-07-24 西安工程大学 一种静电纺丝喷头及具有其的静电纺丝系统及其工作方法
CN211161924U (zh) * 2019-12-10 2020-08-04 南方科技大学 一种基于多粉体的金属纤维高通量制备装置

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101225554A (zh) * 2007-01-15 2008-07-23 中国科学院化学研究所 多流体复合静电纺丝装置
CN202187099U (zh) * 2011-06-02 2012-04-11 北京服装学院 内置静态混合器的纺丝组件
CN102500259A (zh) * 2011-10-28 2012-06-20 彭墘精 射嘴静态色浆混合器
CN103451750A (zh) * 2012-05-30 2013-12-18 湖南博弈飞装备新材料研究所 静电纺丝设备及制备中空纳米纤维的方法
CN104894664A (zh) * 2015-05-23 2015-09-09 宁波格林美孚新材料科技有限公司 一种混合超临界气体的熔体静电纺丝装置及工艺
CN106119996A (zh) * 2016-09-07 2016-11-16 厦门大学 用于制备复合纤维膜的同轴电纺多射流喷头
CN107419344A (zh) * 2017-09-06 2017-12-01 陈慧忠 一种防粘连纺丝组件
CN107447262A (zh) * 2017-09-06 2017-12-08 陈慧忠 一种防粘连螺杆挤压机
CN107604450A (zh) * 2017-10-10 2018-01-19 桐乡市易知简能信息技术有限公司 一种熔融静电纺丝装置
CN107829154A (zh) * 2017-11-03 2018-03-23 宁波奉化飞天人精密模具设计有限公司 一种聚合物熔体混合塔
CN109371479A (zh) * 2018-12-21 2019-02-22 青岛科技大学 一种溶液熔体共纺多喷头静电纺丝集成装置
CN110004506A (zh) * 2019-04-17 2019-07-12 中国科学院长春应用化学研究所 一种微流控纺丝装置及方法
CN110339742A (zh) * 2019-07-10 2019-10-18 南方科技大学 高通量直写设备及直写方法、液相法制备系统
CN211161924U (zh) * 2019-12-10 2020-08-04 南方科技大学 一种基于多粉体的金属纤维高通量制备装置
CN111441092A (zh) * 2020-05-15 2020-07-24 西安工程大学 一种静电纺丝喷头及具有其的静电纺丝系统及其工作方法

Similar Documents

Publication Publication Date Title
Niu et al. Fiber generators in needleless electrospinning
US8282873B2 (en) Controlled electrospinning of fibers
CN102597341B (zh) 纺丝区域温度湿度可调的、制造纳米纤维的电纺丝装置
US8088324B2 (en) Electrospray/electrospinning apparatus and method
CN1876902B (zh) 一种气氛可控的静电纺丝装置及静电纺丝方法
KR101478184B1 (ko) 전기방사 노즐 팩 및 이를 포함하는 전기방사 시스템
WO2012109215A2 (en) Apparatuses and methods for the production of microfibers and nanofibers
CN113774501B (zh) 基于微流体涂层技术制备皮芯纤维的装置及其使用方法
CN1630740A (zh) 用于制造热塑性非织造布与粘合布的成形系统
CN1013505B (zh) 冷却熔融纺丝材料的装置
CN206015157U (zh) 一种用于制备复合纤维膜的同轴电纺多射流喷头
CN106012053A (zh) 静电纺丝微纳米纤维装置及制备微纳米纤维的方法
US20220243363A1 (en) Device and method for applying nanofibers and/or microfibers onto a substrate, and system comprising the devices
CN106048749B (zh) 一种直线形槽状无针式静电纺丝装置及纺丝方法
CN114457435A (zh) 一种静电纺丝装置及其应用
CN102517670B (zh) 表面活性剂溶液环流同轴电纺制备聚丙烯腈纳米纤维的方法
CN104611774B (zh) 一种静电纺丝装置
CN103551588B (zh) 一种基于单通道电纺丝法制备金属纳米纤维管的方法
WO2012109240A2 (en) Split fiber producing devices and methods for the production of microfibers and nanofibers
CN115159992B (zh) 一种泰勒锥的形成和复合陶瓷纤维制备装置与方法
Jiang et al. Surface-porous and hollow poly (lactic acid)(SPH-PLA) and surface-porous and lotus-root-like PLA (SPL-PLA) nanofibres: preparation, quantitative analysis, and modelling
CN209456617U (zh) 一种多重力场耦合的静电纺丝结构及设备
CN111005078A (zh) 一种气流辅助静电纺丝喷头及其使用方法
KR101466287B1 (ko) 나노섬유 제조장치
KR20110077891A (ko) 전기방사용 노즐블록 및 이를 포함하는 전기방사장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20221116

Address after: 518000 501, Unit 1, Building 1, Xinchen New Material Pilot Industrialization Base, No. 300, Shutianpu Road, Shutianpu Community, Matian Street, Guangming District, Shenzhen, Guangdong

Applicant after: Shenzhen Huaxina Micro Technology Co.,Ltd.

Address before: No. 1088, Xueyuan Avenue, Taoyuan Street, Nanshan District, Shenzhen City, Guangdong Province

Applicant before: SOUTH University OF SCIENCE AND TECHNOLOGY OF CHINA

TA01 Transfer of patent application right