CN114438104B - SlGRAS9 gene for regulating and controlling sugar content of tomato fruits and application of SlGRAS9 gene in cultivation of tomatoes with high sugar content - Google Patents

SlGRAS9 gene for regulating and controlling sugar content of tomato fruits and application of SlGRAS9 gene in cultivation of tomatoes with high sugar content Download PDF

Info

Publication number
CN114438104B
CN114438104B CN202210281557.1A CN202210281557A CN114438104B CN 114438104 B CN114438104 B CN 114438104B CN 202210281557 A CN202210281557 A CN 202210281557A CN 114438104 B CN114438104 B CN 114438104B
Authority
CN
China
Prior art keywords
slgras9
gene
tomato
ser
sugar content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210281557.1A
Other languages
Chinese (zh)
Other versions
CN114438104A (en
Inventor
李正国
时源
刘豫东
梁琴
成玉林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN202210281557.1A priority Critical patent/CN114438104B/en
Publication of CN114438104A publication Critical patent/CN114438104A/en
Application granted granted Critical
Publication of CN114438104B publication Critical patent/CN114438104B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8245Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Abstract

The invention discloses a SlGRAS9 gene for regulating and controlling the sugar content of tomato fruits and application thereof in cultivation of tomatoes with high sugar content. The nucleotide sequence of the SlGRAS9 gene is shown as SEQ ID NO. 1. According to the invention, through CRISPR/cas9 gene editing technology, the endogenous gene SlGRAS9 of the tomato is knocked out in the tomato, the glucose, fructose and sucrose content in the knocked-out tomato fruit is obviously increased, and the malic acid and citric acid content is obviously reduced.

Description

SlGRAS9 gene for regulating and controlling sugar content of tomato fruits and application of SlGRAS9 gene in cultivation of tomatoes with high sugar content
Technical Field
The invention belongs to the technical field of genetic engineering, and particularly relates to a SlGRAS9 gene for regulating and controlling the sugar content of tomato fruits and application thereof in cultivation of tomatoes with high sugar content.
Background
Fruits and vegetables are used as an important component of dietary balance and are rich in various nutrients beneficial to human health, including saccharides, vitamins, minerals, antioxidants and the like. The quality of the fruits and vegetables is closely related to the economic value thereof, mainly comprising aspects of appearance, mouthfeel, flavor, nutritional ingredients, texture and the like, so that research on improving the quality of the fruits and vegetables is of great application value.
Sugar compounds are important energy source substances, are main sources of heat energy required by all organisms to sustain life activities, and the energy supplied by sugar in diet accounts for 60% -70% of the total heat energy required by human body. Sugar compounds are main factors influencing the flavor and the nutritional value of fruits and vegetables, and are one of important indexes for measuring the quality and the economic value of fruits and vegetables.
Tomato is an important commercial crop, and is widely planted worldwide as a fresh fruit and vegetable because of delicious fruit quality, rich nutrition and unique flavor. The quality of tomato fruits is largely divided into two aspects, namely appearance quality and intrinsic flavor. Appearance quality includes fruit shape, size, color, etc., while intrinsic flavor is primarily determined by the sweetness, acidity, pulp hardness, and juice content of the fruit. The content of sugar and organic acid components is closely related to the flavor quality of the tomato fruits, and the proper sugar-acid ratio brings about the unique flavor of the tomato fruits. For tomato breeders, the key to improving tomato fruit flavor is how to increase the sweetness on the fruit mouthfeel. At present, the traditional breeding method is long in time consumption and unstable in effect, and quite large blindness and unpredictability often exist.
Disclosure of Invention
Aiming at the defects in the prior art, the invention provides the SlGRAS9 gene for regulating and controlling the sugar content of the tomato fruits and the application thereof in cultivating the tomatoes with high sugar content, and the CRISPR/cas9 gene editing technology is adopted to knock out the endogenous gene SlGRAS9 of the tomatoes in the tomatoes, so that the tomato fruits with high sugar content are obtained, the flavor of the fruits is obviously improved, and the quality and economic value of the tomato fruits are greatly improved.
In order to achieve the above purpose, the technical scheme adopted by the invention for solving the technical problems is as follows:
a nucleotide sequence of the SlGRAS9 gene for regulating and controlling the sugar content of tomato fruits is shown as SEQ ID NO. 1.
Furthermore, the SlGRAS9 gene can also be a nucleotide sequence which has more than 80 percent of homology with the sequence shown as SEQ ID NO.1 and codes the same functional protein.
The amino acid sequence of the protein coded by the SlGRAS9 gene is shown as SEQ ID NO. 2.
A CRISPR/cas9 base editor comprising a vector and an sgRNA that recognizes a target sequence of a SlGRAS9 gene.
Further, the nucleotide sequence of the vector is shown as SEQ ID NO. 3.
A recombinant agrobacterium comprising a CRISPR/cas9 base editor as described above.
A preparation for increasing sugar content of tomato fruit comprises active ingredient capable of inhibiting SlGRAS9 gene.
The SlGRAS9 gene, a base editor or recombinant agrobacterium tumefaciens is applied to improving the sugar content of tomato fruits.
The SlGRAS9 gene, the base editor or the recombinant agrobacterium tumefaciens is applied to cultivation of tomato varieties with high sugar content in fruits or improvement of tomato germplasm resources.
The invention has the beneficial effects that:
according to the invention, through CRISPR/cas9 gene editing technology, the endogenous gene SlGRAS9 of the tomato is knocked out in the tomato, the glucose, fructose and sucrose content in the knocked-out tomato fruit is obviously increased, and the malic acid and citric acid content is obviously reduced. In addition, the CRISPR/cas9 gene editing technology is adopted, so that the content of glucose, fructose and sucrose in the tomato fruits can be improved efficiently and stably, and the sweet taste of the tomato fruits is greatly enhanced, thereby improving the quality of the fruits. Provides genetic resources and strategies for innovation of tomato germplasm resources, and aims to better meet the demands of consumers.
Drawings
FIG. 1 is a constructed Cas9/pORE CRISPR/Cas9 expression vector;
FIG. 2 shows the positive identification result of a SlGRAS9 gene CRISPR/cas9 gene knockout plant;
FIG. 3 is an edit of a SlGRAS9 knockout line;
FIG. 4 shows the results of detection of sucrose, fructose, glucose, malic acid and citric acid content in fruits of wild type tomato and SlGRAS9 knockout strain in red ripe stage;
FIG. 5 shows the results of detection of the content of soluble solids, acidity and sugar acid ratio in fruits of wild type tomato and the SlGRAS9 knockout strain in red ripe stage.
Detailed Description
The following description of the embodiments of the present invention is provided to facilitate understanding of the present invention by those skilled in the art, but it should be understood that the present invention is not limited to the scope of the embodiments, and all the inventions which make use of the inventive concept are protected by the spirit and scope of the present invention as defined and defined in the appended claims to those skilled in the art.
EXAMPLE 1 construction of a SlGRAS9 Gene CRISPR/cas9 Gene knockout System
1. Design of target sequence of SlGRAS9 Gene
Target site design was performed using the http:// cas9.Cbi. Pku. Edu. Cn/index. Jsp website. The sequence, position, GC content, potential off-target position and other relevant information of all candidate targets can be evaluated in the target design result, and the target with GC content in the range of 45% -70% and position in the front 2/3 region of the gene CDS (after ATG but not on the last exon) which is not matched with at least three bases in any other position in the genome can be selected.
2. Construction of sgRNA expression cassette of SlGRAS9 Gene
(1) The SlGRAS9 gene sgRNA expression cassette is obtained by using an overlay PCR method. First, a first round of PCR was performed using the gRNA expression vector U26 as a template, primerSTAR hi-fi enzyme and using primer pair 1: U26-HindIII-F:
Figure BDA0003557132110000041
and U26-target-R1:
Figure BDA0003557132110000042
(underlined is the vector linker sequence) and primer pair 2: U26-target-F2:
Figure BDA0003557132110000043
and U26-NheI-R: />
Figure BDA0003557132110000044
PCR amplification was performed (underlined as vector linker sequence) to introduce the target sequence downstream of the U6-26 promoter and upstream of the sgRNA sequence, the amplification system of which is shown in Table 1.
TABLE 1 first round PCR amplification System
Figure BDA0003557132110000045
The amplification procedure is as follows: pre-denaturation at 98℃for 1min; denaturation at 98℃for 10s, annealing at 55℃for 15s, elongation at 72℃for 1min,35 cycles; extending at 72℃for 5min.
(2) And then performing a second round of PCR, and using the two PCR products of the first round as templates, and using U26-HindIII-F and U26-target-R1 to amplify to obtain a complete sgRNA expression cassette containing the promoter, the target and the sgRNA.
The second round of PCR was performed using the two PCR products of the first round as templates and PrimerSTAR high fidelity enzyme and U26-HindIII-F and U26-target-R1 amplification primers, and the reaction system was as shown in Table 2:
TABLE 2 second round PCR amplification System
Figure BDA0003557132110000051
The PCR amplification procedure is as follows: pre-denaturation at 98℃for 1min; denaturation at 98℃for 10s, annealing at 55℃for 15s, elongation at 72℃for 1min,35 cycles; extending at 72℃for 5min.
3. Cloning of the sgRNA expression cassette into Cas 9/port vector
The Cas9/pORE vector is cut by double enzymes of HindIII and NheI, and then the sgRNA expression cassette is connected to the Cas9/pORE final vector by adopting a homologous recombination technology, wherein the nucleotide sequence of the Cas9/pORE final vector is shown as SEQ ID NO.3, and the constructed vector map is shown as figure 1.
Example 2 Effect of knockout of the SlGRAS9 Gene on sugar content in tomato fruit
1. Screening of engineering bacteria
(1) The SlGRAS9 gene CRISPR/cas9 knockout system constructed in the example 1 is transformed into escherichia coli DH5 alpha, screening is carried out on a flat plate containing 50 mug/mL of kanamicin, monoclonal strains are selected, then colony of the monoclonal strains is subjected to PCR amplification identification, and positive strains are screened by sequencing;
(2) And (3) extracting plasmids from positive strains by shaking, transforming agrobacterium tumefaciens GV3101, screening on a flat-plate culture medium containing 50 mug/mL of kanamycin and 100 mug/mL of rifampicin, and selecting monoclonal to perform colony PCR verification, wherein the strains after verification are engineering bacteria of the recombinant expression vector.
2. Transformation of tomato explants by leaf disc method using agrobacterium containing recombinant plasmid
(1) Seed disinfection
Placing the wild tomato seeds into a sterile vessel, pouring an appropriate amount of 70% ethanol water solution by volume percent into the vessel, soaking for 30s, and sterilizing the surfaces of the seeds; pouring out ethanol water solution, washing the seeds twice with sterile water, pouring sodium hypochlorite solution with 5% of available chlorine, soaking for 15min, and continuously shaking during the soaking to ensure that each seed is sufficiently disinfected; washing 3-4 times with sterile water, pouring water from the seeds, transferring the seeds to a seed culture medium, and placing the seeds into an illumination incubator under the culture conditions that: illuminating for 14 hours at 25 ℃; dark for 10 hours at 20 ℃; the light intensity was 250. Mu. Mol.m -2 ·s -1 The method comprises the steps of carrying out a first treatment on the surface of the Relative humidity, 80%; culturing for 8-10 days.
(2) Pre-culture of explants
After germination of the seeds for about 9-10 days, the seedlings were placed on sterile filter paper for optimal period of explant growth immediately before the true leaves of tomato seedlings were grown, the cotyledons and hypocotyls were cut with sterilized surgical blades and carefully transferred to KCMS preculture medium with sterile forceps for dark culture for one day.
(3) Agrobacterium infection explant
100. Mu.L of stored Agrobacterium were added to 20mL of LB (containing 20. Mu.L of 50. Mu.g/mL kanamycin and 40. Mu.L of 100. Mu.g/mL rifampicin), and incubated overnight at 28℃at 230rpm until the absorbance OD was reached 600 About 0.8 to about 1.0. Sucking 1mL of bacterial liquid, centrifuging at 5000rpm for 5min, discarding supernatant, washing precipitate with KCMS liquid culture medium once, and diluting bacterial liquid to OD with KCMS liquid culture medium 600 About 0.1. A drop of agrobacterium dilution is dripped at the wound of the explant by using a pipetting gun, the bacterial liquid is not required to be sucked out, and the plate is sealed and then placed on a KCMS preculture medium for dark culture for 2 days.
(4) Differentiation and rooting of explants
After 2 days of co-cultivation of the explants with Agrobacterium, the explants were carefully transferred from KCMS preculture medium to primary screening 2Z medium with sterile forceps and the primary screening medium was changed every 15 days. When shoots to be differentiated were grown from the explants, the explants were transferred to 1Z medium for culture, with medium changed every 15 days. After culturing twice on 1Z medium, the differentiated callus grows buds with independent main stems, and is cut and inserted into rooting medium ENR for transplanting after rooting.
(5) Identification of transgenic positive plants
The transgenic T0 generation seedlings are confirmed whether to be transgenic positive plants (Cas 9-F:5'-TTAGGTTTACCCGCCAATA-3'; cas-R: 5'-GAGTAGACAAGTGTGTCGTGCT-3') by using CRISPR/Cas9 vector detection primers Cas9-F/Cas-R, and the detection results are shown in figure 2.
As shown in FIG. 2, the genomic DNA of T0 generation seedlings was used as a template for PCR amplification, and the fragment of 500bp size detected by electrophoresis was determined as a transgenic positive plant. And then, taking genomic DNA of the T0 generation seedling as a template, designing a detection primer containing a target site for PCR amplification (GRAS 9-Cas9check-F:5'-CTGAATCATTTTATTAATGCCT-3'; GRAS9-Cas9 check-R: 5'-GATAAAACCCCGTTCGTG-3'), recovering a target strip after agarose gel electrophoresis, constructing a purified PCR product on a pEASY-Blunt-Zero cloning vector for monoclonal sequencing, carrying out 20 monoclonal sequencing on each corresponding transgenic positive plant, and comparing a sequencing result with a wild type sequence to obtain the editing condition of the T0 generation plant.
Sequencing heterozygous T0 generation seeds, screening by kanamycin, sowing continuously, analyzing the editing condition of T1 generation plants (the same as the editing detection method of T0 generation plants), selecting 2-3 homozygous lines with different editing forms, collecting seeds, screening by kanamycin, sowing to T2 generation for subsequent research, wherein the mutation modes of the selected lines are respectively that four bases are deleted and one base is inserted, as shown in figure 3.
3. Determination of fruit sugar and organic acid content of SlGRAS9 gene knockout plant
After the homozygous mutant is obtained, fruit samples of wild type and gene knockout plants in the red ripe stage are collected for sugar content determination. 0.1g of fruit sample is weighed, and the tomato fruit soluble sugar and the organic acid are extracted by taking chromatographic pure (Ar) methanol as an extracting agent, and 3 biological repeats are set.
The specific process is as follows: samples were derivatized with methoxyamine hydrochloride and BSTFA. The measurement was performed using Shimadzu GC 2010 pro. The chromatographic parameters are SPL temperature 250 ℃, split ratio 10:1, a step of; the chromatographic column flow rate is 1mL/min, the temperature is raised to the initial temperature of 130 ℃, the temperature is raised to 185 ℃ at 5 ℃/min, the temperature is raised to 190 ℃ at 0.5 ℃/min, the temperature is raised to 300 ℃ at 8 ℃/min, and the temperature is kept for 10min. The detector temperature was 320℃with a hydrogen flow of 40mL/min, a dry air flow of 400mL/min, and a nitrogen flow of 40mL/min. The results of the glucose, fructose, sucrose, malic acid and citric acid content measurements are shown in FIG. 4.
In FIG. 4, WT is wild type tomato, CR#1 and CR#2 are two SlGRAS9 knockout tomatoes. According to the test results of fig. 4, after knocking out the SlGRAS9 gene, the Sucrose (Sucrose), fructose (Fructose) and Glucose (Glucose) contents in the tomato fruits are significantly increased, while the Malic acid (Malic acid) and Citric acid (Citric acid) contents are significantly decreased.
4. Determination of soluble solid content of SlGRAS9 knocked-out fruit
Picking fruits in the red ripeness period of wild type and SlGRAS9 knockout plants, setting 3 biological repetitions, cleaning the surfaces of the fruits with distilled water, wiping the fruits, putting the tomato fruits into gauze for forced extrusion, extruding the juice into a clean beaker to obtain a crude extract of soluble solids, and measuring the crude extract by using a handheld refractometer, wherein the measurement results of the content of the soluble solids, the acidity and the sugar acid ratio are shown in figure 5.
In FIG. 5, WT is wild type tomato and CR#1 is a SlGRAS9 knockout tomato. As shown in fig. 5, the soluble solids content (Total soluble solid) of the tomato fruits of the SlGRAS9 knockout line was significantly increased, the acidity (Acid) was reduced, and the sugar-Acid Ratio (Ratio) was significantly increased.
In conclusion, the gene editing technology is used for knocking out the SlGRAS9 gene in the tomatoes, so that the sugar content of the tomatoes can be obviously improved, the acidity of the tomatoes can be reduced, the sweet taste of the tomatoes is greatly enhanced, and the fruit quality is improved. Provides good reference and reference for innovation of tomato germplasm resources, and aims to better meet the demands of consumers.
Sequence listing
<110> university of Chongqing
<120> SlGRAS9 gene for regulating and controlling sugar content of tomato fruits and application thereof in cultivation of tomatoes with high sugar content
<160> 3
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1797
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 1
atgtcctcgg atttctccgg cggagttcca gactttcacg gcggcgccgg tagatccagc 60
ttgattccga tgaacaactc ccagccacaa attcaattaa cccaacgccc tgacggagtt 120
tctcagaatc tccaccggag acctatgttc atcgggaaac ggtcactcgc agcctttcaa 180
cagcagcaac agtttcagtt tctacaacaa caacagcagc aacaaggttt gggattttat 240
ctacgtaacg tgaagcctag aaattaccag caggcatctc caatttctcc tctagattac 300
tctgtttctt cctcgttgat ttcatctgaa ttttctccga tgactccacg ccatcctctc 360
ccgatttcca cggcgaacac gaacggggtt ttatcttctg gtaacccgaa ttgttcagca 420
gttgcttctt acctaaatca ggtacagaac agtttatacc aggaatcaga ggaaaaaatg 480
atgaatcgac tgcatgagtt agagaaacag ctcctagaag acaacaatga ggaggaagaa 540
gatacagtct ctgttgtgac taacaacgac gagtggtcgg aaacaataaa gaatctgatt 600
actccgacta gtaaccactt atccccggca tcatctacgt cttcatgttc ttcttctatg 660
gaatctccgc cagtatcttc tcccaggcag tctattgtcg aagctgctac cgcaataatc 720
gacggaaaaa ccaatgttgc agtacagatc ctcacgcgcc tcgcacaggt agctgatgtt 780
agagggtctt ccgaacagcg gctgacggcg tacatggttt cagcactccg atcgcgcgtg 840
aactccacgg agtacccacc gcccgtgatg gagctgcgta gcaaagagca cgcagtttca 900
gctcaaaacc tctacgagat atccccgtgt ttcaagctag gatttatggc agctaatttc 960
gccattgttg aagctgtagc tgatcatccc tcaaacaaaa ttcacgtcat tgatttcgac 1020
ataggacaag gtggacaata cttgcattta ctacacgcgc tagcttccaa gaaaacagat 1080
tatcccatca gcttaagaat cacggcgatc acaacagagt tcacggtcag agctgatcac 1140
agtttaaaat ccattgaaga tgatctgaga agtctagcaa acaaaatcgg tatttccttg 1200
attttcaaag taatttcacg tacaatcacc gatttgagta ggggaaaatt agggattgaa 1260
cacgacgaag ctttagcagt gaatttcgca tacagattat atagattacc cgacgagagc 1320
gtaacaacag agaatctaag agacgagctt ctccggcgag tgaaggggtt atcaccaaag 1380
gtggtgacat tagtagagca agagttgaac gggaacacgg cggcgtttgt ggcgcgtgta 1440
aacgaggcgt gtggatatta cggagcattg ttggattcac tggatgcaac tgtatcaaga 1500
gaggaaacgg gtcgggtcaa gatcgaagaa gggctgagtc gtaaattaac aaactcggta 1560
gcgtgtgaag gtagggatcg tttggagaga tgcgaggtgt ttggtaaatg gagggcccga 1620
atgagtatgg ctgggttcgg gccgaggccc atgagtcaac aaattgctga ttcactgctt 1680
aagaggctta actcgggccc acgtggcaat ccaggattca atgtgaatga acaaagtggg 1740
ggtattaggt ttggatggat gggaaaaacc ctcaccgttg cttctgcttg gtgttaa 1797
<210> 2
<211> 598
<212> PRT
<213> Artificial sequence (Artificial Sequence)
<400> 2
Met Ser Ser Asp Phe Ser Gly Gly Val Pro Asp Phe His Gly Gly Ala
1 5 10 15
Gly Arg Ser Ser Leu Ile Pro Met Asn Asn Ser Gln Pro Gln Ile Gln
20 25 30
Leu Thr Gln Arg Pro Asp Gly Val Ser Gln Asn Leu His Arg Arg Pro
35 40 45
Met Phe Ile Gly Lys Arg Ser Leu Ala Ala Phe Gln Gln Gln Gln Gln
50 55 60
Phe Gln Phe Leu Gln Gln Gln Gln Gln Gln Gln Gly Leu Gly Phe Tyr
65 70 75 80
Leu Arg Asn Val Lys Pro Arg Asn Tyr Gln Gln Ala Ser Pro Ile Ser
85 90 95
Pro Leu Asp Tyr Ser Val Ser Ser Ser Leu Ile Ser Ser Glu Phe Ser
100 105 110
Pro Met Thr Pro Arg His Pro Leu Pro Ile Ser Thr Ala Asn Thr Asn
115 120 125
Gly Val Leu Ser Ser Gly Asn Pro Asn Cys Ser Ala Val Ala Ser Tyr
130 135 140
Leu Asn Gln Val Gln Asn Ser Leu Tyr Gln Glu Ser Glu Glu Lys Met
145 150 155 160
Met Asn Arg Leu His Glu Leu Glu Lys Gln Leu Leu Glu Asp Asn Asn
165 170 175
Glu Glu Glu Glu Asp Thr Val Ser Val Val Thr Asn Asn Asp Glu Trp
180 185 190
Ser Glu Thr Ile Lys Asn Leu Ile Thr Pro Thr Ser Asn His Leu Ser
195 200 205
Pro Ala Ser Ser Thr Ser Ser Cys Ser Ser Ser Met Glu Ser Pro Pro
210 215 220
Val Ser Ser Pro Arg Gln Ser Ile Val Glu Ala Ala Thr Ala Ile Ile
225 230 235 240
Asp Gly Lys Thr Asn Val Ala Val Gln Ile Leu Thr Arg Leu Ala Gln
245 250 255
Val Ala Asp Val Arg Gly Ser Ser Glu Gln Arg Leu Thr Ala Tyr Met
260 265 270
Val Ser Ala Leu Arg Ser Arg Val Asn Ser Thr Glu Tyr Pro Pro Pro
275 280 285
Val Met Glu Leu Arg Ser Lys Glu His Ala Val Ser Ala Gln Asn Leu
290 295 300
Tyr Glu Ile Ser Pro Cys Phe Lys Leu Gly Phe Met Ala Ala Asn Phe
305 310 315 320
Ala Ile Val Glu Ala Val Ala Asp His Pro Ser Asn Lys Ile His Val
325 330 335
Ile Asp Phe Asp Ile Gly Gln Gly Gly Gln Tyr Leu His Leu Leu His
340 345 350
Ala Leu Ala Ser Lys Lys Thr Asp Tyr Pro Ile Ser Leu Arg Ile Thr
355 360 365
Ala Ile Thr Thr Glu Phe Thr Val Arg Ala Asp His Ser Leu Lys Ser
370 375 380
Ile Glu Asp Asp Leu Arg Ser Leu Ala Asn Lys Ile Gly Ile Ser Leu
385 390 395 400
Ile Phe Lys Val Ile Ser Arg Thr Ile Thr Asp Leu Ser Arg Gly Lys
405 410 415
Leu Gly Ile Glu His Asp Glu Ala Leu Ala Val Asn Phe Ala Tyr Arg
420 425 430
Leu Tyr Arg Leu Pro Asp Glu Ser Val Thr Thr Glu Asn Leu Arg Asp
435 440 445
Glu Leu Leu Arg Arg Val Lys Gly Leu Ser Pro Lys Val Val Thr Leu
450 455 460
Val Glu Gln Glu Leu Asn Gly Asn Thr Ala Ala Phe Val Ala Arg Val
465 470 475 480
Asn Glu Ala Cys Gly Tyr Tyr Gly Ala Leu Leu Asp Ser Leu Asp Ala
485 490 495
Thr Val Ser Arg Glu Glu Thr Gly Arg Val Lys Ile Glu Glu Gly Leu
500 505 510
Ser Arg Lys Leu Thr Asn Ser Val Ala Cys Glu Gly Arg Asp Arg Leu
515 520 525
Glu Arg Cys Glu Val Phe Gly Lys Trp Arg Ala Arg Met Ser Met Ala
530 535 540
Gly Phe Gly Pro Arg Pro Met Ser Gln Gln Ile Ala Asp Ser Leu Leu
545 550 555 560
Lys Arg Leu Asn Ser Gly Pro Arg Gly Asn Pro Gly Phe Asn Val Asn
565 570 575
Glu Gln Ser Gly Gly Ile Arg Phe Gly Trp Met Gly Lys Thr Leu Thr
580 585 590
Val Ala Ser Ala Trp Cys
595
<210> 3
<211> 11649
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 3
gatcgttcaa acatttggca ataaagtttc ttaagattga atcctgttgc cggtcttgcg 60
atgattatca tataatttct gttgaattac gttaagcatg taataattaa catgtaatgc 120
atgacgttat ttatgagatg ggtttttatg attagagtcc cgcaattata catttaatac 180
gcgatagaaa acaaaatata gcgcgcaaac taggataaat tatcgcgcgc ggtgtcatct 240
atgttactag atccctaggg aagttcctat tccgaagttc ctattctctg aaaagtatag 300
gaacttcttt gcgtattggg cgctcttggc ctttttggcc accggtcgta cggttaaaac 360
caccccagta cattaaaaac gtccgcaatg tgttattaag ttgtctaagc gtcaatttgt 420
ttacaccaca atatatcctg ccaccagcca gccaacagct ccccgaccgg cagctcggca 480
caaaatcacc actcgataca ggcagcccat cagtccacta gacgctcacc gggctggttg 540
ccctcgccgc tgggctggcg gccgtctatg gccctgcaaa cgcgccagaa acgccgtcga 600
agccgtgtgc gagacaccgc agccgccggc gttgtggata cctcgcggaa aacttggccc 660
tcactgacag atgaggggcg gacgttgaca cttgaggggc cgactcaccc ggcgcggcgt 720
tgacagatga ggggcaggct cgatttcggc cggcgacgtg gagctggcca gcctcgcaaa 780
tcggcgaaaa cgcctgattt tacgcgagtt tcccacagat gatgtggaca agcctgggga 840
taagtgccct gcggtattga cacttgaggg gcgcgactac tgacagatga ggggcgcgat 900
ccttgacact tgaggggcag agtgctgaca gatgaggggc gcacctattg acatttgagg 960
ggctgtccac aggcagaaaa tccagcattt gcaagggttt ccgcccgttt ttcggccacc 1020
gctaacctgt cttttaacct gcttttaaac caatatttat aaaccttgtt tttaaccagg 1080
gctgcgccct gtgcgcgtga ccgcgcacgc cgaagggggg tgccccccct tctcgaaccc 1140
tcccggcccg ctctcgcgtt ggcagcatca cccataattg tggtttcaaa atcggctccg 1200
tcgatactat gttatacgcc aactttgaaa acaactttga aaaagctgtt ttctggtatt 1260
taaggtttta gaatgcaagg aacagtgaat tggagttcgt cttgttataa ttagcttctt 1320
ggggtatctt taaatactgt agaaaagagg aaggaaataa taaatggcta aaatgagaat 1380
atcaccggaa ttgaaaaaac tgatcgaaaa ataccgctgc gtaaaagata cggaaggaat 1440
gtctcctgct aaggtatata agctggtggg agaaaatgaa aacctatatt taaaaatgac 1500
ggacagccgg tataaaggga ccacctatga tgtggaacgg gaaaaggaca tgatgctatg 1560
gctggaagga aagctgcctg ttccaaaggt cctgcacttt gaacggcatg atggctggag 1620
caatctgctc atgagtgagg ccgatggcgt cctttgctcg gaagagtatg aagatgaaca 1680
aagccctgaa aagattatcg agctgtatgc ggagtgcatc aggctctttc actccatcga 1740
catatcggat tgtccctata cgaatagctt agacagccgc ttagccgaat tggattactt 1800
actgaataac gatctggccg atgtggattg cgaaaactgg gaagaagaca ctccatttaa 1860
agatccgcgc gagctgtatg attttttaaa gacggaaaag cccgaagagg aacttgtctt 1920
ttcccacggc gacctgggag acagcaacat ctttgtgaaa gatggcaaag taagtggctt 1980
tattgatctt gggagaagcg gcagggcgga caagtggtat gacattgcct tctgcgtccg 2040
gtcgatcagg gaggatattg gggaagaaca gtatgtcgag ctattttttg acttactggg 2100
gatcaagcct gattgggaga aaataaaata ttatatttta ctggatgaat tgttttagta 2160
cctagatgtg gcgcaacgat gccggcgaca agcaggagcg caccgacttc ttccgcatca 2220
agtgttttgg ctctcaggcc gaggcccacg gcaagtattt gggcaagggg tcgctggtat 2280
tcgtgcaggg caagattcgg aataccaagt acgagaagga cggccagacg gtctacggga 2340
ccgacttcat tgccgataag gtggattatc tggacaccaa ggcaccaggc gggtcaaatc 2400
aggaataagg gcacattgcc ccggcgtgag tcggggcaat cccgcaagga gggtgaatga 2460
atcggacgtt tgaccggaag gcatacaggc aagaactgat cgacgcgggg ttttccgccg 2520
aggatgccga aaccatcgca agccgcaccg tcatgcgtgc gccccgcgaa accttccagt 2580
ccgtcggctc gatggtccag caagctacgg ccaagatcga gcgcgacagc gtgcaactgg 2640
ctccccctgc cctgcccgcg ccatcggccg ccgtggagcg ttcgcgtcgt ctcgaacagg 2700
aggcggcagg tttggcgaag tcgatgacca tcgacacgcg aggaactatg acgaccaaga 2760
agcgaaaaac cgccggcgag gacctggcaa aacaggtcag cgaggccaag caagccgcgt 2820
tgctgaaaca cacgaagcag cagatcaagg aaatgcagct ttccttgttc gatattgcgc 2880
cgtggccgga cacgatgcga gcgatgccaa acgacacggc ccgctctgcc ctgttcacca 2940
cgcgcaacaa gaaaatcccg cgcgaggcgc tgcaaaacaa ggtcattttc cacgtcaaca 3000
aggacgtgaa gatcacctac accggcgtcg agctgcgggc cgacgatgac gaactggtgt 3060
ggcagcaggt gttggagtac gcgaagcgca cccctatcgg cgagccgatc accttcacgt 3120
tctacgagct ttgccaggac ctgggctggt cgatcaatgg ccggtattac acgaaggccg 3180
aggaatgcct gtcgcgccta caggcgacgg cgatgggctt cacgtccgac cgcgttgggc 3240
acctggaatc ggtgtcgctg ctgcaccgct tccgcgtcct ggaccgtggc aagaaaacgt 3300
cccgttgcca ggtcctgatc gacgaggaaa tcgtcgtgct gtttgctggc gaccactaca 3360
cgaaattcat atgggagaag taccgcaagc tgtcgccgac ggcccgacgg atgttcgact 3420
atttcagctc gcaccgggag ccgtacccgc tcaagctgga aaccttccgc ctcatgtgcg 3480
gatcggattc cacccgcgtg aagaagtggc gcgagcaggt cggcgaagcc tgcgaagagt 3540
tgcgaggcag cggcctggtg gaacacgcct gggtcaatga tgacctggtg cattgcaaac 3600
gctagggcct tgtggggtca gttccggctg ggggttcagc agccagcgct ttactgagat 3660
cctcttccgc ttcctcgctc actgactcgc tgcgctcggt cgttcggctg cggcgagcgg 3720
tatcagctca ctcaaaggcg gtaatacggt tatccacaga atcaggggat aacgcaggaa 3780
agaacatgtg agcaaaaggc cagcaaaagg ccaggaaccg taaaaaggcc gcgttgctgg 3840
cgtttttcca taggctccgc ccccctgacg agcatcacaa aaatcgacgc tcaagtcaga 3900
ggtggcgaaa cccgacagga ctataaagat accaggcgtt tccccctgga agctccctcg 3960
tgcgctctcc tgttccgacc ctgccgctta ccggatacct gtccgccttt ctcccttcgg 4020
gaagcgtggc gctttctcat agctcacgct gtaggtatct cagttcggtg taggtcgttc 4080
gctccaagct gggctgtgtg cacgaacccc ccgttcagcc cgaccgctgc gccttatccg 4140
gtaactatcg tcttgagtcc aacccggtaa gacacgactt atcgccactg gcagcagcca 4200
ctggtaacag gattagcaga gcgaggtatg taggcggtgc tacagagttc ttgaagtggt 4260
ggcctaacta cggctacact agaagaacag tatttggtat ctgcgctctg ctgaagccag 4320
ttaccttcgg aaaaagagtt ggtagctctt gatccggcaa acaaaccacc gctggtagcg 4380
gtggtttttt tgtttgcaag cagcagatta cgcgcagaaa aaaaggatct caagaagatc 4440
ctttgatctt ttctacgggg tctgacgctc agtggaacga aaactcacgt taagggattt 4500
tggtcatgag attatcaaaa aggatcttca cctagatcct tttggatctc ctgtggttgg 4560
catgcacata caaatggacg aacggataaa ccttttcacg cccttttaaa tatccgatta 4620
ttctaataaa cgctcttttc tcttaggttt acccgccaat atatcctgtc aaacactgat 4680
agtttaaact gaaggcggga aacgacaatc tgctagtgga tctcccagtc acgacgttgt 4740
aaaacgggcg ccccgcggaa agcttgtaat acgactcact atagggagac ccaagctggc 4800
tagcgtttaa acttaagctg atccactagt cctgcaggtc aacatggtgg agcacgacac 4860
acttgtctac tccaaaaata tcaaagatac agtctcagaa gaccaaaggg caattgagac 4920
ttttcaacaa agggtaatat ccggaaacct cctcggattc cattgcccag ctatctgtca 4980
ctttattgtg aagatagtgg aaaaggaagg tggctcctac aaatgccatc attgcgataa 5040
aggaaaggcc atcgttgaag atgcctctgc cgacagtggt cccaaagatg gacccccacc 5100
cacgaggagc atcgtggaaa aagaagacgt tccaaccacg tcttcaaagc aagtggattg 5160
atgtgataac atggtggagc acgacacact tgtctactcc aaaaatatca aagatacagt 5220
ctcagaagac caaagggcaa ttgagacttt tcaacaaagg gtaatatccg gaaacctcct 5280
cggattccat tgcccagcta tctgtcactt tattgtgaag atagtggaaa aggaaggtgg 5340
ctcctacaaa tgccatcatt gcgataaagg aaaggccatc gttgaagatg cctctgccga 5400
cagtggtccc aaagatggac ccccacccac gaggagcatc gtggaaaaag aagacgttcc 5460
aaccacgtct tcaaagcaag tggattgatg tgatatctcc actgacgtaa gggatgacgc 5520
acaatcccac tatccttcgc aagacccttc ctctatataa ggaagttcat ttcatttgga 5580
gaggacctcg acctcaacac aacatataca aaacaaacga atctcaagca atcaagcatt 5640
ctacttctat tgcagcaatt taaatcattt cttttaaagc aaaagcaatt ttctgaaaat 5700
tttcaccatt tacgaacgat agaattcgcc atggccccaa agaaaaagag aaaggttgat 5760
tacaaagacc acgacggaga ctacaaagac cacgacattg attataaaga tgatgatgat 5820
aaaggaacga tggacaaaaa gtatagcatc ggtctggata ttggaactaa ctccgtcggc 5880
tgggctgtaa tcaccgacga atacaaggtc ccgtcaaaaa agttcaaggt attgggtaac 5940
acagatcgtc actctatcaa aaagaatctc attggagctc tgttgttcga cagcggcgaa 6000
acagctgagg ccactagact gaagcgcacc gccagacgcc gttacacgag gagaaagaac 6060
agaatctgct acttgcaaga aatattctca aacgagatgg ccaaagtgga cgattcgttc 6120
tttcataggt tagaagagag tttccttgtt gaagaggata aaaagcacga aagacatccg 6180
atatttggaa acatcgtgga cgaagttgct tatcacgaga agtaccccac gatctatcat 6240
ctgcgtaaaa agttggtgga ctcgacagat aaggccgacc tcaggttaat ataccttgca 6300
ctggcgcaca tgatcaaatt cagaggccat tttctgattg aaggtgacct gaaccctgac 6360
aatagtgatg tggacaaact cttcattcaa ttagttcaga cctacaatca actgtttgaa 6420
gagaacccta tcaacgcttc aggagttgac gctaaggcca tccttagtgc gagactgagc 6480
aaatcccgcc gtctcgaaaa cttaatcgca cagttgcctg gagagaaaaa gaacggtttg 6540
ttcggaaatc tcattgcgtt gtcactcgga ctcacgccaa acttcaagtc taacttcgat 6600
ttggcagaag acgcgaaact gcaactgagc aaagacacat atgacgatga cctcgataac 6660
ctcttagctc agatcggcga tcaatacgcc gacttgttcc tcgctgccaa aaatctgtcg 6720
gacgctatac ttctgagtga tatcttgcgc gtcaacacag aaattactaa ggctcctctg 6780
tcggccagta tgataaaacg ctatgacgaa caccatcagg atttgacatt gctcaaagcc 6840
ctcgtgcgtc aacagctccc agaaaagtac aaggagattt tctttgatca gtccaagaat 6900
ggctacgcag gttatataga cggtggagcg tcgcaagaag agttctacaa gttcatcaag 6960
ccaatattag aaaagatgga cggcacggaa gagttacttg ttaagctgaa tcgtgaggac 7020
ctgttgcgta aacagaggac attcgataac ggatcaattc cgcaccaaat acatcttggc 7080
gaactgcacg ctatcctcag gagacaagag gacttctacc cctttttaaa ggataaccgt 7140
gaaaagatcg agaaaatcct gactttcagg attccttact atgtcggccc actggctcgt 7200
ggtaatagca ggtttgcctg gatgaccagg aagtccgaag agacaattac tccgtggaac 7260
ttcgaagagg tggttgataa aggagcatca gcgcagtctt tcatagaacg catgacaaat 7320
tttgacaaga acttaccgaa tgagaaggtc cttcccaaac actcactcct ctacgaatac 7380
ttcacagtat acaacgagct cactaaagtc aagtacgtaa ccgagggtat gcgcaaaccc 7440
gctttcctgt ctggagagca gaaaaaggcc atcgtggacc ttctgttcaa gacaaaccgt 7500
aaggtcactg taaagcaact caaggaagac tacttcaaaa agatagagtg tttcgattca 7560
gtggaaatct ctggcgttga ggacagattt aacgcttcct tgggtactta ccacgatttg 7620
ctcaagatca ttaaagataa ggacttcctc gacaacgaag agaacgaaga tatcttagag 7680
gacatagttc tcacccttac gctgtttgaa gatagagaga tgattgaaga gcgcctgaag 7740
acttatgctc atttgttcga tgacaaagtc atgaagcaac tgaaacgccg taggtacacc 7800
ggctggggta gattatcgcg caaacttatt aatggtataa gggacaagca gtcgggaaaa 7860
acgatattgg actttctcaa gagtgatggt ttcgccaaca gaaattttat gcaactcata 7920
cacgatgaca gcttaacatt caaggaagat atccaaaaag cacaggtgtc gggacagggc 7980
gacagtttgc acgaacatat tgctaacctc gccggctccc cggcgataaa aaagggtatc 8040
cttcagactg tgaaagtcgt agatgaactg gtgaaggtta tgggtcgtca taaacccgag 8100
aacatagtta tcgaaatggc tagggagaat caaacaactc agaagggaca gaaaaactca 8160
agagaacgca tgaagcgcat tgaagagggt atcaaagagc ttggcagtca aatcctgaag 8220
gaacaccctg tcgagaacac gcaacttcag aacgaaaaat tgtacctcta ctatctgcag 8280
aatggtagag atatgtacgt agaccaagaa ttggatatta accgcctctc agattacgac 8340
gtggatcata tagttccgca gtcattcttg aaggatgact ctatcgacaa caaagtcctc 8400
acaagatcag acaagaaccg cggaaaatca gataatgtac cctctgaaga ggtggttaaa 8460
aagatgaaaa actactggag acagttactt aacgctaagt tgatcacgca aagaaagttc 8520
gataacctca caaaggctga acgcggcggt ttaagcgagc ttgacaaggc cggtttcata 8580
aaacgtcagt tagtcgaaac caggcaaatt acgaaacacg tagcccaaat attggattcc 8640
cgcatgaaca ctaaatacga tgaaaatgac aagctcatcc gtgaggtcaa agtaattacc 8700
ctgaaaagca agttggtgtc cgacttcaga aaggatttcc agttctacaa agttcgcgaa 8760
atcaacaact accaccatgc acatgacgct tacctgaacg cagtcgtagg cactgcgtta 8820
attaaaaagt accctaaact ggaatctgag ttcgtgtacg gtgactataa agtgtacgat 8880
gttagaaaga tgatcgctaa aagcgaacag gagattggaa aggctaccgc caagtatttc 8940
ttttactcca acatcatgaa tttctttaag accgaaatca cgttagcaaa tggcgagata 9000
cgtaaaaggc cacttatcga aacaaacgga gaaactggcg agatagtgtg ggacaagggt 9060
agagattttg ccactgtccg caaagtactg tcgatgccgc aagtgaatat cgttaaaaag 9120
accgaagttc aaacgggagg cttcagcaaa gagtccatcc tgcccaagcg taacagtgat 9180
aaattgatag ctaggaaaaa ggactgggat cctaaaaagt atggtggatt cgacagccca 9240
actgtcgcat actccgtatt ggtggttgcg aaagtcgaaa aaggaaagag caaaaagctc 9300
aagtccgtaa aagagctgtt gggcattacc ataatggaaa gatcatcttt cgagaagaat 9360
cctatcgatt ttctggaagc caagggatat aaagaggtca aaaaggacct cataatcaag 9420
ttaccaaaat acagtctgtt cgaattggag aacggcagaa aacgcatgct tgcatcagcg 9480
ggtgaactgc aaaagggaaa tgagttagca cttccttcta aatacgtcaa cttcctgtat 9540
ttggcgtcac actacgaaaa actgaagggc tctccagaag ataacgagca aaagcagtta 9600
tttgtggaac agcacaaaca ttaccttgac gaaattatag agcaaatctc ggagttcagt 9660
aagagagtga ttttggctga cgccaatctt gataaagttc tgtctgctta caacaagcac 9720
cgtgataaac cgattaggga acaggccgag aacatcatac atctcttcac actcactaac 9780
cttggtgcac ccgcagcgtt caaatatttt gacaccacga tagatcgtaa gaggtacacc 9840
agcacgaaag aagttttgga cgcgacactc atccatcaat caatcacggg cctgtacgag 9900
accagaatcg acctgtccca gctcggtggc gactagcggc cgcatcgata ctgcaggagc 9960
tcggtacctt ttactagtga tatccctgtg tgaaattgtt atccgctacg cgtgatcgtt 10020
caaacatttg gcaataaagt ttcttaagat tgaatcctgt tgccggtctt gcgatgatta 10080
tcatataatt tctgttgaat tacgttaagc atgtaataat taacatgtaa tgcatgacgt 10140
tatttatgag atgggttttt atgattagag tcccgcaatt atacatttaa tacgcgatag 10200
aaaacaaaat atagcgcgca aactaggata aattatcgcg cgcggtgtca tctatgttac 10260
tagatcccat gggaagttcc tattccgaag ttcctattct ctgaaaagta taggaacttc 10320
agcgatcgca gacgtcggga tcttctgcaa gcatctctat ttcctgaagg tctaacctcg 10380
aagatttaag atttaattac gtttataatt acaaaattga ttctagtatc tttaatttaa 10440
tgcttataca ttattaatta atttagtact ttcaatttgt tttcagaaat tattttacta 10500
ttttttataa aataaaaggg agaaaatggc tatttaaata ctagcctatt ttatttcaat 10560
tttagcttaa aatcagcccc aattagcccc aatttcaaat tcaaatggtc cagcccaatt 10620
cctaaataac ccacccctaa cccgcccggt ttcccctttt gatccatgca gtcaacgccc 10680
agaatttccc tatataattt tttaattccc aaacacccct aactctatcc catttctcac 10740
caaccgccac atagatctat cctcttatct ctcaaactct ctcgaacctt cccctaaccc 10800
tagcagcctc tcatcatcct cacctcaaaa cccaccgggg ccggccatga ttgaacaaga 10860
tggattgcac gcaggttctc cggccgcttg ggtggagagg ctattcggct atgactgggc 10920
acaacagaca atcggctgct ctgatgccgc cgtgttccgg ctgtcagcgc aggggaggcc 10980
ggttcttttt gtcaagaccg acctgtccgg tgccctgaat gaacttcaag acgaggcagc 11040
gcggctatcg tggctggcca cgacgggcgt tccttgcgca gctgtgctcg acgttgtcac 11100
tgaagcggga agggactggc tgctattggg cgaagtgccg gggcaggatc tcctgtcatc 11160
tcaccttgct cctgccgaga aagtatccat catggctgat gcaatgcggc ggctgcatac 11220
gcttgatccg gctacctgcc cattcgacca ccaagcgaaa catcgcatcg agcgagcacg 11280
tactcggatg gaagccggtc ttgtcgatca ggatgatctg gacgaagagc atcaggggct 11340
cgcgccagcc gaactgttcg ccaggctcaa ggcgcgcatg cccgacggcg aggatctcgt 11400
cgtgactcat ggcgatgcct gcttgccgaa tatcatggtg gaaaatggcc gcttttctgg 11460
attcatcgac tgtggccggc tgggtgtggc ggaccgctat caggacatag cgttggctac 11520
ccgtgatatt gctgaagagc ttggcggcga atgggctgac cgcttcctcg tgctttacgg 11580
tatcgccgct cccgattcgc agcgcatcgc cttctatcgc cttcttgacg agttcttctg 11640
aggcgcgcc 11649

Claims (4)

1.SlGRAS9Application of gene in regulating and controlling sugar content of tomato fruitsSlGRAS9The nucleotide sequence of the gene is shown as SEQ ID NO. 1.
2. A formulation for increasing the sugar content of tomato fruits, said formulation comprising an inhibitorSlGRAS9An active ingredient of gene expression, saidSlGRAS9The nucleotide sequence of the gene is shown as SEQ ID NO. 1.
3. The method of claim 1SlGRAS9Use of gene knockout in increasing sugar content in tomato fruits.
4. The method of claim 1SlGRAS9The gene knockout is applied to cultivation of high-sugar tomato fruit varieties or improvement of tomato germplasm resources.
CN202210281557.1A 2022-03-21 2022-03-21 SlGRAS9 gene for regulating and controlling sugar content of tomato fruits and application of SlGRAS9 gene in cultivation of tomatoes with high sugar content Active CN114438104B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210281557.1A CN114438104B (en) 2022-03-21 2022-03-21 SlGRAS9 gene for regulating and controlling sugar content of tomato fruits and application of SlGRAS9 gene in cultivation of tomatoes with high sugar content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210281557.1A CN114438104B (en) 2022-03-21 2022-03-21 SlGRAS9 gene for regulating and controlling sugar content of tomato fruits and application of SlGRAS9 gene in cultivation of tomatoes with high sugar content

Publications (2)

Publication Number Publication Date
CN114438104A CN114438104A (en) 2022-05-06
CN114438104B true CN114438104B (en) 2023-06-20

Family

ID=81360477

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210281557.1A Active CN114438104B (en) 2022-03-21 2022-03-21 SlGRAS9 gene for regulating and controlling sugar content of tomato fruits and application of SlGRAS9 gene in cultivation of tomatoes with high sugar content

Country Status (1)

Country Link
CN (1) CN114438104B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005038001A2 (en) * 2003-10-14 2005-04-28 Therapeutic Human Polyclonals, Inc. Improved transgenesis by sperm-mediated gene transfer
KR20130009279A (en) * 2011-07-15 2013-01-23 대한민국(농촌진흥청장) Method for enhancing drought stress resistance of plant using lea gene
CN104781414A (en) * 2012-09-18 2015-07-15 遗传工程与生物技术中心 Method for obtaining 1-kestose
CN107022551A (en) * 2017-04-19 2017-08-08 山东农业大学 One kind regulates and controls big arabidopsis seedling stage trophosome, early blossoming and the increased corn gene ZmGRAS37 of grain weight and its application
CN113717983A (en) * 2021-09-07 2021-11-30 重庆文理学院 Longan gene DlGRAS34, protein and application thereof in regulating and controlling plant flowering

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101240281B (en) * 2008-03-13 2011-06-08 上海交通大学 Protein encoding sequence of cucumber side branch inhibition gene cls
WO2010062240A1 (en) * 2008-11-03 2010-06-03 Swetree Technologies Ab Vegetabile material, plants and a method of producing a plant having altered lignin properties
US10233457B2 (en) * 2012-07-27 2019-03-19 The Regents Of The University Of California Inhibition of a xylosyltransferase to improve saccharification efficiency
US10036034B2 (en) * 2014-02-13 2018-07-31 Nutech Ventures Sequences involved in plant yield and methods of using
US9850291B2 (en) * 2014-05-23 2017-12-26 Brookhaven Science Associates, Llc Genes encoding novel lipid transporters and their use to increase oil production in vegetative tissues of plants
CN108866083A (en) * 2018-08-31 2018-11-23 重庆大学 SlGRAS4 gene is in the application for improving tamato fruit Inappropriate ADH syndrome
CN111748556B (en) * 2020-07-24 2023-10-20 沈阳农业大学 Application of SlmiR319b in regulation of tomato plant type, recombinant plasmid, recombinant bacterium and transgenic plant line
CN113215171A (en) * 2020-12-21 2021-08-06 中国农业科学院烟草研究所 Application of GRAS11 in regulating plant terpenoid synthesis and/or glandular hair development
CN113430221B (en) * 2021-07-19 2022-07-05 中国农业大学 Application of tomato WRKY37 protein in regulation of leaf senescence resistance of tomatoes and improvement of tomato yield

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005038001A2 (en) * 2003-10-14 2005-04-28 Therapeutic Human Polyclonals, Inc. Improved transgenesis by sperm-mediated gene transfer
KR20130009279A (en) * 2011-07-15 2013-01-23 대한민국(농촌진흥청장) Method for enhancing drought stress resistance of plant using lea gene
CN104781414A (en) * 2012-09-18 2015-07-15 遗传工程与生物技术中心 Method for obtaining 1-kestose
CN107022551A (en) * 2017-04-19 2017-08-08 山东农业大学 One kind regulates and controls big arabidopsis seedling stage trophosome, early blossoming and the increased corn gene ZmGRAS37 of grain weight and its application
CN113717983A (en) * 2021-09-07 2021-11-30 重庆文理学院 Longan gene DlGRAS34, protein and application thereof in regulating and controlling plant flowering

Also Published As

Publication number Publication date
CN114438104A (en) 2022-05-06

Similar Documents

Publication Publication Date Title
CN1643147B (en) Methods and means for monitoring and modulating gene silencing
CN109722439B (en) Application of MLO2, MLO6 and MLO12 genes of tobacco in preparation of powdery mildew resistant tobacco variety and method thereof
CN106939316B (en) Method for site-directed knockout of rice OsPDCD5 gene second exon by CRISPR/Cas9 system
CN110724685A (en) Transgenic salt-tolerant herbicide-tolerant corn SR801 exogenous insertion flanking sequence and application thereof
CA2490154A1 (en) Method of transforming soybean
CN110577965B (en) Application of xCas9n-epBE base editing system in gene editing
AU2005252598B8 (en) Transformation vectors
CN110540582B (en) Application of protein OrC1 in regulating color of rice husk and awn
CN114438104B (en) SlGRAS9 gene for regulating and controlling sugar content of tomato fruits and application of SlGRAS9 gene in cultivation of tomatoes with high sugar content
CN109811004B (en) Application of expression vector in producing brown yellow fiber by specifically expressing GhPSY2 gene in secondary wall development stage of cotton
CN111593057B (en) Gene for increasing diameter of carnation flower and application
CN112094864A (en) Method for increasing tobacco leaf number and biomass by using tobacco cytochrome C gene NtCYP94B3s
CN111944829A (en) Peach chloroplast development gene PpGLK1 and application thereof
CN109266686A (en) A kind of method of genome nucleotide fixed point replacement
CN112941098B (en) Arabidopsis thaliana anther tapetum promoter expression vector and construction method and application thereof
CN108192900B (en) Editing inactivation vector of tobacco nicotine demethylase gene CYP82E4 and application thereof
CN112680474A (en) Fluorescent-labeled CRISPR/SpCas9 system-mediated gene replacement system and application thereof in plants
CN111304214B (en) Gene for increasing number of carnation petals and application
CN113481216A (en) Polysorium CcTLS1 protein, coding gene and application thereof
CN108866080B (en) Tomato stress response gene, recombinant expression vector thereof and application thereof in cultivation of salt-tolerant tomatoes
CN109265562B (en) Nicking enzyme and application thereof in genome base replacement
CN114350685B (en) Application of tobacco NtTAC1 gene in leaf angle regulation and control
CN110106198A (en) Upland cotton transformation event 18C006-10-13 and its specificity identification method
CN111996198B (en) Anthocyanin regulatory gene SmbHLH1 in eggplant stem and application thereof
KR101760620B1 (en) A recombinant vector comprising intron of Histone Deacetylase 1 for plant transformation and use thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant