CN114420816B - 一种发光二极管芯片及其制备工艺 - Google Patents

一种发光二极管芯片及其制备工艺 Download PDF

Info

Publication number
CN114420816B
CN114420816B CN202111499294.3A CN202111499294A CN114420816B CN 114420816 B CN114420816 B CN 114420816B CN 202111499294 A CN202111499294 A CN 202111499294A CN 114420816 B CN114420816 B CN 114420816B
Authority
CN
China
Prior art keywords
layer
zinc oxide
moisture
trimethylaluminum
waterproof
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111499294.3A
Other languages
English (en)
Other versions
CN114420816A (zh
Inventor
刘峰
吴铭钦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Industrial Park Yuzhu Semiconductor Co ltd
Original Assignee
Suzhou Industrial Park Yuzhu Semiconductor Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Industrial Park Yuzhu Semiconductor Co ltd filed Critical Suzhou Industrial Park Yuzhu Semiconductor Co ltd
Priority to CN202111499294.3A priority Critical patent/CN114420816B/zh
Publication of CN114420816A publication Critical patent/CN114420816A/zh
Application granted granted Critical
Publication of CN114420816B publication Critical patent/CN114420816B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/20Metallic substrate based on light metals
    • B05D2202/25Metallic substrate based on light metals based on Al
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2252/00Sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Ceramic Engineering (AREA)
  • Led Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种发光二极管芯片及其制备工艺,具体涉及发光二极管技术领域,包括防水抗湿膜、蓝宝石衬底、缓冲层、N型半导体层、发光层、P型半导体层和透明导电层。本发明可有效提高发光二极管芯片的抗湿防水性能,同时保证芯片的高温水液中浸泡处理的性能稳定性,可有效防止芯片发生损伤;配方中的防水抗湿膜中的氧化锌在蓝宝石衬底和芯片整体外部形成双层氧化锌镀膜,可有效提高芯片的抗菌自清洁和耐温性能,防水抗湿膜在氧化锌镀膜外部制成双层氧化铝钝化层,可有效加强芯片的多重防水抗湿性能;第二层氧化锌镀膜和第二层氧化铝钝化层直接包裹在整个芯片外部,可有效加强芯片的耐高温和防水抗湿性能。

Description

一种发光二极管芯片及其制备工艺
技术领域
本发明涉及发光二极管技术领域,更具体地说,本发明涉及一种发光二极管芯片及其制备工艺。
背景技术
发光二极管简称LED,是一种常用的发光器件,可高效地将电能转化为光能,具有广泛的用途,如照明、平板显示、医疗器件等。发光二极管芯片又称LED发光芯片,是LED灯的核心组件,LED发光芯片是一个半导体的晶片,晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个晶片被环氧树脂封装起来,其主要功能是:把电能转化为光能,芯片的主要材料为单晶硅。半导体晶片由P型半导体、N型半导体两部分组成,这两种半导体连接起来形成一个P-N结。
现有的发光二极管芯片,芯片在高温状态下使用时,防水抗湿性能不佳,容易发生损伤。
发明内容
为了克服现有技术的上述缺陷,本发明的实施例提供一种发光二极管芯片及其制备工艺。
一种发光二极管芯片,包括防水抗湿膜,所述防水抗湿膜内部设有蓝宝石衬底、缓冲层、N型半导体层、发光层、P型半导体层和透明导电层,所述缓冲层、N型半导体层、发光层、P型半导体层和透明导电层由下到上依次设于蓝宝石衬底顶部,所述N型半导体层顶部电性连接有N型电极,所述P型半导体层顶部电性连接有P型电极,所述防水抗湿膜按照重量百分比计算包括:20.20~30.20%的氧化锌,其余为三甲基铝。
进一步的,所述透明导电层按照重量百分比计算包括:19.20~20.40%的二氧化钛、13.60~15.60%的金属铝、0.86~0.96%的石墨烯,其余为氧化铟锡。
进一步的,所述防水抗湿膜按照重量百分比计算包括:20.20%的氧化锌,其余为三甲基铝;所述透明导电层按照重量百分比计算包括:19.20%的二氧化钛、13.60%的金属铝、0.86%的石墨烯,其余为氧化铟锡。
进一步的,所述防水抗湿膜按照重量百分比计算包括:30.20%的氧化锌,其余为三甲基铝;所述透明导电层按照重量百分比计算包括:20.40%的二氧化钛、15.60%的金属铝、0.96%的石墨烯,其余为氧化铟锡。
进一步的,所述防水抗湿膜按照重量百分比计算包括:25.20%的氧化锌,其余为三甲基铝;所述透明导电层按照重量百分比计算包括:19.80%的二氧化钛、14.60%的金属铝、0.91%的石墨烯,其余为氧化铟锡。
所述缓冲层为GaN层;N型半导体层为N型GaN层;发光层为MQW层;P型半导体层为P型GaN层;P型电极为Cr/Ti/Au电极;N型电极为Ti/Al/Ti/Au电极。
本发明还提供一种发光二极管芯片的制备工艺,具体制备步骤如下:
步骤一:按照上述重量份比称取防水抗湿膜中的氧化锌、三甲基铝和透明导电层中的二氧化钛、金属铝、石墨烯和氧化铟锡;
步骤二:取步骤一中六分之一重量份的氧化锌和三甲基铝,采用磁控溅射法将氧化锌溅射到蓝宝石衬底表面,在蓝宝石衬底表面形成第一层氧化锌镀膜;
步骤三:将步骤二中的三甲基铝采用原子层沉积法在第一层氧化锌镀膜表面形成第一层氧化铝钝化层,在蓝宝石衬底表面制成第一重防水抗湿膜;
步骤四:将缓冲层、N型半导体层、发光层、P型半导体层依次设置在蓝宝石衬底上方;
步骤五:将步骤一中的二氧化钛真空镀膜到P型半导体层表面,形成二氧化钛镀膜,将步骤一中的氧化铟锡采用磁控溅射法在二氧化钛镀膜表面形成氧化铟锡膜,形成半成品透明导电层;
步骤六:将步骤一中的金属铝在半成品透明导电层表面真空蒸镀,在半成品透明导电层表面形成金属铝膜,将石墨烯静电喷涂到金属铝膜表面,形成石墨烯膜,得到透明导电层;
步骤七:将N型电极电镀到N型半导体层上,将P型电极电镀到透明导电层上,得到半成品芯片;
步骤八:采用磁控溅射法将剩余的氧化锌溅射到半成品芯片表面,在半成品芯片表面形成第二层氧化锌镀膜;
步骤九:将剩余的三甲基铝采用原子层沉积法在第二层氧化锌镀膜表面形成第二层氧化铝钝化层,在半成品芯片表面制成第二重防水抗湿膜;最后通过光刻方法将N型电极和P型电极表面的第二重防水抗湿膜去除,得到发光二极管芯片。
进一步的,在步骤二和步骤八中,磁控溅射在惰性气体环境下进行,磁控溅射温度为360~400℃,压力为1.5~2.5Pa,溅射电压为540~590V,溅射功率为115~125W;在步骤三和步骤九中,原子层沉积过程中向反应腔体中通入三甲基铝,流量为190~210sccm,通入时间15~25秒、抽真空、向反应腔体中通入水,流量为380~410sccm,通入时间15~25秒、抽真空,循环通过三甲基铝和水,得到所述底层氧化铝薄膜;在步骤五中,真空镀膜过程中通入氩气,氩气流量是13~17sccm,阳极电压是115~125V,阳极电流是6.8~8.2A,灯丝电流是6.8~8.2A,压力环境保持在1.0×10-2Pa~1.5×10-2Pa;磁控溅射温度为410~470℃,溅射电压为610~650V,溅射功率为92~102W,并在530~570℃下快速热退火180~220s时;在步骤六中,蒸镀金属铝的蒸发功率10~12kW,蒸发时间为70~90s,真空度高于10-4Pa。
进一步的,在步骤二和步骤八中,磁控溅射在惰性气体环境下进行,磁控溅射温度为360℃,压力为1.5Pa,溅射电压为540V,溅射功率为115W;在步骤三和步骤九中,原子层沉积过程中向反应腔体中通入三甲基铝,流量为190sccm,通入时间15秒、抽真空、向反应腔体中通入水,流量为380sccm,通入时间15秒、抽真空,循环通过三甲基铝和水,得到所述底层氧化铝薄膜;在步骤五中,真空镀膜过程中通入氩气,氩气流量是13sccm,阳极电压是115V,阳极电流是6.8A,灯丝电流是6.8A,压力环境保持在1.0×10-2Pa~1.5×10-2Pa;磁控溅射温度为410℃,溅射电压为610V,溅射功率为92W,并在530℃下快速热退火180s时;在步骤六中,蒸镀金属铝的蒸发功率10kW,蒸发时间为70s,真空度高于10-4Pa。
进一步的,在步骤二和步骤八中,磁控溅射在惰性气体环境下进行,磁控溅射温度为380℃,压力为2.0Pa,溅射电压为570V,溅射功率为120W;在步骤三和步骤九中,原子层沉积过程中向反应腔体中通入三甲基铝,流量为200sccm,通入时间20秒、抽真空、向反应腔体中通入水,流量为395sccm,通入时间20秒、抽真空,循环通过三甲基铝和水,得到所述底层氧化铝薄膜;在步骤五中,真空镀膜过程中通入氩气,氩气流量是15sccm,阳极电压是120V,阳极电流是7.5A,灯丝电流是7.5A,压力环境保持在1.0×10-2Pa~1.5×10-2Pa;磁控溅射温度为440℃,溅射电压为630V,溅射功率为97W,并在550℃下快速热退火200s时;在步骤六中,蒸镀金属铝的蒸发功率11kW,蒸发时间为80s,真空度高于10-4Pa。
本发明的技术效果和优点:
1、采用本发明的原料配方所加工出的发光二极管芯片,可有效提高发光二极管芯片的抗湿防水性能,同时保证芯片的高温水液中浸泡处理的性能稳定性,可有效防止芯片发生损伤;配方中的防水抗湿膜中的氧化锌在蓝宝石衬底和芯片整体外部形成双层氧化锌镀膜,可有效提高芯片的抗菌自清洁和耐温性能,防水抗湿膜在氧化锌镀膜外部制成双层氧化铝钝化层,可有效加强芯片的多重防水抗湿性能,可进一步保证芯片在高温状态下的防水抗湿性能,避免芯片发生损伤;第二层氧化锌镀膜和第二层氧化铝钝化层直接包裹在整个芯片外部,同时也将透明导电层进行包裹,可有效加强芯片的耐高温和防水抗湿性能;
2、本发明在加工发光二极管芯片的过程中,步骤二中,在蓝宝石衬底表面磁控溅射氧化锌镀膜,保证蓝宝石衬底的安全性和稳定性;在步骤三中,可有效在蓝宝石衬底表面形成第一重防水抗湿膜,与第二重防水抗湿膜配合可有效提高蓝宝石衬底的防水抗湿性能;在步骤五中,制成二氧化钛镀膜和氧化铟锡膜,形成半成品透明导电层,可有效加强半成品透明导电层的抗菌自清洁性能,对氧化铟锡膜进行缓冲支撑,可有效加强氧化铟锡的安全性和稳定性;在步骤六中,在半成品透明导电层表面形成金属铝膜和石墨烯膜;在步骤八中,采用磁控溅射将氧化锌在半成品芯片表面形成第二氧化锌镀膜,将半成品芯片全部包裹;在步骤九中,采用原子层沉积法制成第二层氧化铝钝化层,保证双重防水抗湿性能。
具体实施方式
下面将结合本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
本发明提供了一种发光二极管芯片,包括防水抗湿膜,所述防水抗湿膜内部设有蓝宝石衬底、缓冲层、N型半导体层、发光层、P型半导体层和透明导电层,所述缓冲层、N型半导体层、发光层、P型半导体层和透明导电层由下到上依次设于蓝宝石衬底顶部,所述N型半导体层顶部电性连接有N型电极,所述P型半导体层顶部电性连接有P型电极,所述防水抗湿膜按照重量百分比计算包括:20.20%的氧化锌,其余为三甲基铝;所述透明导电层按照重量百分比计算包括:19.20%的二氧化钛、13.60%的金属铝、0.86%的石墨烯,其余为氧化铟锡;
所述缓冲层为GaN层;N型半导体层为N型GaN层;发光层为MQW层;P型半导体层为P型GaN层;P型电极为Cr/Ti/Au电极;N型电极为Ti/Al/Ti/Au电极;
本发明还提供一种发光二极管芯片的制备工艺,具体制备步骤如下:
步骤一:按照上述重量份比称取防水抗湿膜中的氧化锌、三甲基铝和透明导电层中的二氧化钛、金属铝、石墨烯和氧化铟锡;
步骤二:取步骤一中六分之一重量份的氧化锌和三甲基铝,采用磁控溅射法将氧化锌溅射到蓝宝石衬底表面,在蓝宝石衬底表面形成第一层氧化锌镀膜;
步骤三:将步骤二中的三甲基铝采用原子层沉积法在第一层氧化锌镀膜表面形成第一层氧化铝钝化层,在蓝宝石衬底表面制成第一重防水抗湿膜;
步骤四:将缓冲层、N型半导体层、发光层、P型半导体层依次设置在蓝宝石衬底上方;
步骤五:将步骤一中的二氧化钛真空镀膜到P型半导体层表面,形成二氧化钛镀膜,将步骤一中的氧化铟锡采用磁控溅射法在二氧化钛镀膜表面形成氧化铟锡膜,形成半成品透明导电层;
步骤六:将步骤一中的金属铝在半成品透明导电层表面真空蒸镀,在半成品透明导电层表面形成金属铝膜,将石墨烯静电喷涂到金属铝膜表面,形成石墨烯膜,得到透明导电层;
步骤七:将N型电极电镀到N型半导体层上,将P型电极电镀到透明导电层上,得到半成品芯片;
步骤八:采用磁控溅射法将剩余的氧化锌溅射到半成品芯片表面,在半成品芯片表面形成第二层氧化锌镀膜;
步骤九:将剩余的三甲基铝采用原子层沉积法在第二层氧化锌镀膜表面形成第二层氧化铝钝化层,在半成品芯片表面制成第二重防水抗湿膜;最后通过光刻方法将N型电极和P型电极表面的第二重防水抗湿膜去除,得到发光二极管芯片。
在步骤二和步骤八中,磁控溅射在惰性气体环境下进行,磁控溅射温度为360℃,压力为1.5Pa,溅射电压为540V,溅射功率为115W;在步骤三和步骤九中,原子层沉积过程中向反应腔体中通入三甲基铝,流量为190sccm,通入时间15秒、抽真空、向反应腔体中通入水,流量为380sccm,通入时间15秒、抽真空,循环通过三甲基铝和水,得到所述底层氧化铝薄膜;在步骤五中,真空镀膜过程中通入氩气,氩气流量是13sccm,阳极电压是115V,阳极电流是6.8A,灯丝电流是6.8A,压力环境保持在1.0×10-2Pa~1.5×10-2Pa;磁控溅射温度为410℃,溅射电压为610V,溅射功率为92W,并在530℃下快速热退火180s时;在步骤六中,蒸镀金属铝的蒸发功率10kW,蒸发时间为70s,真空度高于10-4Pa。
实施例2:
与实施例1不同的是,所述防水抗湿膜按照重量百分比计算包括:30.20%的氧化锌,其余为三甲基铝;所述透明导电层按照重量百分比计算包括:20.40%的二氧化钛、15.60%的金属铝、0.96%的石墨烯,其余为氧化铟锡。
实施例3:
与实施例1-2均不同的是,所述防水抗湿膜按照重量百分比计算包括:25.20%的氧化锌,其余为三甲基铝;所述透明导电层按照重量百分比计算包括:19.80%的二氧化钛、14.60%的金属铝、0.91%的石墨烯,其余为氧化铟锡。
分别取上述实施例1-3所制得的发光二极管芯片与对照组一的发光二极管芯片、对照组二的发光二极管芯片、对照组三的发光二极管芯片、对照组四的发光二极管芯片和对照组五的发光二极管芯片,对照组一的发光二极管芯片与实施例三相比无氧化锌,对照组二的发光二极管芯片与实施例三相比无三甲基铝,对照组三的发光二极管芯片与实施例三相比无二氧化钛,对照组四的发光二极管芯片与实施例三相比无金属铝,对照组五的发光二极管芯片与实施例三相比无石墨烯,分八组分别测试三个实施例中加工的发光二极管芯片以及五个对照组的发光二极管芯片,每30个样品为一组,进行测试,测试结果如表一所示:
表一:
由表一可知,当发光二极管芯片中防水抗湿膜包括:25.20%的氧化锌,其余为三甲基铝;透明导电层包括:19.80%的二氧化钛、14.60%的金属铝、0.91%的石墨烯,其余为氧化铟锡时,可有效提高发光二极管芯片的抗湿防水性能,同时保证芯片的高温水液中浸泡处理的性能稳定性,可有效防止芯片发生损伤;故实施例3为本发明的较佳实施方式,配方中的防水抗湿膜中的氧化锌在蓝宝石衬底和芯片整体外部形成双层氧化锌镀膜,可有效提高芯片的抗菌自清洁和耐温性能,防水抗湿膜在氧化锌镀膜外部制成双层氧化铝钝化层,可有效加强芯片的多重防水抗湿性能,可进一步保证芯片在高温状态下的防水抗湿性能,避免芯片发生损伤;透明导电层中的二氧化钛镀层可有效作为氧化铟锡膜的缓冲层,提高氧化铟锡的安全性和稳定性,可有效提高透明导电层的抗菌自清洁性能和耐热性能,进而保证芯片的抗菌自清洁性能;氧化铟锡膜可有效提高透明导电层的导电性能和稳定性;在氧化铟锡膜外部真空蒸镀金属铝膜,可有效提升芯片光电转化效率和耐高温性能,可有效提升紫外LED的光电性能;在金属铝膜表面制成石墨烯膜,可有效对透明导电层表面进行防护,可有效提高透明导电层的防火阻燃性能和防水抗湿性能;第二层氧化锌镀膜和第二层氧化铝钝化层直接包裹在整个芯片外部,同时也将透明导电层进行包裹,可有效加强芯片的耐高温和防水抗湿性能。
实施例4:
本发明提供了一种发光二极管芯片,包括防水抗湿膜,所述防水抗湿膜内部设有蓝宝石衬底、缓冲层、N型半导体层、发光层、P型半导体层和透明导电层,所述缓冲层、N型半导体层、发光层、P型半导体层和透明导电层由下到上依次设于蓝宝石衬底顶部,所述N型半导体层顶部电性连接有N型电极,所述P型半导体层顶部电性连接有P型电极,所述防水抗湿膜按照重量百分比计算包括:25.20%的氧化锌,其余为三甲基铝;所述透明导电层按照重量百分比计算包括:19.80%的二氧化钛、14.60%的金属铝、0.91%的石墨烯,其余为氧化铟锡;
所述缓冲层为GaN层;N型半导体层为N型GaN层;发光层为MQW层;P型半导体层为P型GaN层;P型电极为Cr/Ti/Au电极;N型电极为Ti/Al/Ti/Au电极;
本发明还提供一种发光二极管芯片的制备工艺,具体制备步骤如下:
步骤一:按照上述重量份比称取防水抗湿膜中的氧化锌、三甲基铝和透明导电层中的二氧化钛、金属铝、石墨烯和氧化铟锡;
步骤二:取步骤一中六分之一重量份的氧化锌和三甲基铝,采用磁控溅射法将氧化锌溅射到蓝宝石衬底表面,在蓝宝石衬底表面形成第一层氧化锌镀膜;
步骤三:将步骤二中的三甲基铝采用原子层沉积法在第一层氧化锌镀膜表面形成第一层氧化铝钝化层,在蓝宝石衬底表面制成第一重防水抗湿膜;
步骤四:将缓冲层、N型半导体层、发光层、P型半导体层依次设置在蓝宝石衬底上方;
步骤五:将步骤一中的二氧化钛真空镀膜到P型半导体层表面,形成二氧化钛镀膜,将步骤一中的氧化铟锡采用磁控溅射法在二氧化钛镀膜表面形成氧化铟锡膜,形成半成品透明导电层;
步骤六:将步骤一中的金属铝在半成品透明导电层表面真空蒸镀,在半成品透明导电层表面形成金属铝膜,将石墨烯静电喷涂到金属铝膜表面,形成石墨烯膜,得到透明导电层;
步骤七:将N型电极电镀到N型半导体层上,将P型电极电镀到透明导电层上,得到半成品芯片;
步骤八:采用磁控溅射法将剩余的氧化锌溅射到半成品芯片表面,在半成品芯片表面形成第二层氧化锌镀膜;
步骤九:将剩余的三甲基铝采用原子层沉积法在第二层氧化锌镀膜表面形成第二层氧化铝钝化层,在半成品芯片表面制成第二重防水抗湿膜;最后通过光刻方法将N型电极和P型电极表面的第二重防水抗湿膜去除,得到发光二极管芯片。
在步骤二和步骤八中,磁控溅射在惰性气体环境下进行,磁控溅射温度为370℃,压力为1.8Pa,溅射电压为560V,溅射功率为123W;在步骤三和步骤九中,原子层沉积过程中向反应腔体中通入三甲基铝,流量为195sccm,通入时间15秒、抽真空、向反应腔体中通入水,流量为400sccm,通入时间15秒、抽真空,循环通过三甲基铝和水,得到所述底层氧化铝薄膜;在步骤五中,真空镀膜过程中通入氩气,氩气流量是13sccm,阳极电压是115V,阳极电流是6.8A,灯丝电流是6.8A,压力环境保持在1.0×10-2Pa~1.5×10-2Pa;磁控溅射温度为430℃,溅射电压为610V,溅射功率为98W,并在550℃下快速热退火190s时;在步骤六中,蒸镀金属铝的蒸发功率10kW,蒸发时间为70s,真空度高于10-4Pa。
实施例5:
与实施例4不同的是,在步骤二和步骤八中,磁控溅射在惰性气体环境下进行,磁控溅射温度为400℃,压力为2.5Pa,溅射电压为590V,溅射功率为125W;在步骤三和步骤九中,原子层沉积过程中向反应腔体中通入三甲基铝,流量为210sccm,通入时间25秒、抽真空、向反应腔体中通入水,流量为410sccm,通入时间25秒、抽真空,循环通过三甲基铝和水,得到所述底层氧化铝薄膜;在步骤五中,真空镀膜过程中通入氩气,氩气流量是17sccm,阳极电压是125V,阳极电流是8.2A,灯丝电流是8.2A,压力环境保持在1.0×10-2Pa~1.5×10-2Pa;磁控溅射温度为470℃,溅射电压为650V,溅射功率为102W,并在570℃下快速热退火220s时;在步骤六中,蒸镀金属铝的蒸发功率12kW,蒸发时间为90s,真空度高于10-4Pa。
实施例6:
与实施例4-5均不同的是,在步骤二和步骤八中,磁控溅射在惰性气体环境下进行,磁控溅射温度为380℃,压力为2.0Pa,溅射电压为570V,溅射功率为120W;在步骤三和步骤九中,原子层沉积过程中向反应腔体中通入三甲基铝,流量为200sccm,通入时间20秒、抽真空、向反应腔体中通入水,流量为395sccm,通入时间20秒、抽真空,循环通过三甲基铝和水,得到所述底层氧化铝薄膜;在步骤五中,真空镀膜过程中通入氩气,氩气流量是15sccm,阳极电压是120V,阳极电流是7.5A,灯丝电流是7.5A,压力环境保持在1.0×10-2Pa~1.5×10-2Pa;磁控溅射温度为440℃,溅射电压为630V,溅射功率为97W,并在550℃下快速热退火200s时;在步骤六中,蒸镀金属铝的蒸发功率11kW,蒸发时间为80s,真空度高于10-4Pa。
分别取上述实施例4-6所制得的发光二极管芯片与对照组六的发光二极管芯片、对照组七的发光二极管芯片、对照组八的发光二极管芯片、对照组九的发光二极管芯片和对照组十的发光二极管芯片,对照组六的发光二极管芯片与实施例六相比没有步骤二中的操作,对照组七的发光二极管芯片与实施例六相比没有步骤三中的操作,对照组八的发光二极管芯片与实施例六相比没有步骤六中的操作,对照组九的发光二极管芯片与实施例六相比没有步骤八中的操作,对照组十的发光二极管芯片与实施例六相比没有步骤九中的操作,分七组分别测试三个实施例中加工的发光二极管芯片以及四个对照组的发光二极管芯片,每30个样品为一组,进行测试,测试结果如表二所示:
表二:
由表二可知,实施例6为本发明的较佳实施方式;步骤二中,在蓝宝石衬底表面磁控溅射氧化锌镀膜,在蓝宝石衬底表面提供缓冲,保证蓝宝石衬底的安全性和稳定性;在步骤三中,在氧化锌镀膜表面通过原子层沉积形成氧化铝钝化层,可有效在蓝宝石衬底表面形成第一重防水抗湿膜,与第二重防水抗湿膜配合可有效提高蓝宝石衬底的防水抗湿性能;在步骤五中,将二氧化钛真空镀膜到P型半导体层表面,形成二氧化钛镀膜,然后在磁控溅射在二氧化钛镀膜表面形成将氧化铟锡膜,形成半成品透明导电层,二氧化钛镀膜可有效加强半成品透明导电层的抗菌自清洁性能,二氧化钛镀膜对氧化铟锡膜进行缓冲支撑,可有效加强氧化铟锡的安全性和稳定性;在步骤六中,采用真空蒸镀将金属铝在半成品透明导电层表面形成金属铝膜,可有效加强金属铝膜与氧化铟锡膜的接触结合效果,将石墨烯静电喷涂到金属铝膜表面,形成石墨烯膜;在步骤八中,采用磁控溅射将氧化锌在半成品芯片表面形成第二氧化锌镀膜,将半成品芯片全部包裹;在步骤九中,采用原子层沉积法制成第二层氧化铝钝化层,保证双重防水抗湿性能。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种发光二极管芯片的制备工艺,其特征在于:具体制备步骤如下:
步骤一:称取防水抗湿膜原料中的氧化锌、三甲基铝和透明导电层原料中的二氧化钛、金属铝、石墨烯和氧化铟锡;所述防水抗湿膜原料按照重量百分比计算包括:20.20~30.20%的氧化锌,其余为三甲基铝;所述透明导电层原料按照重量百分比计算包括:19.20~20.40%的二氧化钛、13.60~15.60%的金属铝、0.86~0.96%的石墨烯,其余为氧化铟锡;
步骤二:取步骤一中六分之一重量份的氧化锌和三甲基铝,采用磁控溅射法将氧化锌溅射到蓝宝石衬底下表面,在蓝宝石衬底下表面形成第一层氧化锌镀膜;
步骤三:将步骤二中的三甲基铝采用原子层沉积法在第一层氧化锌镀膜表面形成第一层氧化铝钝化层,在蓝宝石衬底下表面制成第一重防水抗湿膜;
步骤四:将缓冲层、N型半导体层、发光层、P型半导体层依次设置在蓝宝石衬底上方;
步骤五:将步骤一中的二氧化钛真空镀膜到P型半导体层表面,形成二氧化钛镀膜,将步骤一中的氧化铟锡采用磁控溅射法在二氧化钛镀膜表面形成氧化铟锡膜,形成半成品透明导电层;
步骤六:将步骤一中的金属铝在半成品透明导电层表面真空蒸镀,在半成品透明导电层表面形成金属铝膜,将石墨烯静电喷涂到金属铝膜表面,形成石墨烯膜,得到透明导电层;
步骤七:将N型电极电镀到N型半导体层上,将P型电极电镀到透明导电层上,得到半成品芯片;
步骤八:采用磁控溅射法将剩余的氧化锌溅射到半成品芯片表面,在半成品芯片表面形成第二层氧化锌镀膜;
步骤九:将剩余的三甲基铝采用原子层沉积法在第二层氧化锌镀膜表面形成第二层氧化铝钝化层,在半成品芯片表面制成第二重防水抗湿膜;最后通过光刻方法将N型电极和P型电极表面的第二重防水抗湿膜去除,得到发光二极管芯片。
2.根据权利要求1所述的一种发光二极管芯片的制备工艺,其特征在于:所述防水抗湿膜原料按照重量百分比计算包括:20.20%的氧化锌,其余为三甲基铝;所述透明导电层原料按照重量百分比计算包括:19.20%的二氧化钛、13.60%的金属铝、0.86%的石墨烯,其余为氧化铟锡。
3.根据权利要求1所述的一种发光二极管芯片的制备工艺,其特征在于:所述防水抗湿膜原料按照重量百分比计算包括:30.20%的氧化锌,其余为三甲基铝;所述透明导电层原料按照重量百分比计算包括:20.40%的二氧化钛、15.60%的金属铝、0.96%的石墨烯,其余为氧化铟锡。
4.根据权利要求1所述的一种发光二极管芯片的制备工艺,其特征在于:所述防水抗湿膜原料按照重量百分比计算包括:25.20%的氧化锌,其余为三甲基铝;所述透明导电层原料按照重量百分比计算包括:19.80%的二氧化钛、14.60%的金属铝、0.91%的石墨烯,其余为氧化铟锡。
5.根据权利要求1所述的一种发光二极管芯片的制备工艺,其特征在于:在步骤二和步骤八中,磁控溅射在惰性气体环境下进行,磁控溅射温度为360~400℃,压力为1.5~2.5Pa,溅射电压为540~590V,溅射功率为115~125W;在步骤三和步骤九中,原子层沉积过程中向反应腔体中通入三甲基铝,流量为190~210sccm,通入时间15~25秒、抽真空、向反应腔体中通入水,流量为380~410sccm,通入时间15~25秒、抽真空,循环通过三甲基铝和水,得到氧化铝钝化层;在步骤五中,真空镀膜过程中通入氩气,氩气流量是13~17sccm,阳极电压是115~125V,阳极电流是6.8~8.2A,灯丝电流是6.8~8.2A,压力环境保持在1.0×10-2Pa~1.5×10-2Pa;磁控溅射温度为410~470℃,溅射电压为610~650V,溅射功率为92~102W,并在530~570℃下快速热退火180~220s时;在步骤六中,蒸镀金属铝的蒸发功率10~12kW,蒸发时间为70~90s,真空度高于10-4Pa。
6.根据权利要求5所述的一种发光二极管芯片的制备工艺,其特征在于:在步骤二和步骤八中,磁控溅射在惰性气体环境下进行,磁控溅射温度为360℃,压力为1.5Pa,溅射电压为540V,溅射功率为115W;在步骤三和步骤九中,原子层沉积过程中向反应腔体中通入三甲基铝,流量为190sccm,通入时间15秒、抽真空、向反应腔体中通入水,流量为380sccm,通入时间15秒、抽真空,循环通过三甲基铝和水,得到氧化铝钝化层;在步骤五中,真空镀膜过程中通入氩气,氩气流量是13sccm,阳极电压是115V,阳极电流是6.8A,灯丝电流是6.8A,压力环境保持在1.0×10-2Pa~1.5×10-2Pa;磁控溅射温度为410℃,溅射电压为610V,溅射功率为92W,并在530℃下快速热退火180s时;在步骤六中,蒸镀金属铝的蒸发功率10kW,蒸发时间为70s,真空度高于10-4Pa。
7.根据权利要求5所述的一种发光二极管芯片的制备工艺,其特征在于:在步骤二和步骤八中,磁控溅射在惰性气体环境下进行,磁控溅射温度为380℃,压力为2.0Pa,溅射电压为570V,溅射功率为120W;在步骤三和步骤九中,原子层沉积过程中向反应腔体中通入三甲基铝,流量为200sccm,通入时间20秒、抽真空、向反应腔体中通入水,流量为395sccm,通入时间20秒、抽真空,循环通过三甲基铝和水,得到氧化铝钝化层;在步骤五中,真空镀膜过程中通入氩气,氩气流量是15sccm,阳极电压是120V,阳极电流是7.5A,灯丝电流是7.5A,压力环境保持在1.0×10-2Pa~1.5×10-2Pa;磁控溅射温度为440℃,溅射电压为630V,溅射功率为97W,并在550℃下快速热退火200s时;在步骤六中,蒸镀金属铝的蒸发功率11kW,蒸发时间为80s,真空度高于10-4Pa。
8.根据权利要求1-7任意一项所述的一种发光二极管芯片的制备工艺制备出的发光二极管芯片,其特征在于:包括防水抗湿膜,所述防水抗湿膜内部设有蓝宝石衬底、缓冲层、N型半导体层、发光层、P型半导体层和透明导电层,所述缓冲层、N型半导体层、发光层、P型半导体层和透明导电层由下到上依次设于蓝宝石衬底顶部,所述N型半导体层顶部电性连接有N型电极,所述P型半导体层顶部电性连接有P型电极。
9.根据权利要求8所述的一种发光二极管芯片,其特征在于:所述缓冲层为GaN层;N型半导体层为N型GaN层;发光层为MQW层;P型半导体层为P型GaN层;P型电极为Cr/Ti/Au电极;N型电极为Ti/Al/Ti/Au电极。
CN202111499294.3A 2021-12-09 2021-12-09 一种发光二极管芯片及其制备工艺 Active CN114420816B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111499294.3A CN114420816B (zh) 2021-12-09 2021-12-09 一种发光二极管芯片及其制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111499294.3A CN114420816B (zh) 2021-12-09 2021-12-09 一种发光二极管芯片及其制备工艺

Publications (2)

Publication Number Publication Date
CN114420816A CN114420816A (zh) 2022-04-29
CN114420816B true CN114420816B (zh) 2023-07-21

Family

ID=81265912

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111499294.3A Active CN114420816B (zh) 2021-12-09 2021-12-09 一种发光二极管芯片及其制备工艺

Country Status (1)

Country Link
CN (1) CN114420816B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101069300A (zh) * 2005-06-15 2007-11-07 株式会社爱发科 有机电致发光面板的制造方法,有机电致发光显示装置的制造方法
CN102054907A (zh) * 2009-10-30 2011-05-11 昆山中辰矽晶有限公司 氮化镓系化合物半导体的制造方法
CN102185074A (zh) * 2011-04-07 2011-09-14 上海大学 Ag/氧化锌基复合透明电极的发光二极管及其制备方法
CN104575701A (zh) * 2014-12-17 2015-04-29 张家港康得新光电材料有限公司 高分子透明导电膜及其制备方法
CN110943149A (zh) * 2019-12-20 2020-03-31 佛山市国星半导体技术有限公司 一种抗水解红光led芯片及其制作方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104810436B (zh) * 2015-03-30 2017-07-28 华灿光电股份有限公司 一种发光二极管芯片及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101069300A (zh) * 2005-06-15 2007-11-07 株式会社爱发科 有机电致发光面板的制造方法,有机电致发光显示装置的制造方法
CN102054907A (zh) * 2009-10-30 2011-05-11 昆山中辰矽晶有限公司 氮化镓系化合物半导体的制造方法
CN102185074A (zh) * 2011-04-07 2011-09-14 上海大学 Ag/氧化锌基复合透明电极的发光二极管及其制备方法
CN104575701A (zh) * 2014-12-17 2015-04-29 张家港康得新光电材料有限公司 高分子透明导电膜及其制备方法
CN110943149A (zh) * 2019-12-20 2020-03-31 佛山市国星半导体技术有限公司 一种抗水解红光led芯片及其制作方法

Also Published As

Publication number Publication date
CN114420816A (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
Kim et al. Flexible ITO films with atomically flat surfaces for high performance flexible perovskite solar cells
CN102738377B (zh) 超高导热金属基线路板及其制备方法、应用
US20120003485A1 (en) Monolayers of organic compounds on metal oxide surfaces or metal surfaces containing oxide and component produced therewith based on organic electronics
CN108677155B (zh) 一种室温下制备碘化亚铜p型透明半导体薄膜材料的方法
CN108630822B (zh) 一种顶发射oled器件的组件和顶发射oled器件
CN105206753A (zh) 有机发光元件
JPWO2016043231A1 (ja) 発光素子、表示装置および照明装置
CN112779501A (zh) 一种金锡合金热沉薄膜及其制备方法、热沉基板和led器件
CN114420816B (zh) 一种发光二极管芯片及其制备工艺
Wahl et al. Comparison of the Al back contact deposited by sputtering, e-beam, or thermal evaporation for inverted perovskite solar cells
CN109950412A (zh) 一种基于紫外共混蒸镀工艺钙钛矿发光二极管及制备方法
WO2013099084A1 (ja) 有機el素子の製造方法
CN104993070A (zh) 一种制作柔性oled显示器件的方法
CN102842683A (zh) 有机电致发光器件及其制作方法
May et al. In-line deposition of organic light-emitting devices for large area applications
CN103594649A (zh) 有机电致发光器件及其制备方法
CN103325921B (zh) 高导热荧光绝缘led封装结构
CN103545448A (zh) 有机电致发光器件及其制备方法
CN104103764A (zh) 有机电致发光器件及其制作方法
Moon et al. Large area organic light emitting diodes with multilayered graphene anodes
CN110867521B (zh) 一种有机致电发光器以及显示装置
CN104425754A (zh) 有机电致发光器件及其制备方法
WO2003101158A1 (fr) Substrat comprenant un film conducteur transparent et dispositif electroluminescent organique
CN218160444U (zh) 一种oled顶发射器件
CN103594650A (zh) 有机电致发光器件及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant