CN114420769A - 一种用于碲化镉薄膜电池上的分波段增透的颜色薄膜 - Google Patents

一种用于碲化镉薄膜电池上的分波段增透的颜色薄膜 Download PDF

Info

Publication number
CN114420769A
CN114420769A CN202111648165.6A CN202111648165A CN114420769A CN 114420769 A CN114420769 A CN 114420769A CN 202111648165 A CN202111648165 A CN 202111648165A CN 114420769 A CN114420769 A CN 114420769A
Authority
CN
China
Prior art keywords
film
reflection
color
thickness
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111648165.6A
Other languages
English (en)
Inventor
彭塞奥
金克武
王天齐
甘治平
李刚
时君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CNBM Bengbu Design and Research Institute for Glass Industry Co Ltd
Original Assignee
CNBM Bengbu Design and Research Institute for Glass Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CNBM Bengbu Design and Research Institute for Glass Industry Co Ltd filed Critical CNBM Bengbu Design and Research Institute for Glass Industry Co Ltd
Priority to CN202111648165.6A priority Critical patent/CN114420769A/zh
Publication of CN114420769A publication Critical patent/CN114420769A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1836Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising a growth substrate not being an AIIBVI compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开一种用于碲化镉薄膜电池上的分波段增透的颜色薄膜,包括以下步骤:S1.根据所需要的颜色出现的增反波段和单层膜的光学厚度公式,通过单层膜的光学厚度公式计算出第一层增反膜(n1>1.52)的厚度;S2.制备标样,分析碲化镉薄膜太阳能电池的吸收光谱,通过标样与单层膜的光学厚度公式计算出第二层增透膜(n2<n1)的厚度;S4.将清洗后的衬底置入磁控溅射镀膜设备;S5.以金属锆为平面靶,通过磁控溅射在衬底沉积氧化锆薄膜;S6:以硅为旋转靶,通过磁控溅射在衬底沉积氧化硅薄膜。本发明结合了碲化镉薄膜太阳能电池的吸收光谱,提供了一种分波段增透的颜色薄膜,赋予碲化镉薄膜太阳能电池组件颜色的同时对其吸收光谱段进行了增透。

Description

一种用于碲化镉薄膜电池上的分波段增透的颜色薄膜
技术领域
本发明涉及玻璃薄膜制造技术领域,具体是一种用于碲化镉薄膜太阳能电池上的具有分波段增透特性的颜色薄膜。
背景技术
薄膜太阳能电池因其成本低,转换率高而备受好评,为未来新能源的趋势,但是薄膜太阳能电池颜色较深,导致其应用面较窄,单纯的夹胶或颜色玻璃会导致其透过率降低,影响其发电效率。
碲化镉薄膜太阳能电池为目前市场应用较广的薄膜太阳能电池,其具有高转换效率,低成本等优异的特性,被称为贴在墙上的石油。但因其本身具有颜色,在实际应用于建筑上时受到局限。
发明内容
本发明的目的在于利用光学干涉原理,设计出一种具有分波段增透特性的具有颜色的薄膜,可以应用碲化镉薄膜太阳能电池上使其具有多种颜色。
本发明解决其技术问题所采用的技术方案是:
一种用于碲化镉薄膜电池上的分波段增透的颜色薄膜,包括以下步骤:
S1、标样的制作
S11:根据图1碲化镉薄膜太阳能电池光谱响应曲线(光谱响应区间为500nm-900nm),结合太阳光可见光区(380nm-760nm),在光波长380nm-500nm区间进行增反颜色膜的镀制,根据所需要的颜色出现的增反波段和由单层薄膜的反射系数公式、光在薄膜中的相位差公式、菲涅尔公式推导出的单层膜反射率R随膜层光学厚度变化曲线得出的光学厚度公式[1],计算出第一层增反膜的厚度h1
Figure 588101DEST_PATH_IMAGE001
(1)
其中n为薄膜折射率,h为薄膜厚度,λ为自己选定的中心波长(380nm-500nm),m为常数,第一层增反膜折射率n1需大于玻璃基片折射率1.52;
S12:根据图1碲化镉薄膜太阳能电池光谱响应曲线(光谱响应区间为500nm-900nm),选定区间500nm-900nm之间进行增透膜的镀制,之后自选需要开始增透的中心波长点λ0(500nm-900nm之间),代入公式1计算出第二层增透膜的厚度h2,第二层增透膜的折射率n2<n1,图1的碲化镉薄膜太阳能电池光谱响应曲线是公知技术;
S13:清洗衬底,去除衬底表面污渍并吹干;
S14:将清洗后的衬底置入磁控溅射镀膜设备;
S15:以金属锆为平面靶,采用直流电源,氩气为溅射气体,氧气为反应气体,通过磁控溅射在衬底沉积第一层增反膜氧化锆薄膜,其厚度h1
S16:以硅为旋转靶,采用中频电源,氩气为溅射气体,氧气为反应气体,通过磁控溅射在衬底沉积第二层增透膜氧化硅薄膜,其厚度h2
S2、碲化镉薄膜太阳能电池颜色薄膜的制作
S21、在衬底上磁控溅射镀制的第一层二氧化锆增反膜,膜厚选取130nm-170nm;
S22、磁控溅射镀制的第二层增透膜二氧化硅的膜厚由标样结合公式(1)计算得出,以硅为旋转靶,采用中频电源,氩气为溅射气体,氧气为反应气体,通过磁控溅射在衬底的二氧化锆增反膜上沉积计算厚度的二氧化硅薄膜,最终得到一种用于碲化镉薄膜太阳能电池颜色薄膜。
本发明的有益效果是:
一、采用高折射率材料(n>1.52)比如氧化锆(n1≈2.2)与低折射率材料(n2<n1)比如氧化硅(n2≈1.4)镀制复合膜,利用薄膜干涉原理,使用公式1计算两层薄膜的厚度,使膜系在380nm-500nm具有增反效果,在500nm-900nm出现增透效果,实现薄膜具有颜色且在其光谱吸收区进行增透,提高其转化效率。
二、利用光学干涉效应调整薄膜厚度,使增反波段与增透波段没有重叠区域相互独立。
三、直接采用设备制备的样品作为标样,结合公式1计算之后进行生产,适用于所有镀膜设备。
四、本发明实施实例均在中试线实施,可直接放大到生产线应用。
光学厚度公式[1] ,参见光学教程/叶玉堂肖峻饶建珍等编著.--2版.--北京:清华大学出版社,2011.9 ISBN 978-7-302-26270-1,177-178。
附图说明:
图1是碲化镉薄膜太阳能电池光谱响应曲线,为现有技术;
图2是为本发明实施例1的透过率图谱;
图3是为本发明实施例2的透过率图谱;
图4是为本发明标样的透过率图谱。
具体实施方式
实施实例1
本发明提供一种用于碲化镉薄膜太阳能电池的分波段增透增反的颜色薄膜,包括以下步骤:
S1、标样的制作
S11、选用1.1mm普通玻璃作为衬底,清洗衬底,去除衬底表面污渍并吹干;
S12、将清洗后的衬底置入磁控溅射镀膜设备,对溅射腔体抽真空,当真空度7*10- 6Torr时以金属锆为靶材,采用直流电源功率3KW,通入200sccm氩气进行预溅射,
预溅射结束后,通入氧分压为55sccm,真空度在4.5*10-3Torr时溅射75次,金属锆薄膜厚度170nm。
磁控溅射镀的氧化锆折射率比较稳定,在2.1-2.2之间,代入上面公式
Figure 442924DEST_PATH_IMAGE001
计算出来在反射率波谷在380nm-500nm之间(该区间具有增反效果)的 时候氧化锆的厚度h1在130nm-170nm之间,在这区间取哪一个点都可以,比如氧化锆的厚度 为170nm。
S13、将镀制好氧化锆的玻璃传送到硅靶位置,当真空度在7*10-6Torr时以旋转硅为靶材,采用中频电源功率5Kw,通入200sccm氩气进行预溅射,预溅射结束后通入氧分压45sccm,真空度在4.0*10-3Torr时溅射30次,氧化硅薄膜厚度136nm,制备出的氧化锆薄膜和氧化硅薄膜的颜色薄膜a值-4.34,b值-26.51,颜色为蓝色,500nm-900nm平均透过率91.7%,选定此氧化锆薄+氧化硅薄膜的复合薄膜为标样,测试结果如图4所示;
氧化硅薄膜厚度根据图1碲化镉薄膜太阳能电池光谱响应曲线,选定需要开始增透的碲化镉CdTe顶部区域中心波长点λ0(500nm-900nm之间),代入公式1计算出第二层增透膜的厚度,第二层增透膜的折射率n2<n1
制备标样的目的在于排除设备的不确定性,比如各个设备之间制备工艺,真空度等的差别。
S2、实际的二氧化锆+二氧化硅颜色薄膜的制作
S21、将清洗后的另一玻璃衬底置入磁控溅射镀膜设备,对溅射腔体抽真空,当真空度7*10-6Torr时以金属锆为靶材,采用直流电源功率3KW,通入200sccm氩气进行预溅射;预溅射结束后,通入氧分压为55sccm,真空度在4.5*10-3Torr时溅射75次,厚度170nm;
S22、以图4的标样颜色薄膜的透过率图谱中的颜色薄膜(二氧化锆170nm +二氧化硅h0=139nm)的透过率波峰(透过率T95.3%,λ0=612nm)为基准,自选λ1=550nm处进行增透,代入公式1(m取最小值1)计算出在λ1=550nm处达到透过率波峰所需第二层二氧化硅增透膜厚度h1为105.78nm(下式为h0,λ0,h1,λ1分别代入公式1之后两式相减得出)。
Figure 894765DEST_PATH_IMAGE002
(1)
图4为标样颜色薄膜的透过率图谱,由紫外分光光度计测得,其中二氧化锆170nm+二氧化硅139nm的透过率图谱最高点对应的波长为λ0=612nm,做出来的标样与原二氧化锆未镀二氧化硅之间的对比图。
S23、将镀制好氧化锆的玻璃传送到硅靶位置,当真空度在7*10-6Torr时以旋转硅为靶材;采用中频电源功率5Kw,通入200sccm氩气进行预溅射;预溅射结束后通入氧分压45sccm,真空度在4.0*10-3Torr时溅射24次,得到的二氧化硅薄膜厚度106nm。制备出的颜色薄膜a值9.09,b值-19.63,颜色为紫色,500nm-900nm平均透过率92.9%,λ=546nm时出现第一个透过率波峰,T=93.9%。
实施实例2
本发明提供一种用于碲化镉薄膜太阳能电池的分波段增透增反的颜色薄膜,包括以下步骤:
S24、选用1.1mm普通玻璃作为衬底,清洗衬底,去除衬底表面污渍并吹干;
S25、将清洗后的衬底置入磁控溅射镀膜设备,对溅射腔体抽真空,当真空度7*10- 6Torr时以金属锆为靶材,采用直流电源功率3KW,通入200sccm氩气进行预溅射。
预溅射结束后,通入氧分压为55sccm,真空度在4.5*10-3Torr时溅射75次,厚度170nm。
S26、将镀制好氧化锆的玻璃传送到硅靶位置,当真空度在7*10-6Torr时以旋转硅为靶材。采用中频电源功率5Kw,通入200sccm氩气进行预溅射,预溅射结束后通入氧分压45sccm,真空度在4.0*10-3Torr时溅射30次,厚度136nm。制备出的薄膜a值-4.34,b值-26.51,颜色为蓝色,500nm-900nm平均透过率91.7%,选定此为标样。
S27、将清洗后的另一衬底置入磁控溅射镀膜设备,对溅射腔体抽真空,当真空度7*10-6Torr时以金属锆为靶材,采用直流电源功率3KW,通入200sccm氩气进行预溅射。
预溅射结束后,通入氧分压为55sccm,真空度在4.5*10-3Torr时溅射75次,厚度170nm。
S28、以图4的标样颜色薄膜的透过率图谱中的颜色薄膜(二氧化锆170nm +二氧化硅h0=139nm)的透过率波峰(透过率T95.3%,λ0=612nm,)为基准,自选λ1=525nm处进行增透,代入公式1(m取最小值1)计算出在λ1=525nm处达到透过率波峰所需第二层二氧化硅增透膜厚度h1为92.39nm(下式为h0,λ0,h1,λ1分别代入公式1之后两式相减得出)。
Figure 24395DEST_PATH_IMAGE003
S6、将镀制好氧化锆的玻璃传送到硅靶位置,当真空度在7*10-6Torr时以旋转硅为靶材。采用中频电源功率5Kw,通入200sccm氩气进行预溅射,预溅射结束后通入氧分压45sccm,真空度在4.0*10-3Torr时溅射22次,二氧化硅薄膜厚度96nm。制备出的颜色薄膜a值7.98,b值-11.71,颜色为紫色,如图3所示,颜色薄膜(170nm +二氧化硅96 nm)波长在500nm-900nm之间平均透过率92.3%,λ=524nm时出现第一个透过率波峰,T=93.1%。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制;任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同替换、等效变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (4)

1.一种用于碲化镉薄膜电池上的分波段增透的颜色薄膜,其特征在于,包括以下步骤:
S1、标样的制作
S11:根据图1碲化镉薄膜太阳能电池光谱响应曲线,在光谱响应区间波长为500nm-900nm范围内,结合太阳光可见光区波长380nm-760nm范围内,在光波长380nm-500nm区间进行增反颜色膜的镀制,根据所需要的颜色出现的增反波段和由单层薄膜的反射系数公式、光在薄膜中的相位差公式、菲涅尔公式推导出的单层膜反射率R随膜层光学厚度变化曲线得出的光学厚度公式,计算出第一层增反膜的厚度h1
Figure DEST_PATH_IMAGE002
(1)
其中n为薄膜折射率,h为薄膜厚度,λ为中心波长,m为常数;
S12:分析图1碲化镉薄膜太阳能电池的吸收光谱,通过标样与公式1计算出第二层增透膜(n2<n1)的厚度h2
S13:清洗衬底,去除衬底表面污渍并吹干;
S14:将清洗后的衬底置入磁控溅射镀膜设备;
S15:以金属锆为平面靶,采用直流电源,氩气为溅射气体,氧气为反应气体,通过磁控溅射在衬底沉积第一层增反膜氧化锆薄膜,其厚度h1
S16:以硅为旋转靶,采用中频电源,氩气为溅射气体,氧气为反应气体,通过磁控溅射在衬底沉积第二层增透膜氧化硅薄膜,其厚度h2,得到标样;
S2、实际的颜色薄膜的制作
S21、在衬底上磁控溅射镀制的第一层二氧化锆增反膜,膜厚选取130nm-170nm;
S22、磁控溅射镀制的第二层增透膜二氧化硅的膜厚由标样透过率光谱的波峰位置λ值与需要增透的波长位置的λ值带入公式(1)计算得出,以硅为旋转靶,采用中频电源,氩气为溅射气体,氧气为反应气体,通过磁控溅射在衬底的二氧化锆增反膜上沉积计算厚度的二氧化硅薄膜,最终得到一种用于碲化镉薄膜太阳能电池颜色薄膜。
2.根据权利要求1所述的一种用于碲化镉薄膜电池上的分波段增透的颜色薄膜,其特征在于,步骤S11中所述第一层增反颜色膜由所需要的颜色出现的光谱波段结合公式1计算薄膜厚度。
3.根据权利要求1所述的一种用于碲化镉薄膜电池上的分波段增透的颜色薄膜,其特征在于,所述标样为当前生产设备所制备。
4.一种用于碲化镉薄膜电池上的分波段增透的颜色薄膜,其特征在于其在碲化镉薄膜太阳能电池上应用时在其光谱响应区间500nm-900nm处对其进行增透,提高其光电转化效率的同时在380nm-500nm光谱区间内实现多种颜色。
CN202111648165.6A 2021-12-31 2021-12-31 一种用于碲化镉薄膜电池上的分波段增透的颜色薄膜 Pending CN114420769A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111648165.6A CN114420769A (zh) 2021-12-31 2021-12-31 一种用于碲化镉薄膜电池上的分波段增透的颜色薄膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111648165.6A CN114420769A (zh) 2021-12-31 2021-12-31 一种用于碲化镉薄膜电池上的分波段增透的颜色薄膜

Publications (1)

Publication Number Publication Date
CN114420769A true CN114420769A (zh) 2022-04-29

Family

ID=81270486

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111648165.6A Pending CN114420769A (zh) 2021-12-31 2021-12-31 一种用于碲化镉薄膜电池上的分波段增透的颜色薄膜

Country Status (1)

Country Link
CN (1) CN114420769A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805135A (zh) * 2010-04-19 2010-08-18 中国科学院宁波材料技术与工程研究所 镀有双层减反射膜的光伏玻璃及其制备方法
CN102082236A (zh) * 2010-12-06 2011-06-01 电子科技大学 一种半透明有机薄膜太阳能电池及其制备方法
CN102330055A (zh) * 2011-10-18 2012-01-25 天津理工大学 一种用于电极材料的氮化钛外延薄膜的制备方法
CN102532960A (zh) * 2010-12-30 2012-07-04 中国科学院理化技术研究所 增反增透涂层及其制备方法
CN103770404A (zh) * 2014-01-08 2014-05-07 同济大学 一种耐候性太阳能玻璃表面减反膜及其制备方法
CN108149195A (zh) * 2017-12-25 2018-06-12 中建材蚌埠玻璃工业设计研究院有限公司 一种超耐磨高透过率氧化锆薄膜的制备方法
CN109037361A (zh) * 2018-09-05 2018-12-18 中建材蚌埠玻璃工业设计研究院有限公司 一种高效率碲化镉薄膜太阳能电池
CN111217539A (zh) * 2018-11-27 2020-06-02 宜城市泳瑞玻璃科技有限公司 一种光学玻璃的镀膜工艺

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805135A (zh) * 2010-04-19 2010-08-18 中国科学院宁波材料技术与工程研究所 镀有双层减反射膜的光伏玻璃及其制备方法
CN102082236A (zh) * 2010-12-06 2011-06-01 电子科技大学 一种半透明有机薄膜太阳能电池及其制备方法
CN102532960A (zh) * 2010-12-30 2012-07-04 中国科学院理化技术研究所 增反增透涂层及其制备方法
CN102330055A (zh) * 2011-10-18 2012-01-25 天津理工大学 一种用于电极材料的氮化钛外延薄膜的制备方法
CN103770404A (zh) * 2014-01-08 2014-05-07 同济大学 一种耐候性太阳能玻璃表面减反膜及其制备方法
CN108149195A (zh) * 2017-12-25 2018-06-12 中建材蚌埠玻璃工业设计研究院有限公司 一种超耐磨高透过率氧化锆薄膜的制备方法
CN109037361A (zh) * 2018-09-05 2018-12-18 中建材蚌埠玻璃工业设计研究院有限公司 一种高效率碲化镉薄膜太阳能电池
CN111217539A (zh) * 2018-11-27 2020-06-02 宜城市泳瑞玻璃科技有限公司 一种光学玻璃的镀膜工艺

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
张乐等主编: "《简明大学物理》", 31 January 2018, 上海:同济大学出版社, pages: 273 - 274 *
张立升等编: "《物理学》", 30 November 1996, 天津:天津大学出版社, pages: 500 - 501 *
陆慧编著: "《光学》", 31 October 2014, 上海:华东理工大学出版社, pages: 81 - 82 *

Similar Documents

Publication Publication Date Title
Sibin et al. Design and development of ITO/Ag/ITO spectral beam splitter coating for photovoltaic-thermoelectric hybrid systems
KR101194257B1 (ko) 광대역 반사방지 다층코팅을 갖는 태양전지용 투명 기판 및 그 제조방법
Chen et al. High performance colored selective absorbers for architecturally integrated solar applications
CN102732830B (zh) 一种高透过率低反射率的减反射膜镀膜方法
CN102723370A (zh) 一种用于太阳能电池的宽光谱多层减反钝化膜
Meng et al. Optical design of Cu/Zr0. 2AlN0. 8/ZrN/AlN/ZrN/AlN/Al34O62N4 solar selective absorbing coatings
CN104561907A (zh) 硅或锗基底中红外光学波段宽角度入射增透膜的制备方法
CN103884122A (zh) 一种太阳能光热转换集热器透明热镜及其制备方法
US20120298194A1 (en) Method for producing a substrate having a colored interference filter layer, this substrate containing a colored interference filter layer, the use of this substrate as a colored solar cell or as a colored solar module or as a component thereof, as well as an array including at least two of these substrates
CN205874220U (zh) 蓝色阳光控制镀膜玻璃
CN108515743B (zh) 一种金属/介质超宽带吸收薄膜及其制备方法
US10988409B2 (en) Process and plant for obtaining colored glazing
KR101194258B1 (ko) 광대역 반사방지 다층코팅을 갖는 태양전지용 투명 기판 및 그 제조방법
CN109837517A (zh) 一种基于磁控溅射的外反射银膜制备方法
Woo et al. Wideband Antireflection Coatings of Porous MgF∼ 2 Films by Using Glancing Angle Deposition
CN102916057B (zh) 一种晶硅太阳能电池梯度折射率减反膜及其制备方法
CN114420769A (zh) 一种用于碲化镉薄膜电池上的分波段增透的颜色薄膜
KR20130114483A (ko) 반사방지 코팅층을 가지는 투명기판 및 그 제조방법
Jakobs et al. Characterization of metal-oxide thin films deposited by plasma-assisted reactive magnetron sputtering
CN110989183B (zh) 一种用于海洋多维成像系统中的分光镜、其制备方法和设计方法
Mertin et al. Coloured coatings for glazing of active solar thermal façades by reactive magnetron sputtering
CN108430944A (zh) 增透膜及其制备方法
CN114277343B (zh) 一种宽带高透过Al2O3/MgF2双层减反射膜的制备方法
JPS6067901A (ja) 水素化及び弗素化した非晶質炭化ケイ素薄膜を用いた光学素子
Castaldo et al. Low emission sputtered coatings for smart glazing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination