CN114418241B - 一种轨道交通列车运行图与车站作业协同优化方法 - Google Patents

一种轨道交通列车运行图与车站作业协同优化方法 Download PDF

Info

Publication number
CN114418241B
CN114418241B CN202210245561.2A CN202210245561A CN114418241B CN 114418241 B CN114418241 B CN 114418241B CN 202210245561 A CN202210245561 A CN 202210245561A CN 114418241 B CN114418241 B CN 114418241B
Authority
CN
China
Prior art keywords
station
node
representing
track
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210245561.2A
Other languages
English (en)
Other versions
CN114418241A (zh
Inventor
王劲
王卫东
邱实
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202210245561.2A priority Critical patent/CN114418241B/zh
Publication of CN114418241A publication Critical patent/CN114418241A/zh
Application granted granted Critical
Publication of CN114418241B publication Critical patent/CN114418241B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/40Business processes related to the transportation industry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Tourism & Hospitality (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

本发明公开了一种轨道交通列车运行图与车站作业协同优化方法,包括建立PTT三维坐标系;从宏观和微观相结合的角度生成PTT三维网络;基于节点之间的连通性,进行PTT三维网络的缩减;建立高速轨道交通列车运行图和车站作业计划协同优化网络模型。根据当前轨道交通需求,对协同优化网络模型进行求解,得到最优的列车运行图和车站作业计划方案。本发明从宏观和微观相结合的角度描述了列车在车站和区间作业的全过程,并在此基础上开展了高速轨道交通列车运行图和车站作业计划协同优化方法的研究,能够在保证旅客服务水平的基础上有效提高运行图的通过能力,为高速轨道交通列车运行计划的智能编制提供决策支持,比以往的方法具有更高的精度。

Description

一种轨道交通列车运行图与车站作业协同优化方法
技术领域
本发明属于交通调度领域,具体涉及一种轨道交通列车运行图与车站作业协同优化方法。
背景技术
现在,高速铁路在人们的日常生产生活中正扮演着越来越重要的角色。但是与之相比,现有的高速铁路运营管理沿袭了既有的分层次优化方式,面对日益增长的旅客运输需求,难以保证持续提供高水平的旅客运输服务。
列车运行图是轨道交通行车组织的基础,车站作业计划是车站运输组织指挥的主要依据。分层次优化方式首先优化列车运行图,将车站视为线路上的一个点,不考虑列车在车站内部的作业情况。然后将优化后运行图中规定的列车在各个车站的到达和出发时间作为已知条件,再进行车站作业计划的编制。这种方式虽然一定程度上降低了问题的规模和复杂程度,但是由于在优化运行图时没有考虑车站内部作业时间之间的冲突,容易造成前后阶段优化目标和约束条件的冲突,难以保证前后阶段的优化过程同时达到最优。
发明内容
本发明的目的在于提供一种轨道交通列车运行图与车站作业协同优化方法,能够保证前后阶段的优化过程同时达到最优。
本发明提供的这种轨道交通列车运行图与车站作业协同优化方法,包括如下步骤:
S1. 通过在传统的二维时空网络中引入股道坐标轴,建立PTT(Position-Track-Time,位置-股道-时间)三维坐标系,包括建立位置坐标轴,建立股道坐标轴,建立时间坐标轴;
S2. 在三维坐标系中,从宏观和微观相结合的角度生成PTT三维网络,包括,从宏观方面生成PTT三维网络,表示列车在车站和区间的作业过程;从微观方面生成PTT三维网路,表示进路和轨道电路之间的关系;
S3. 基于节点之间的连通性,结合节点位置、股道、时间坐标的关系进行PTT三维网络的缩减;
S4. 以最小化列车的停站时间和最大化运行图的通过能力为目标函数,采用约束条件,建立高速轨道交通列车运行图和车站作业计划协同优化网络模型;约束条件包括运行图安全时间间隔、区间越行冲突、车站进路和轨道电路占用时间冲突;
S5. 根据当前轨道交通需求,对协同优化网络模型进行求解,得到最优的列车运行图和车站作业计划方案。
所述的步骤S1,包括建立位置坐标轴;将每个车站节点划分为车站到达站界节点、到达股道节点、出发股道节点和车站出发站界节点;建立股道坐标轴,股道坐标轴代表每个节点所在的股道,用每条股道距离车站水平中心线的相对位置来表示;建立时间坐标轴,设定预设时间坐标轴间隔,用来表示列车作业的开始或结束时刻;其中,位置-股道平面对应车站平面图,用于表示进路和轨道电路的对应关系;位置-时间平面对应改进的运行图,股道-时间平面对应车站作业计划。
所述的步骤S2,包括,从宏观方面生成PTT三维网络:节点表示列车在到达站界、股道、出发站界作业的开始或结束时刻;连接虚拟出发节点和始发站的到达站界节点形成虚拟出发弧,用来表示列车的可行发车时间范围;连接到达站界节点和到达股道节点形成车站到达弧,对应列车在车站的到达作业进路;根据列车在车站的停站或通过情况,连接到达股道节点和出发股道节点形成相应的车站停站弧和车站通过弧;连接出发股道节点和出发站界节点形成车站出发弧,对应列车在车站的出发作业进路;连接车站出发站界节点和相邻下一车站的到达站界节点形成区间作业弧;设置列车在车站的停站时间不小于最小停站时间,不大于最大停站时间,其中最小停站时间是旅客上车、下车、换乘或者列车进行清理的最小时间,最大停站时间用于限制网络的规模;连接车站出发站界节点和虚拟到达节点形成虚拟到达弧;
从微观方面修正PTT三维网络:从微观角度明确进路和轨道电路之间的关系,进路包括一系列首尾相连的轨道电路,其中轨道电路是由钢轨和绝缘节组成的,用来检测列车对区间的占用和传递信息;解锁进路时根据列车对轨道电路的占用情况依次解锁,列车对轨道电路的占用时间从列车头部首对车轮进入第一个轨道电路的时间到列车尾部最后一对车轮完全离开轨道电路的时间再加上一个保护时间,让三维网络中的一条车站到达弧或车站出发弧对应一条进路,进而对应相应的轨道电路集合,实现宏观与微观相结合。
所述的步骤S3,包括定义相同位置坐标的节点不能互相连接;定义相邻位置坐标的节点能互相连接;根据股道坐标判断两个节点的连通性,定义下行股道节点可以连接下行股道节点或者上、下行股道节点,上行股道节点可以连接上、下行股道节点;定义车站出发站界节点只能与相同去向的相邻下一车站到达站界节点相连;定义同一车站的到达股道节点只能与相同股道坐标的出发股道节点相连;定义列车在车站的停站时间要满足最小、最大停站时间的要求。
所述的步骤S4,包括如下步骤:
A1. 定义所有车站的集合、所有列车的集合、三维网络中列车对应的所有路径集合、所有弧段的集合、所有区间弧集合、车站的所有停站弧集合、车站的所有进路弧集合、车站的所有轨道电路集合和满足联动关系的轨道电路集合;同时定义三维网络中的路径和弧段;定义路径的决策变量和虚拟出发弧的权重;
A2. 定义车站停站弧的权重,列车在车站的停站时间越长,其对应弧段的权重值越大;
A3. 车站到达弧、车站通过弧、车站出发弧、区间弧和虚拟到达弧的权重都为0;
A4. 目标函数是最小化列车的停站时间,同时最大化运行图的通过能力,将最大化运行图通过能力取相反数,计算目标函数。
所述的步骤S1,包括建立位置坐标轴Ax(P);将每个车站节点划分为四个节点,位置坐标轴代表每个节点在线路上的位置,用正整数1,2,…,n表示;将位置坐标轴的坐标除以4,通过余数就判断节点属性,余数1表示车站到达站界节点、余数2表示到达股道节点、余数3表示出发股道节点、余数0表示车站出发站界节点;
建立股道坐标轴Ax(Tr),股道坐标轴代表每个节点所在的股道,用每条股道距离车站水平中心线的相对位置来表示,从1或-1开始,每两个坐标对应一条股道,其中正奇数代表下行股道,负奇数代表上行股道,偶数代表上、下行股道;
建立时间坐标轴Ax(T),时间坐标轴间隔为30秒,用于表示列车作业的开始或结束时刻;其中,位置-股道平面对应车站平面图,表示进路和轨道电路的对应关系;位置-时间平面表示改进的运行图,股道-时间平面表示车站作业计划。
所述的步骤S2,包括,从宏观方面生成PTT三维网络:节点表示列车在到达站界、股道、出发站界作业的开始或结束时刻,第一节点
Figure DEST_PATH_IMAGE001
Figure 100002_DEST_PATH_IMAGE002
i表示第一节点N 1的位置坐标轴Ax(P)坐标;j表示第一节点N 1的股道坐标轴Ax(Tr)坐标;t表示第一节点N 1的时间坐标轴Ax(T)坐标;连接相邻节点形成区间作业弧、车站到达弧、车站停站弧、车站通过弧或车站出发弧,采用(i,m,j,l,t,n)表示,第二节点
Figure DEST_PATH_IMAGE003
m表示第二节点N 2的位置坐标轴Ax(P)坐标;l表示第二节点N 2的股道坐标轴Ax(Tr)坐标;n表示第二节点N 2的时间坐标轴Ax(T)坐标;N为所有节点的集合;σ代表虚拟出发节点,连接σ和始发站的到达站界节点形成虚拟出发弧,用于表示列车的可行发车时间范围;连接到达站界节点和到达股道节点形成车站到达弧,对应列车在车站的到达作业进路;根据列车在车站的停站或通过情况,连接到达股道节点和出发股道节点形成相应的车站停站弧和车站通过弧;连接出发股道节点和出发站界节点形成车站出发弧,对应列车在车站的出发作业进路;连接车站出发站界节点和相邻下一车站的到达站界节点形成区间作业弧(i,m,j,l,t,t+r im );其中r im 表示运行图给定的区间纯运行时分;规定列车在车站的停站时间不小于最小停站时间,不大于最大停站时间,其中最小停站时间是旅客上车、下车、换乘或者列车进行清理所需要的最小时间,最大停站时间是为了限制网络的规模;τ代表虚拟到达节点,连接车站出发站界节点和τ形成虚拟到达弧,使其符合网络流约束;
从微观方面修正PTT三维网络:从微观角度明确进路和轨道电路之间的关系,进路包括首尾相连的轨道电路,其中轨道电路包括钢轨和绝缘节,用于检测列车对区间的占用和传递信息的;ap 1表示一条从上行到达站界B 4到到达股道节点3G的上行进路,轨道电路集合为{u 12,u 8,u 7,u 3G },u k 表示第k条轨道电路,k=1,2,…,m;办理进路时将所有的轨道电路设为占用状态
Figure 100002_DEST_PATH_IMAGE004
,其中,
Figure DEST_PATH_IMAGE005
表示列车开始占用第k条轨道电路的时间,
Figure 100002_DEST_PATH_IMAGE006
表示列车开始占用进路的时间;解锁进路时根据列车对轨道电路的占用情况依次解锁;列车对轨道电路的占用时间从列车头部首对车轮进入第一个轨道电路的时间到列车尾部最后一对车轮完全离开轨道电路的时间再加上一个保护时间t saf ,如果列车在启动阶段采用匀加速运动,则
Figure DEST_PATH_IMAGE007
其中,k=1,2,…,m
Figure 100002_DEST_PATH_IMAGE008
表示列车结束占用第k条轨道电路进路的时间;
Figure DEST_PATH_IMAGE009
表示列车开始占用第1条轨道电路的时间;a acc 表示列车的牵引加速度;l j 表示列车的长度;
Figure 100002_DEST_PATH_IMAGE010
表示第q条轨道电路u q 的长度;t saf 表示保护时间;如果列车在制动阶段采取匀减速运动,则
Figure DEST_PATH_IMAGE011
其中,k=1,2,…,m
Figure 100002_DEST_PATH_IMAGE012
表示列车结束占用第k条轨道电路的时间;
Figure DEST_PATH_IMAGE013
表示列车开始占用第1条轨道电路的时间;a bak 表示列车的制动减速度;l j 表示列车的长度;
Figure 100002_DEST_PATH_IMAGE014
表示第q条轨道电路u q 的长度;t saf 表示保护时间。
所述的步骤S3,包括定义相同位置坐标的节点不能互相连接;
Figure DEST_PATH_IMAGE015
其中,
Figure 100002_DEST_PATH_IMAGE016
Figure DEST_PATH_IMAGE017
代表能与第一节点N 1连接的节点;N为所有节点的集合;i表示第一节点N 1的位置坐标轴Ax(P)坐标;j表示第一节点N 1的股道坐标轴Ax(Tr)坐标;t表示第一节点N 1的时间坐标轴Ax(T)坐标;m表示第二节点N 2的位置坐标轴Ax(P)坐标;l表示第二节点N 2的股道坐标轴Ax(Tr)坐标;n表示第二节点N 2的时间坐标轴Ax(T)坐标;
定义相邻位置坐标的节点能互相连接;
Figure 100002_DEST_PATH_IMAGE018
其中,
Figure 869808DEST_PATH_IMAGE016
Figure DEST_PATH_IMAGE019
代表能与第一节点N 1连接的节点;N为所有节点的集合;i表示第一节点N 1的位置坐标轴Ax(P)坐标;j表示第一节点N 1的股道坐标轴Ax(Tr)坐标;t表示第一节点N 1的时间坐标轴Ax(T)坐标;m表示第二节点N 2的位置坐标轴Ax(P)坐标;l表示第二节点N 2的股道坐标轴Ax(Tr)坐标;n表示第二节点N 2的时间坐标轴Ax(T)坐标;
根据股道坐标判断两个节点的连通性,定义下行股道节点可以连接下行股道节点或者上、下行股道节点,上行股道节点连接上行股道节点或上、下行股道节点;
Figure 100002_DEST_PATH_IMAGE020
其中,
Figure 114845DEST_PATH_IMAGE016
Figure DEST_PATH_IMAGE021
代表能与第一节点N 1连接的节点;N为所有节点的集合;i表示第一节点N 1的位置坐标轴Ax(P)坐标;j表示第一节点N 1的股道坐标轴Ax(Tr)坐标;t表示第一节点N 1的时间坐标轴Ax(T)坐标;m表示第二节点N 2的位置坐标轴Ax(P)坐标;l表示第二节点N 2的股道坐标轴Ax(Tr)坐标;n表示第二节点N 2的时间坐标轴Ax(Tr)坐标;
定义车站出发站界节点只能与相同去向的相邻下一车站到达站界节点相连;
Figure 100002_DEST_PATH_IMAGE022
其中,
Figure 238790DEST_PATH_IMAGE016
Figure DEST_PATH_IMAGE023
代表能与第一节点N 1连接的节点;N为所有节点的集合;i表示第一节点N 1的位置坐标轴Ax(P)坐标;j表示第一节点N 1的股道坐标轴Ax(Tr)坐标;t表示第一节点N 1的时间坐标轴Ax(T)坐标;m表示第二节点N 2的位置坐标轴Ax(P)坐标;l表示第二节点N 2的股道坐标轴Ax(Tr)坐标;n表示第二节点N 2的时间坐标轴Ax(T)坐标;
定义同一车站的到达股道节点只能与相同股道坐标的出发股道节点相连;
Figure 100002_DEST_PATH_IMAGE024
其中,
Figure 712628DEST_PATH_IMAGE016
Figure DEST_PATH_IMAGE025
代表能与第一节点N 1连接的节点;N为所有节点的集合;i表示第一节点N 1的位置坐标轴Ax(P)坐标;j表示第一节点N 1的股道坐标轴Ax(Tr)坐标;t表示第一节点N 1的时间坐标轴Ax(T)坐标;m表示第二节点N 2的位置坐标轴Ax(P)坐标;l表示第二节点N 2的股道坐标轴Ax(Tr)坐标;n表示第二节点N 2的时间坐标轴Ax(T)坐标;
定义列车在车站的停站时间要满足最小、最大停站时间的要求;
Figure 100002_DEST_PATH_IMAGE026
其中,
Figure 133857DEST_PATH_IMAGE016
Figure DEST_PATH_IMAGE027
代表能与第一节点N 1连接的节点;N为所有节点的集合;i表示第一节点N 1的位置坐标轴Ax(P)坐标;j表示第一节点N 1的股道坐标轴Ax(Tr)坐标;t表示第一节点N 1的时间坐标轴Ax(T)坐标;m表示第二节点N 2的位置坐标轴Ax(P)坐标;l表示第二节点N 2的股道坐标轴Ax(Tr)坐标;n表示第二节点N 2的时间坐标轴Ax(T)坐标;t min为车站最小停车时间;t max为车站最大停站时间。
所述的步骤S4,包括如下步骤:
A1. 定义S为所有车站的集合;H为所有列车的集合;P h 表示三维网络中列车h对应的所有路径集合;A表示所有弧段的集合;
Figure 100002_DEST_PATH_IMAGE028
为区间e的所有区间弧集合;
Figure DEST_PATH_IMAGE029
为车站s的所有停站弧集合;
Figure 100002_DEST_PATH_IMAGE030
为车站s的所有进路弧集合,包括车站到达弧和车站出发弧;U s 表示车站s的所有轨道电路集合;
Figure DEST_PATH_IMAGE031
表示满足联动关系的轨道电路集合;
Figure 100002_DEST_PATH_IMAGE032
代表三维网络中的某一条路径;
Figure DEST_PATH_IMAGE033
代表三维网络中的某一条弧段;x p 为路径p的决策变量,表示路径p是否出现在最优解中;定义路径p的虚拟出发弧的权重为
Figure 100002_DEST_PATH_IMAGE034
,这也是每条路径的初始权重;
A2. 定义车站停站弧的权重为
Figure DEST_PATH_IMAGE035
,其中
Figure 100002_DEST_PATH_IMAGE036
表示弧段α的开始时间;
Figure DEST_PATH_IMAGE037
表示弧段α的结束时间;c pen 表示惩罚系数,列车在车站的停站时间越长,其对应弧段的权重值越大;
A3. 车站到达弧、车站通过弧、车站出发弧、区间弧和虚拟到达弧的权重都为0;
A4. 目标函数是最小化列车的停站时间,同时最大化运行图的通过能力,为了表达的统一,将最大化运行图通过能力取相反数,则其目标函数为
Figure 100002_DEST_PATH_IMAGE038
其中,z 1表示目标函数值;H为所有列车的集合;P h 表示三维网络中列车h对应的所有路径集合;
Figure DEST_PATH_IMAGE039
表示弧段α是否属于路径p,若属于路径p则等于1,否则等于0;
Figure 100002_DEST_PATH_IMAGE040
表示弧段α的开始时间;
Figure DEST_PATH_IMAGE041
表示弧段α的结束时间;c pen 表示惩罚系数;
Figure 100002_DEST_PATH_IMAGE042
表示路径p的虚拟出发弧的权重;S为所有车站的集合;
Figure DEST_PATH_IMAGE043
为车站s的所有停站弧集合。
所述的步骤S4,模型的约束条件如下:
B1. 在三维网络中每个列车最多只能安排一条路径;
Figure 100002_DEST_PATH_IMAGE044
其中,x p 为路径p的决策变量;P h 表示三维网络中列车h对应的所有路径集合;
B2. 到达同一车站的两个相同方向相邻列车的时间间隔要满足到达安全间隔时间要求;
Figure DEST_PATH_IMAGE045
其中,x p 为路径p的决策变量;d(e)表示区间e的结束车站,
Figure 100002_DEST_PATH_IMAGE046
表示到达安全间隔时间;
Figure DEST_PATH_IMAGE047
表示弧段α是否属于路径p,若属于路径p则等于1,否则等于0;
Figure 100002_DEST_PATH_IMAGE048
表示路径
Figure DEST_PATH_IMAGE049
的决策变量;
Figure 100002_DEST_PATH_IMAGE050
表示弧段
Figure DEST_PATH_IMAGE051
是否属于路径
Figure 100002_DEST_PATH_IMAGE052
,若属于路径
Figure DEST_PATH_IMAGE053
则等于1,否则等于0;
Figure 100002_DEST_PATH_IMAGE054
为区间e的所有区间弧集合;
Figure DEST_PATH_IMAGE055
表示弧段α的结束时间;
Figure 100002_DEST_PATH_IMAGE056
表示弧段
Figure DEST_PATH_IMAGE057
的结束时间;
B3. 从同一车站出发的两个相同方向相邻列车的时间间隔要满足出发安全间隔时间要求;
Figure 100002_DEST_PATH_IMAGE058
其中,x p 为决策变量;o(e)表示区间e的开始车站,
Figure DEST_PATH_IMAGE059
表示出发安全间隔时间;
Figure 100002_DEST_PATH_IMAGE060
表示弧段α是否属于路径p,若属于路径p则等于1,否则等于0;
Figure DEST_PATH_IMAGE061
表示路径
Figure 617971DEST_PATH_IMAGE052
的决策变量;
Figure 100002_DEST_PATH_IMAGE062
表示弧段
Figure 681742DEST_PATH_IMAGE051
是否属于路径
Figure 146222DEST_PATH_IMAGE052
,若属于路径
Figure 94062DEST_PATH_IMAGE052
则等于1,否则等于0;
Figure DEST_PATH_IMAGE063
为区间e的所有区间弧集合;
Figure 100002_DEST_PATH_IMAGE064
表示弧段α的开始时间;
Figure DEST_PATH_IMAGE065
表示弧段
Figure 680901DEST_PATH_IMAGE051
的开始时间;
B4. 相同方向的列车禁止在区间越行;
Figure 100002_DEST_PATH_IMAGE066
其中,x p 为决策变量;
Figure DEST_PATH_IMAGE067
表示弧段α是否属于路径p,若属于路径p则等于1,否则等于0;
Figure 100002_DEST_PATH_IMAGE068
表示路径
Figure 123646DEST_PATH_IMAGE052
的决策变量;
Figure DEST_PATH_IMAGE069
表示弧段
Figure 657395DEST_PATH_IMAGE051
是否属于路径
Figure 100002_DEST_PATH_IMAGE070
,若属于路径
Figure DEST_PATH_IMAGE071
则等于1,否则等于0;
Figure 100002_DEST_PATH_IMAGE072
为区间e的所有区间弧集合;
Figure DEST_PATH_IMAGE073
表示弧段α的结束时间;
Figure 100002_DEST_PATH_IMAGE074
表示弧段
Figure 56147DEST_PATH_IMAGE051
的结束时间;
Figure DEST_PATH_IMAGE075
表示弧段α的开始时间;
Figure 100002_DEST_PATH_IMAGE076
表示弧段
Figure 555830DEST_PATH_IMAGE051
的开始时间;
B5. 同一时刻只能有一趟列车占用相同的轨道电路;
Figure DEST_PATH_IMAGE077
其中,x p 为决策变量;
Figure 100002_DEST_PATH_IMAGE078
表示弧段α是否属于路径p,若属于路径p则等于1,否则等于0;
Figure DEST_PATH_IMAGE079
表示路径
Figure 100002_DEST_PATH_IMAGE080
的决策变量;
Figure DEST_PATH_IMAGE081
表示弧段
Figure 469560DEST_PATH_IMAGE051
是否属于路径
Figure 275842DEST_PATH_IMAGE052
,若属于路径
Figure 935624DEST_PATH_IMAGE052
则等于1,否则等于0;
Figure 100002_DEST_PATH_IMAGE082
为车站s的所有进路弧集合;
Figure DEST_PATH_IMAGE083
表示车站进路弧段α的第k个轨道电路;
Figure 100002_DEST_PATH_IMAGE084
表示车站进路弧段
Figure 864266DEST_PATH_IMAGE051
的第
Figure DEST_PATH_IMAGE085
个轨道电路;
Figure 100002_DEST_PATH_IMAGE086
表示列车结束占用车站进路弧段α的第k个轨道电路的时间;
Figure DEST_PATH_IMAGE087
表示列车开始占用车站进路弧段
Figure 937395DEST_PATH_IMAGE051
的第
Figure 547368DEST_PATH_IMAGE085
个轨道电路的时间;
Figure 100002_DEST_PATH_IMAGE088
表示列车结束占用车站进路弧段
Figure 589886DEST_PATH_IMAGE051
的第
Figure 892691DEST_PATH_IMAGE085
个轨道电路的时间;
Figure DEST_PATH_IMAGE089
表示列车开始占用车站进路弧段α的第k个轨道电路的时间;
B6. 包含具有联动关系轨道电路的两个进路之间要满足一定的时间转换要求;
Figure 100002_DEST_PATH_IMAGE090
其中,x p 为决策变量;
Figure DEST_PATH_IMAGE091
表示弧段α是否属于路径p,若属于路径p则等于1,否则等于0;
Figure 100002_DEST_PATH_IMAGE092
表示路径
Figure 453117DEST_PATH_IMAGE052
的决策变量;
Figure 100002_DEST_PATH_IMAGE093
表示弧段
Figure 132360DEST_PATH_IMAGE051
是否属于路径
Figure 16002DEST_PATH_IMAGE052
,若属于路径
Figure 974862DEST_PATH_IMAGE052
则等于1,否则等于0;
Figure DEST_PATH_IMAGE094
为车站s的所有进路弧集合;
Figure 100002_DEST_PATH_IMAGE095
表示满足联动关系的轨道电路集合;
Figure DEST_PATH_IMAGE096
表示车站进路弧段α的第k个轨道电路;
Figure 100002_DEST_PATH_IMAGE097
表示车站进路弧段
Figure 271851DEST_PATH_IMAGE051
的第
Figure DEST_PATH_IMAGE098
个轨道电路;
Figure 100002_DEST_PATH_IMAGE099
表示列车结束占用车站进路弧段
Figure 505518DEST_PATH_IMAGE051
的第
Figure 509246DEST_PATH_IMAGE098
个轨道电路的时间;t saf 表示保护时间;
Figure DEST_PATH_IMAGE100
表示弧段α的开始时间;
B7. 决策变量约束条件;
Figure 100002_DEST_PATH_IMAGE101
其中,x p 为决策变量。
本发明提供的这种轨道交通列车运行图与车站作业协同优化方法,从宏观和微观相结合的角度描述了列车在车站和区间作业的全过程,并在此基础上开展了高速轨道交通列车运行图和车站作业计划协同优化方法的研究。本发明克服了以往分层次优化方法存在的不足,能够在保证旅客服务水平的基础上有效提高运行图的通过能力,为高速轨道交通列车运行计划的智能编制提供决策支持,比以往的方法具有更高的精度。
附图说明
图1为本发明方法的流程示意图。
图2为本发明方法的宏观节点示意图。
图3为本发明方法的微观角度进路和轨道电路关系示意图。
图4为本发明实施例得到的最优列车运行示意图。
图5为本发明实施例得到的最优车站作业计划示意图。
具体实施方式
如图1为本发明方法的流程示意图:本发明提供的这种轨道交通列车运行图与车站作业协同优化方法,包括如下步骤:
S1. 通过在传统的二维时空网络中引入股道坐标轴,建立PTT(Position-Track-Time,位置-股道-时间)三维坐标系,包括建立位置坐标轴,建立股道坐标轴,建立时间坐标轴;
S2. 在三维坐标系中,从宏观和微观相结合的角度生成PTT三维网络,包括,从宏观方面生成PTT三维网络,表示列车在车站和区间的作业过程;从微观方面生成PTT三维网路,表示进路和轨道电路之间的关系;将三维网络中的一条车站到达弧或车站出发弧对应一条进路,从而对应进路所包含的轨道电路,实现宏观与微观相结合;
S3. 基于节点之间的连通性,结合节点位置、股道、时间坐标的特殊规则进行PTT三维网络的缩减,可以有效降低优化问题求解的规模;
S4. 以最小化列车的停站时间和最大化运行图的通过能力为目标函数,以运行图安全时间间隔、区间越行冲突、车站进路和轨道电路占用时间冲突等为约束条件,建立高速轨道交通列车运行图和车站作业计划协同优化网络模型;
S5. 根据当前轨道交通需求,对协同优化网络模型进行求解,能够在保证旅客服务水平的基础上有效提高运行图的通过能力,并得到最优的列车运行图和车站作业计划方案。
所述的步骤S1,包括建立位置坐标轴Ax(P);将每个车站节点划分为四个节点,位置坐标轴代表每个节点在线路上的位置,用正整数1,2,…,n来表示。将位置坐标轴的坐标除以4,通过余数就可以判断其节点属性,余数1对应车站到达站界节点、余数2对应到达股道节点、余数3对应出发股道节点、余数0代表车站出发站界节点;
建立股道坐标轴Ax(Tr),股道坐标轴代表每个节点所在的股道,用每条股道距离车站水平中心线的相对位置来表示。从1或-1开始,每两个坐标对应一条股道,其中正奇数代表下行股道,负奇数代表上行股道,偶数代表上、下行股道;
建立时间坐标轴Ax(T),时间坐标轴间隔为30秒,用来表示列车作业的开始或结束时刻;
其中,位置-股道平面对应车站平面图,可以用来表示进路和轨道电路的对应关系;位置-时间平面对应改进的运行图,股道-时间平面对应车站作业计划。
如图2为本发明方法的宏观节点示意图。所述的步骤S2,包括,从宏观方面生成PTT三维网络:第一节点
Figure DEST_PATH_IMAGE102
表示列车在到达站界、股道、出发站界作业的开始或结束时刻,
Figure 100002_DEST_PATH_IMAGE103
,即i表示第一节点N 1的位置坐标轴Ax(P)坐标;j表示第一节点N 1的股道坐标轴Ax(Tr)坐标;t表示第一节点N 1的时间坐标轴Ax(T)坐标;连接相邻节点形成区间作业弧、车站到达弧、车站停站弧、车站通过弧或车站出发弧,用(i,m,j,l,t,n)来表示,
Figure DEST_PATH_IMAGE104
m表示第二节点N 2的位置坐标轴Ax(P)坐标;l表示第二节点N 2的股道坐标轴Ax(Tr)坐标;n表示第二节点N 2的时间坐标轴Ax(T)坐标;N为所有节点的集合;σ代表虚拟出发节点,连接σ和始发站的到达站界节点形成虚拟出发弧,用来表示列车的可行发车时间范围;连接到达站界节点和到达股道节点形成车站到达弧,对应列车在车站的到达作业进路;根据列车在车站的停站或通过情况,连接到达股道节点和出发股道节点形成相应的车站停站弧和车站通过弧;连接出发股道节点和出发站界节点形成车站出发弧,对应列车在车站的出发作业进路。连接车站出发站界节点和相邻下一车站的到达站界节点形成区间作业弧(i,m,j,l,t,t+r im );其中r im 表示运行图给定的区间纯运行时分;规定列车在车站的停站时间不小于最小停站时间,不大于最大停站时间,其中最小停站时间是旅客上车、下车、换乘或者列车进行清理所需要的最小时间,最大停站时间是为了限制网络的规模;τ代表虚拟到达节点,连接车站出发站界节点和τ形成虚拟到达弧,使其符合网络流约束,这样,列车在线路作业的全过程都可以用PTT三维网络来表示。
如图3为本发明方法的微观角度进路和轨道电路关系示意图。从微观方面修正PTT三维网络:从微观角度明确进路和轨道电路之间的关系,进路是由一系列首尾相连的轨道电路组成的,其中轨道电路是由钢轨和绝缘节组成的,用来检测列车对区间的占用和传递信息的。图3描述了进路和轨道电路之间的关系,ap 1是一条从上行到达站界B 4到到达股道节点3G的上行进路,可以用轨道电路集合{u 12,u 8,u 7,u 3G }来表示,u k 表示第k条轨道电路,k=1,2,…,m;本发明中列车对进路占用采取的是一次办理,分段解锁的规则,即办理进路时将所有的轨道电路设为占用状态
Figure 100002_DEST_PATH_IMAGE105
,其中,
Figure DEST_PATH_IMAGE106
表示列车开始占用第k条轨道电路的时间,
Figure 100002_DEST_PATH_IMAGE107
表示列车开始占用进路的时间;解锁进路时根据列车对轨道电路的占用情况依次解锁。列车对轨道电路的占用时间从列车头部首对车轮进入第一个轨道电路的时间到列车尾部最后一对车轮完全离开轨道电路的时间再加上一个保护时间t saf ,如果列车在启动阶段采用匀加速运动,则
Figure DEST_PATH_IMAGE108
其中,k=1,2,…,m
Figure 100002_DEST_PATH_IMAGE109
表示列车结束占用第k条轨道电路的时间;
Figure 100002_DEST_PATH_IMAGE110
表示列车开始占用第1条轨道电路的时间;a acc 表示列车的牵引加速度;l j 表示列车的长度;
Figure 100002_DEST_PATH_IMAGE111
表示第q条轨道电路u q 的长度;t saf 表示保护时间;如果列车在制动阶段采取匀减速运动,则
Figure DEST_PATH_IMAGE112
其中,k=1,2,…,m
Figure 189407DEST_PATH_IMAGE109
表示列车结束占用第k条轨道电路的时间;
Figure 380217DEST_PATH_IMAGE110
表示列车开始占用第1条轨道电路的时间;a bak 表示列车的制动减速度;l j 表示列车的长度;
Figure 135683DEST_PATH_IMAGE111
表示第q条轨道电路u q 的长度;t saf 表示保护时间;结合图2和图3,可以让三维网络中的一条车站到达弧或车站出发弧对应一条进路,进而对应相应的轨道电路集合,实现宏观与微观相结合。
所述的步骤S3,包括定义相同位置坐标的节点不能互相连接;
Figure 100002_DEST_PATH_IMAGE113
其中,
Figure 993918DEST_PATH_IMAGE016
Figure DEST_PATH_IMAGE114
代表能与第一节点N 1连接的节点;N为所有节点的集合;i表示第一节点的位置坐标轴Ax(P)坐标;j表示第一节点N 1的股道坐标轴Ax(Tr)坐标;t表示第一节点N 1的时间坐标轴Ax(T)坐标;m表示第二节点N 2的位置坐标轴Ax(P)坐标;l表示第二节点N 2的股道坐标轴Ax(Tr)坐标;n表示第二节点N 2的时间坐标轴Ax(T)坐标;
定义相邻位置坐标的节点能互相连接;
Figure 100002_DEST_PATH_IMAGE115
其中,
Figure 91318DEST_PATH_IMAGE016
Figure DEST_PATH_IMAGE116
代表能与第一节点N 1连接的节点;N为所有节点的集合;i表示第一节点N 1的位置坐标轴Ax(P)坐标;j表示第一节点N 1的股道坐标轴Ax(Tr)坐标;t表示第一节点N 1的时间坐标轴Ax(T)坐标;m表示第二节点N 2的位置坐标轴Ax(P)坐标;l表示第二节点N 2的股道坐标轴Ax(Tr)坐标;n表示第二节点N 2的时间坐标轴Ax(T)坐标;
根据股道坐标判断两个节点的连通性,定义下行股道节点可以连接下行股道节点或者上、下行股道节点,上行股道节点可以连接上行股道节点或者上、下行股道节点;
Figure 100002_DEST_PATH_IMAGE117
其中,
Figure 566161DEST_PATH_IMAGE016
Figure DEST_PATH_IMAGE118
代表能与第一节点N 1连接的节点;N为所有节点的集合;i表示第一节点N 1的位置坐标轴Ax(P)坐标;j表示第一节点N 1的股道坐标轴Ax(Tr)坐标;t表示第一节点N 1的时间坐标轴Ax(T)坐标;m表示第二节点N 2的位置坐标轴Ax(P)坐标;l表示第二节点N 2的股道坐标轴Ax(Tr)坐标;n表示第二节点N 2的时间坐标轴Ax(T)坐标;
定义车站出发站界节点只能与相同去向的相邻下一车站到达站界节点相连;
Figure 100002_DEST_PATH_IMAGE119
其中,
Figure 669859DEST_PATH_IMAGE016
Figure DEST_PATH_IMAGE120
代表能与第一节点N 1连接的节点;N为所有节点的集合;i表示第一节点N 1的位置坐标轴Ax(P)坐标;j表示第一节点N 1的股道坐标轴Ax(Tr)坐标;t表示第一节点N 1的时间坐标轴Ax(T)坐标;m表示第二节点N 2的位置坐标轴Ax(P)坐标;l表示第二节点N 2的股道坐标轴Ax(Tr)坐标;n表示第二节点N 2的时间坐标轴Ax(T)坐标;
定义同一车站的到达股道节点只能与相同股道坐标的出发股道节点相连;
Figure 100002_DEST_PATH_IMAGE121
其中,
Figure 664491DEST_PATH_IMAGE016
Figure DEST_PATH_IMAGE122
代表能与第一节点N 1连接的节点;N为所有节点的集合;i表示第一节点N 1的位置坐标轴Ax(P)坐标;j表示第一节点N 1的股道坐标轴Ax(Tr)坐标;t表示第一节点N 1的时间坐标轴Ax(T)坐标;m表示第二节点N 2的位置坐标轴Ax(P)坐标;l表示第二节点N 2的股道坐标轴Ax(Tr)坐标;n表示第二节点N 2的时间坐标轴Ax(T)坐标;
定义列车在车站的停站时间要满足最小、最大停站时间的要求;
Figure 100002_DEST_PATH_IMAGE123
其中,
Figure 916481DEST_PATH_IMAGE016
Figure DEST_PATH_IMAGE124
代表能与第一节点N 1连接的节点;N为所有节点的集合;i表示第一节点N 1的位置坐标轴Ax(P)坐标;j表示第一节点N 1的股道坐标轴Ax(Tr)坐标;t表示第一节点N 1的时间坐标轴Ax(T)坐标;m表示第二节点N 2的位置坐标轴Ax(P)坐标;l表示第二节点N 2的股道坐标轴Ax(Tr)坐标;n表示第二节点N 2的时间坐标轴Ax(T)坐标;t min表示车站最小停站时间;t max表示车站最大停站时间。
基于PTT三维网络,将协同优化模型转化为网络流模型,这样原模型的目标函数就转换为了所有路径的权重之和,约束条件转换为了网络中节点和弧段的权重,为了计算简便,本方法将所有节点的权重都转移到临近弧段的权重上,这样一条路径的权重就等于所包括的所有弧段的权重之和。所述的步骤S4,包括如下步骤:
A1. 定义S为所有车站的集合;H为所有列车的集合;P h 表示三维网络中列车h对应的所有路径集合;A表示所有弧段的集合;
Figure 100002_DEST_PATH_IMAGE125
为区间e的所有区间弧集合;
Figure DEST_PATH_IMAGE126
为车站s的所有停站弧集合;
Figure 100002_DEST_PATH_IMAGE127
为车站s的所有进路弧集合,包括车站到达弧和车站出发弧;U s 表示车站s的所有轨道电路集合;
Figure DEST_PATH_IMAGE128
表示满足联动关系的轨道电路集合;
Figure 100002_DEST_PATH_IMAGE129
代表三维网络中的某一条路径;
Figure DEST_PATH_IMAGE130
代表三维网络中的某一条弧段;x p 为路径p的决策变量,表示路径p是否出现在最优解中;定义路径p的虚拟出发弧的权重为
Figure 100002_DEST_PATH_IMAGE131
,这也是每条路径的初始权重;
A2. 定义车站停站弧的权重为
Figure DEST_PATH_IMAGE132
,其中
Figure 100002_DEST_PATH_IMAGE133
表示弧段α的开始时间;
Figure DEST_PATH_IMAGE134
表示弧段α的结束时间;c pen 表示惩罚系数,列车在车站的停站时间越长,其对应弧段的权重值越大;
A3. 车站到达弧、车站通过弧、车站出发弧、区间弧和虚拟到达弧的权重都为0;
A4. 目标函数是最小化列车的停站时间,同时最大化运行图的通过能力,为了表达的统一,将最大化运行图通过能力取相反数,则其目标函数为
Figure 100002_DEST_PATH_IMAGE135
其中,z 1表示目标函数值;H为所有列车的集合;P h 表示三维网络中列车h对应的所有路径集合;
Figure DEST_PATH_IMAGE136
表示弧段α是否属于路径p,若属于路径p则等于1,否则等于0;
Figure 100002_DEST_PATH_IMAGE137
表示弧段α的开始时间;
Figure DEST_PATH_IMAGE138
表示弧段α的结束时间;c pen 表示惩罚系数;
Figure 100002_DEST_PATH_IMAGE139
表示路径p的虚拟出发弧的权重;S为所有车站的集合;
Figure DEST_PATH_IMAGE140
为车站s的所有停站弧集合;
模型需要满足的约束条件如下:
B1. 在三维网络中每个列车最多只能安排一条路径;
Figure 100002_DEST_PATH_IMAGE141
其中,x p 为路径p的决策变量;P h 表示三维网络中列车h对应的所有路径集合;
B2. 到达同一车站的两个相同方向相邻列车的时间间隔要满足到达安全间隔时间要求;
Figure DEST_PATH_IMAGE142
其中,x p 为路径p的决策变量;d(e)表示区间e的结束车站,
Figure 100002_DEST_PATH_IMAGE143
表示到达安全间隔时间;
Figure 100002_DEST_PATH_IMAGE144
表示弧段α是否属于路径p,若属于路径p则等于1,否则等于0;
Figure DEST_PATH_IMAGE145
表示路径
Figure 910496DEST_PATH_IMAGE052
的决策变量;
Figure 100002_DEST_PATH_IMAGE146
表示弧段
Figure 24077DEST_PATH_IMAGE051
是否属于路径
Figure 591325DEST_PATH_IMAGE052
,若属于路径
Figure 483057DEST_PATH_IMAGE052
则等于1,否则等于0;
Figure DEST_PATH_IMAGE147
为区间e的所有区间弧集合;
Figure 100002_DEST_PATH_IMAGE148
表示弧段α的结束时间;
Figure DEST_PATH_IMAGE149
表示弧段
Figure 214384DEST_PATH_IMAGE051
的结束时间;
B3. 从同一车站出发的两个相同方向相邻列车的时间间隔要满足出发安全间隔时间要求;
Figure 100002_DEST_PATH_IMAGE150
其中,x p 为决策变量;o(e)表示区间e的开始车站,
Figure DEST_PATH_IMAGE151
表示出发安全间隔时间;
Figure 100002_DEST_PATH_IMAGE152
表示弧段α是否属于路径p,若属于路径p则等于1,否则等于0;
Figure DEST_PATH_IMAGE153
表示路径
Figure 191043DEST_PATH_IMAGE052
的决策变量;
Figure 100002_DEST_PATH_IMAGE154
表示弧段
Figure 878376DEST_PATH_IMAGE051
是否属于路径
Figure 941010DEST_PATH_IMAGE071
,若属于路径
Figure 81004DEST_PATH_IMAGE052
则等于1,否则等于0;
Figure DEST_PATH_IMAGE155
为区间e的所有区间弧集合;
Figure 100002_DEST_PATH_IMAGE156
表示弧段α的开始时间;
Figure DEST_PATH_IMAGE157
表示弧段
Figure 598704DEST_PATH_IMAGE051
的开始时间。
B4. 相同方向的列车禁止在区间越行;
Figure 100002_DEST_PATH_IMAGE158
其中,x p 为决策变量;
Figure DEST_PATH_IMAGE159
表示弧段α是否属于路径p,若属于路径p则等于1,否则等于0;
Figure 100002_DEST_PATH_IMAGE160
表示路径
Figure 688014DEST_PATH_IMAGE052
的决策变量;
Figure DEST_PATH_IMAGE161
表示弧段
Figure 452708DEST_PATH_IMAGE051
是否属于路径
Figure 79998DEST_PATH_IMAGE052
,若属于路径
Figure 57182DEST_PATH_IMAGE052
则等于1,否则等于0;
Figure 100002_DEST_PATH_IMAGE162
为区间e的所有区间弧集合;
Figure DEST_PATH_IMAGE163
表示弧段α的结束时间;
Figure 100002_DEST_PATH_IMAGE164
表示弧段
Figure 998DEST_PATH_IMAGE051
的结束时间;
Figure DEST_PATH_IMAGE165
表示弧段α的开始时间;
Figure 100002_DEST_PATH_IMAGE166
表示弧段
Figure 221413DEST_PATH_IMAGE051
的开始时间。
B5. 同一时刻只能有一趟列车占用相同的轨道电路;
Figure DEST_PATH_IMAGE167
其中,x p 为决策变量;
Figure 100002_DEST_PATH_IMAGE168
表示弧段α是否属于路径p,若属于路径p则等于1,否则等于0;
Figure DEST_PATH_IMAGE169
表示路径
Figure 132738DEST_PATH_IMAGE052
的决策变量;
Figure 100002_DEST_PATH_IMAGE170
表示弧段
Figure 929924DEST_PATH_IMAGE051
是否属于路径
Figure 180776DEST_PATH_IMAGE052
,若属于路径
Figure 21693DEST_PATH_IMAGE052
则等于1,否则等于0;
Figure DEST_PATH_IMAGE171
为车站s的所有进路弧集合;
Figure DEST_PATH_IMAGE172
表示车站进路弧段α的第k个轨道电路;
Figure DEST_PATH_IMAGE173
表示车站进路弧段
Figure DEST_PATH_IMAGE174
的第
Figure DEST_PATH_IMAGE175
个轨道电路;
Figure DEST_PATH_IMAGE176
表示列车结束占用车站进路弧段α的第k个轨道电路的时间;
Figure DEST_PATH_IMAGE177
表示列车开始占用车站进路弧段
Figure 780833DEST_PATH_IMAGE051
的第
Figure 99819DEST_PATH_IMAGE085
个轨道电路的时间;
Figure DEST_PATH_IMAGE178
表示列车结束占用车站进路弧段
Figure 736337DEST_PATH_IMAGE051
的第
Figure 482576DEST_PATH_IMAGE085
个轨道电路的时间;
Figure DEST_PATH_IMAGE179
表示列车开始占用车站进路弧段α的第k个轨道电路的时间;
B6. 包含具有联动关系轨道电路的两个进路之间要满足一定的时间转换要求;
Figure DEST_PATH_IMAGE180
其中,x p 为决策变量;
Figure 585136DEST_PATH_IMAGE168
表示弧段α是否属于路径p,若属于路径p则等于1,否则等于0;
Figure 973392DEST_PATH_IMAGE169
表示路径
Figure 933258DEST_PATH_IMAGE052
的决策变量;
Figure 850399DEST_PATH_IMAGE170
表示弧段
Figure 426874DEST_PATH_IMAGE051
是否属于路径
Figure 838394DEST_PATH_IMAGE052
,若属于路径
Figure 918346DEST_PATH_IMAGE052
则等于1,否则等于0;
Figure DEST_PATH_IMAGE181
为车站s的所有进路弧集合;
Figure DEST_PATH_IMAGE182
表示满足联动关系的轨道电路集合;
Figure DEST_PATH_IMAGE183
表示车站进路弧段α的第k个轨道电路;
Figure DEST_PATH_IMAGE184
表示车站进路弧段
Figure 350595DEST_PATH_IMAGE051
的第
Figure 148787DEST_PATH_IMAGE098
个轨道电路;
Figure DEST_PATH_IMAGE185
表示列车结束占用车站进路弧段
Figure 144425DEST_PATH_IMAGE051
的第
Figure 813304DEST_PATH_IMAGE098
个轨道电路的时间;t saf 表示保护时间;
Figure DEST_PATH_IMAGE186
表示弧段α的开始时间;
B7. 决策变量约束条件;
Figure DEST_PATH_IMAGE187
其中,x p 为决策变量。
所述的步骤S5,包括将协同优化网络模型输入到整数规划商业软件GAMS中进行求解,获得最优的列车运行图和车站作业计划。
在本实施例中,根据步骤S1、步骤S2和步骤S3生成PTT三维网络,并在此基础上协同优化高速轨道交通列车运行图和车站作业计划,如图4为本发明实施例得到的最优列车运行示意图,如图5为本发明实施例得到的最优车站作业计划示意图。

Claims (9)

1.一种轨道交通列车运行图与车站作业协同优化方法,其特征在于包括如下步骤:
S1. 通过在二维时空网络中引入股道坐标轴,建立PTT三维坐标系,包括建立位置坐标轴,建立股道坐标轴,建立时间坐标轴;
S2. 在三维坐标系中,从宏观和微观相结合的角度生成PTT三维网络,包括,从宏观方面生成PTT三维网络,表示列车在车站和区间的作业过程;从微观方面生成PTT三维网路,表示进路和轨道电路之间的关系;
S3. 基于节点之间的连通性,结合节点位置、股道、时间坐标的关系进行PTT三维网络的缩减;
S4. 以最小化列车的停站时间和最大化运行图的通过能力为目标函数,采用约束条件,建立高速轨道交通列车运行图和车站作业计划协同优化网络模型;约束条件包括运行图安全时间间隔、区间越行冲突、车站进路和轨道电路占用时间冲突;
S5. 根据当前轨道交通需求,对协同优化网络模型进行求解,得到最优的列车运行图和车站作业计划方案。
2.根据权利要求1所述的轨道交通列车运行图与车站作业协同优化方法,其特征在于所述的步骤S1,包括建立位置坐标轴;将每个车站节点划分为车站到达站界节点、到达股道节点、出发股道节点和车站出发站界节点;建立股道坐标轴,股道坐标轴代表每个节点所在的股道,用每条股道距离车站水平中心线的相对位置来表示;建立时间坐标轴,设定预设时间坐标轴间隔,用来表示列车作业的开始或结束时刻;其中,位置-股道平面对应车站平面图,用于表示进路和轨道电路的对应关系;位置-时间平面对应改进的运行图,股道-时间平面对应车站作业计划。
3.根据权利要求2所述的轨道交通列车运行图与车站作业协同优化方法,其特征在于所述的步骤S2,包括,从宏观方面生成PTT三维网络:节点表示列车在到达站界、股道、出发站界作业的开始或结束时刻;连接虚拟出发节点和始发站的到达站界节点形成虚拟出发弧,用来表示列车的可行发车时间范围;连接到达站界节点和到达股道节点形成车站到达弧,对应列车在车站的到达作业进路;根据列车在车站的停站或通过情况,连接到达股道节点和出发股道节点形成相应的车站停站弧和车站通过弧;连接出发股道节点和出发站界节点形成车站出发弧,对应列车在车站的出发作业进路;连接车站出发站界节点和相邻下一车站的到达站界节点形成区间作业弧;设置列车在车站的停站时间不小于最小停站时间,不大于最大停站时间,其中最小停站时间是旅客上车、下车、换乘或者列车进行清理的最小时间,最大停站时间用于限制网络的规模;连接车站出发站界节点和虚拟到达节点形成虚拟到达弧;
从微观方面修正PTT三维网络:从微观角度明确进路和轨道电路之间的关系,进路包括一系列首尾相连的轨道电路,其中轨道电路是由钢轨和绝缘节组成的,用来检测列车对区间的占用和传递信息;解锁进路时根据列车对轨道电路的占用情况依次解锁,列车对轨道电路的占用时间从列车头部首对车轮进入第一个轨道电路的时间到列车尾部最后一对车轮完全离开轨道电路的时间再加上一个保护时间,让三维网络中的一条车站到达弧或车站出发弧对应一条进路,进而对应相应的轨道电路集合,实现宏观与微观相结合。
4.根据权利要求3所述的轨道交通列车运行图与车站作业协同优化方法,其特征在于所述的步骤S3,包括定义相同位置坐标的节点不能互相连接;定义相邻位置坐标的节点能互相连接;根据股道坐标判断两个节点的连通性,定义下行股道节点可以连接下行股道节点或者上、下行股道节点,上行股道节点可以连接上、下行股道节点;定义车站出发站界节点只能与相同去向的相邻下一车站到达站界节点相连;定义同一车站的到达股道节点只能与相同股道坐标的出发股道节点相连;定义列车在车站的停站时间要满足最小、最大停站时间的要求。
5.根据权利要求4所述的轨道交通列车运行图与车站作业协同优化方法,其特征在于所述的步骤S4,包括如下步骤:
A1. 定义所有车站的集合、所有列车的集合、三维网络中列车对应的所有路径集合、所有弧段的集合、所有区间弧集合、车站的所有停站弧集合、车站的所有进路弧集合、车站的所有轨道电路集合和满足联动关系的轨道电路集合;同时定义三维网络中的路径和弧段;定义路径的决策变量和虚拟出发弧的权重;
A2. 定义车站停站弧的权重,列车在车站的停站时间越长,其对应弧段的权重值越大;
A3. 车站到达弧、车站通过弧、车站出发弧、区间弧和虚拟到达弧的权重都为0;
A4. 目标函数是最小化列车的停站时间,同时最大化运行图的通过能力,将最大化运行图通过能力取相反数,计算目标函数。
6.根据权利要求5所述的轨道交通列车运行图与车站作业协同优化方法,其特征在于所述的步骤S1,包括建立位置坐标轴Ax(P);将每个车站节点划分为四个节点,位置坐标轴代表每个节点在线路上的位置,用正整数1,2,…,n n 表示;将位置坐标轴的坐标除以4,通过余数就判断节点属性,余数1表示车站到达站界节点、余数2表示到达股道节点、余数3表示出发股道节点、余数0表示车站出发站界节点;
建立股道坐标轴Ax(Tr),股道坐标轴代表每个节点所在的股道,用每条股道距离车站水平中心线的相对位置来表示,从1或-1开始,每两个坐标对应一条股道,其中正奇数代表下行股道,负奇数代表上行股道,偶数代表上、下行股道;
建立时间坐标轴Ax(T),时间坐标轴间隔为30秒,用于表示列车作业的开始或结束时刻;其中,位置-股道平面对应车站平面图,表示进路和轨道电路的对应关系;位置-时间平面表示改进的运行图,股道-时间平面表示车站作业计划。
7.根据权利要求6所述的轨道交通列车运行图与车站作业协同优化方法,其特征在于所述的步骤S3,包括定义相同位置坐标的节点不能互相连接;
Figure DEST_PATH_IMAGE002
其中,
Figure DEST_PATH_IMAGE004
Figure DEST_PATH_IMAGE006
代表能与第一节点N 1连接的节点;N为所有节点的集合;i表示第一节点N 1的位置坐标轴Ax(P)坐标;j表示第一节点N 1的股道坐标轴Ax(Tr)坐标;t表示第一节点N 1的时间坐标轴Ax(T)坐标;m表示第二节点N 2的位置坐标轴Ax(P)坐标;l表示第二节点N 2的股道坐标轴Ax(Tr)坐标;n表示第二节点N 2的时间坐标轴Ax(T)坐标;
定义相邻位置坐标的节点能互相连接;
Figure DEST_PATH_IMAGE008
其中,
Figure 969784DEST_PATH_IMAGE004
Figure DEST_PATH_IMAGE010
代表能与第一节点N 1连接的节点;N为所有节点的集合;i表示第一节点N 1的位置坐标轴Ax(P)坐标;j表示第一节点N 1的股道坐标轴Ax(Tr)坐标;t表示第一节点N 1的时间坐标轴Ax(T)坐标;m表示第二节点N 2的位置坐标轴Ax(P)坐标;l表示第二节点N 2的股道坐标轴Ax(Tr)坐标;n表示第二节点N 2的时间坐标轴Ax(T)坐标;
根据股道坐标判断两个节点的连通性,定义下行股道节点可以连接下行股道节点或者上、下行股道节点,上行股道节点连接上行股道节点或上、下行股道节点;
Figure DEST_PATH_IMAGE012
其中,
Figure 808296DEST_PATH_IMAGE004
Figure DEST_PATH_IMAGE014
代表能与第一节点N 1连接的节点;N为所有节点的集合;i表示第一节点N 1的位置坐标轴Ax(P)坐标;j表示第一节点N 1的股道坐标轴Ax(Tr)坐标;t表示第一节点N 1的时间坐标轴Ax(T)坐标;m表示第二节点N 2的位置坐标轴Ax(P)坐标;l表示第二节点N 2的股道坐标轴Ax(Tr)坐标;n表示第二节点N 2的时间坐标轴Ax(Tr)坐标;
定义车站出发站界节点只能与相同去向的相邻下一车站到达站界节点相连;
Figure DEST_PATH_IMAGE016
其中,
Figure 978246DEST_PATH_IMAGE004
Figure 904614DEST_PATH_IMAGE014
代表能与第一节点N 1连接的节点;N为所有节点的集合;i表示第一节点N 1的位置坐标轴Ax(P)坐标;j表示第一节点N 1的股道坐标轴Ax(Tr)坐标;t表示第一节点N 1的时间坐标轴Ax(T)坐标;m表示第二节点N 2的位置坐标轴Ax(P)坐标;l表示第二节点N 2的股道坐标轴Ax(Tr)坐标;n表示第二节点N 2的时间坐标轴Ax(T)坐标;
定义同一车站的到达股道节点只能与相同股道坐标的出发股道节点相连;
Figure DEST_PATH_IMAGE018
其中,
Figure 656669DEST_PATH_IMAGE004
Figure DEST_PATH_IMAGE020
代表能与第一节点N 1连接的节点;N为所有节点的集合;i表示第一节点N 1的位置坐标轴Ax(P)坐标;j表示第一节点N 1的股道坐标轴Ax(Tr)坐标;t表示第一节点N 1的时间坐标轴Ax(T)坐标;m表示第二节点N 2的位置坐标轴Ax(P)坐标;l表示第二节点N 2的股道坐标轴Ax(Tr)坐标;n表示第二节点N 2的时间坐标轴Ax(T)坐标;
定义列车在车站的停站时间要满足最小、最大停站时间的要求;
Figure DEST_PATH_IMAGE022
其中,
Figure 809957DEST_PATH_IMAGE004
Figure DEST_PATH_IMAGE024
代表能与第一节点N 1连接的节点;N为所有节点的集合;i表示第一节点N 1的位置坐标轴Ax(P)坐标;j表示第一节点N 1的股道坐标轴Ax(Tr)坐标;t表示第一节点N 1的时间坐标轴Ax(T)坐标;m表示第二节点N 2的位置坐标轴Ax(P)坐标;l表示第二节点N 2的股道坐标轴Ax(Tr)坐标;n表示第二节点N 2的时间坐标轴Ax(T)坐标;t min为车站最小停车时间;t max为车站最大停站时间。
8.根据权利要求7所述的轨道交通列车运行图与车站作业协同优化方法,其特征在于所述的步骤S4,包括如下步骤:
A1. 定义S为所有车站的集合;H为所有列车的集合;P h 表示三维网络中列车h对应的所有路径集合;A表示所有弧段的集合;
Figure DEST_PATH_IMAGE026
为区间e的所有区间弧集合;
Figure DEST_PATH_IMAGE028
为车站s的所有停站弧集合;
Figure DEST_PATH_IMAGE030
为车站s的所有进路弧集合,包括车站到达弧和车站出发弧;U s 表示车站s的所有轨道电路集合;
Figure DEST_PATH_IMAGE032
表示满足联动关系的轨道电路集合;
Figure DEST_PATH_IMAGE034
代表三维网络中的某一条路径;
Figure DEST_PATH_IMAGE036
代表三维网络中的某一条弧段;x p 为路径p的决策变量,表示路径p是否出现在最优解中;定义路径p的虚拟出发弧的权重为
Figure DEST_PATH_IMAGE038
,这也是每条路径的初始权重;
A2. 定义车站停站弧的权重为
Figure DEST_PATH_IMAGE040
,其中
Figure DEST_PATH_IMAGE042
表示弧段α的开始时间;
Figure DEST_PATH_IMAGE044
表示弧段α的结束时间;c pen 表示惩罚系数,列车在车站的停站时间越长,其对应弧段的权重值越大;
A3. 车站到达弧、车站通过弧、车站出发弧、区间弧和虚拟到达弧的权重都为0;
A4. 目标函数是最小化列车的停站时间,同时最大化运行图的通过能力,为了表达的统一,将最大化运行图通过能力取相反数,则其目标函数为
Figure DEST_PATH_IMAGE046
其中,z 1表示目标函数值;H为所有列车的集合;P h 表示三维网络中列车h对应的所有路径集合;
Figure DEST_PATH_IMAGE048
表示弧段α是否属于路径p,若属于路径p则等于1,否则等于0;
Figure DEST_PATH_IMAGE050
表示弧段α的开始时间;
Figure DEST_PATH_IMAGE052
表示弧段α的结束时间;c pen 表示惩罚系数;
Figure DEST_PATH_IMAGE054
表示路径p的虚拟出发弧的权重;S为所有车站的集合;
Figure DEST_PATH_IMAGE056
为车站s的所有停站弧集合。
9.根据权利要求8所述的轨道交通列车运行图与车站作业协同优化方法,其特征在于所述的步骤S4,模型的约束条件如下:
B1. 在三维网络中每个列车最多只能安排一条路径;
Figure DEST_PATH_IMAGE058
其中,x p 为路径p的决策变量;P h 表示三维网络中列车h对应的所有路径集合;
B2. 到达同一车站的两个相同方向相邻列车的时间间隔要满足到达安全间隔时间要求;
Figure DEST_PATH_IMAGE060
其中,x p 为路径p的决策变量;d(e)表示区间e的结束车站,
Figure DEST_PATH_IMAGE062
表示到达安全间隔时间;
Figure DEST_PATH_IMAGE064
表示弧段α是否属于路径p,若属于路径p则等于1,否则等于0;
Figure DEST_PATH_IMAGE066
表示路径
Figure DEST_PATH_IMAGE068
的决策变量;
Figure DEST_PATH_IMAGE070
表示弧段
Figure DEST_PATH_IMAGE072
是否属于路径
Figure DEST_PATH_IMAGE074
,若属于路径
Figure DEST_PATH_IMAGE076
则等于1,否则等于0;
Figure DEST_PATH_IMAGE078
为区间e的所有区间弧集合;
Figure DEST_PATH_IMAGE080
表示弧段α的结束时间;
Figure DEST_PATH_IMAGE082
表示弧段
Figure DEST_PATH_IMAGE084
的结束时间;
B3. 从同一车站出发的两个相同方向相邻列车的时间间隔要满足出发安全间隔时间要求;
Figure DEST_PATH_IMAGE086
其中,x p 为决策变量;o(e)表示区间e的开始车站,
Figure DEST_PATH_IMAGE088
表示出发安全间隔时间;
Figure DEST_PATH_IMAGE090
表示弧段α是否属于路径p,若属于路径p则等于1,否则等于0;
Figure DEST_PATH_IMAGE092
表示路径
Figure DEST_PATH_IMAGE093
的决策变量;
Figure DEST_PATH_IMAGE095
表示弧段
Figure 685114DEST_PATH_IMAGE072
是否属于路径
Figure 290539DEST_PATH_IMAGE093
,若属于路径
Figure 756156DEST_PATH_IMAGE093
则等于1,否则等于0;
Figure DEST_PATH_IMAGE097
为区间e的所有区间弧集合;
Figure DEST_PATH_IMAGE099
表示弧段α的开始时间;
Figure DEST_PATH_IMAGE101
表示弧段
Figure 342995DEST_PATH_IMAGE072
的开始时间;
B4. 相同方向的列车禁止在区间越行;
Figure DEST_PATH_IMAGE103
其中,x p 为决策变量;
Figure DEST_PATH_IMAGE105
表示弧段α是否属于路径p,若属于路径p则等于1,否则等于0;
Figure DEST_PATH_IMAGE107
表示路径
Figure 956379DEST_PATH_IMAGE093
的决策变量;
Figure DEST_PATH_IMAGE109
表示弧段
Figure 880341DEST_PATH_IMAGE072
是否属于路径
Figure DEST_PATH_IMAGE110
,若属于路径
Figure DEST_PATH_IMAGE111
则等于1,否则等于0;
Figure DEST_PATH_IMAGE113
为区间e的所有区间弧集合;
Figure DEST_PATH_IMAGE115
表示弧段α的结束时间;
Figure DEST_PATH_IMAGE117
表示弧段
Figure 265711DEST_PATH_IMAGE072
的结束时间;
Figure DEST_PATH_IMAGE119
表示弧段α的开始时间;
Figure DEST_PATH_IMAGE121
表示弧段
Figure 616927DEST_PATH_IMAGE072
的开始时间;
B5. 同一时刻只能有一趟列车占用相同的轨道电路;
Figure DEST_PATH_IMAGE123
其中,x p 为决策变量;
Figure DEST_PATH_IMAGE125
表示弧段α是否属于路径p,若属于路径p则等于1,否则等于0;
Figure DEST_PATH_IMAGE127
表示路径
Figure DEST_PATH_IMAGE129
的决策变量;
Figure DEST_PATH_IMAGE131
表示弧段
Figure 655290DEST_PATH_IMAGE072
是否属于路径
Figure 461572DEST_PATH_IMAGE093
,若属于路径
Figure 839463DEST_PATH_IMAGE093
则等于1,否则等于0;
Figure DEST_PATH_IMAGE133
为车站s的所有进路弧集合;
Figure DEST_PATH_IMAGE135
表示车站进路弧段α的第k个轨道电路;
Figure DEST_PATH_IMAGE137
表示车站进路弧段
Figure 768105DEST_PATH_IMAGE072
的第
Figure DEST_PATH_IMAGE139
个轨道电路;
Figure DEST_PATH_IMAGE141
表示列车结束占用车站进路弧段α的第k个轨道电路的时间;
Figure DEST_PATH_IMAGE143
表示列车开始占用车站进路弧段
Figure 218066DEST_PATH_IMAGE072
的第
Figure DEST_PATH_IMAGE144
个轨道电路的时间;
Figure DEST_PATH_IMAGE146
表示列车结束占用车站进路弧段
Figure 155935DEST_PATH_IMAGE072
的第
Figure 388333DEST_PATH_IMAGE144
个轨道电路的时间;
Figure DEST_PATH_IMAGE148
表示列车开始占用车站进路弧段α的第k个轨道电路的时间;
B6. 包含具有联动关系轨道电路的两个进路之间要满足一定的时间转换要求;
Figure DEST_PATH_IMAGE150
其中,x p 为决策变量;
Figure DEST_PATH_IMAGE152
表示弧段α是否属于路径p,若属于路径p则等于1,否则等于0;
Figure DEST_PATH_IMAGE154
表示路径
Figure 81351DEST_PATH_IMAGE093
的决策变量;
Figure DEST_PATH_IMAGE156
表示弧段
Figure 172935DEST_PATH_IMAGE072
是否属于路径
Figure 586599DEST_PATH_IMAGE093
,若属于路径
Figure 860454DEST_PATH_IMAGE093
则等于1,否则等于0;
Figure DEST_PATH_IMAGE158
为车站s的所有进路弧集合;
Figure DEST_PATH_IMAGE160
表示满足联动关系的轨道电路集合;
Figure DEST_PATH_IMAGE162
表示车站进路弧段α的第k个轨道电路;
Figure DEST_PATH_IMAGE164
表示车站进路弧段
Figure 196145DEST_PATH_IMAGE072
的第
Figure 571763DEST_PATH_IMAGE139
个轨道电路;
Figure DEST_PATH_IMAGE166
表示列车结束占用车站进路弧段
Figure 444910DEST_PATH_IMAGE072
的第
Figure 324004DEST_PATH_IMAGE139
个轨道电路的时间;t saf 表示保护时间;
Figure DEST_PATH_IMAGE168
表示弧段α的开始时间;
B7. 决策变量约束条件;
Figure DEST_PATH_IMAGE170
其中,x p 为决策变量。
CN202210245561.2A 2022-03-14 2022-03-14 一种轨道交通列车运行图与车站作业协同优化方法 Active CN114418241B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210245561.2A CN114418241B (zh) 2022-03-14 2022-03-14 一种轨道交通列车运行图与车站作业协同优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210245561.2A CN114418241B (zh) 2022-03-14 2022-03-14 一种轨道交通列车运行图与车站作业协同优化方法

Publications (2)

Publication Number Publication Date
CN114418241A CN114418241A (zh) 2022-04-29
CN114418241B true CN114418241B (zh) 2022-10-14

Family

ID=81263427

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210245561.2A Active CN114418241B (zh) 2022-03-14 2022-03-14 一种轨道交通列车运行图与车站作业协同优化方法

Country Status (1)

Country Link
CN (1) CN114418241B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4943982B2 (ja) * 2007-09-26 2012-05-30 公益財団法人鉄道総合技術研究所 駅及び車両基地構内入換計画作成装置
CN108491950A (zh) * 2018-01-25 2018-09-04 北京交通大学 一种考虑多种资源约束的高速铁路通过能力计算方法
CN110458322B (zh) * 2019-06-26 2022-06-03 北京交通大学 考虑企业需求的列车运行计划生成方法
CN112339801B (zh) * 2020-11-09 2022-03-25 北京交通大学 高速铁路多线路列车运行图与到发线分配协同编制方法

Also Published As

Publication number Publication date
CN114418241A (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
US20190308643A1 (en) Railroad train with length more than platform and its marshalling system
CN112668101B (zh) 一种高速铁路列车运行图编制方法
CN113988371B (zh) 基于客流直达的城市轨道交通跨站停开行方案优化方法
CN105930937A (zh) 一种考虑地铁快慢线的列车运行调度一体化优化方法
CN107284480A (zh) 一种基于车底复用的列车运行图自动编制方法
CN111859718B (zh) 一种区域多制式轨道交通车站拥挤系数计算方法及系统
CN111932034A (zh) 一种区域多制式轨道交通列车开行方案编制方法及其系统
CN114880770B (zh) 一种基于参考深度强化学习的列车协同运行控制方法
CN114925909A (zh) 城市轨道交通客流与车流耦合优化方法及系统
Lowson New approach to effective and sustainable urban transport
CN114386310A (zh) 一种时空客流网络分布下地铁列车节能时刻表优化方法
CN111098897A (zh) 一种铁路枢纽车站列车运行进路选择方法
CN114819308A (zh) 基于虚拟编组技术的大小交路运营开行优化方法
CN114418241B (zh) 一种轨道交通列车运行图与车站作业协同优化方法
CN111931386B (zh) 一种区域多制式轨道交通区间拥挤系数计算方法及系统
CN116308970A (zh) 基于出行链广义出行费用的轨道站点服务范围分析方法
CN111859717B (zh) 最小化区域多制式轨道交通旅客拥挤系数的方法及系统
Liu et al. Real-time Adjustment and optimization for Platoon Operation of High-speed Trains
CN113781280A (zh) 铁路网络大规模中断下的列车调整方法
CN117610744B (zh) 一种基于多运营策略的城轨列车开行方案优化方法及系统
CN116691741B (zh) 一种轨道车远程控制系统
Hao et al. Research on Optimization of City Line Express Trains Based on Multi-Objective Particle Swarm Optimization Algorithm
Xu et al. Receiving Routing Problem at Railway Station for Virtual Coupling Operations
CN220924094U (zh) 一种悬挂式单轨正线与出入线平交布置结构
Yang et al. A Subway Timetable Optimization Model for Maximizing the Utilization of Recovery Energy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant