CN114409025A - 一种维生素b12修饰电极催化电解三溴乙酸脱溴的方法 - Google Patents

一种维生素b12修饰电极催化电解三溴乙酸脱溴的方法 Download PDF

Info

Publication number
CN114409025A
CN114409025A CN202111548838.0A CN202111548838A CN114409025A CN 114409025 A CN114409025 A CN 114409025A CN 202111548838 A CN202111548838 A CN 202111548838A CN 114409025 A CN114409025 A CN 114409025A
Authority
CN
China
Prior art keywords
electrode
tribromoacetic acid
vitamin
modified electrode
debromination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111548838.0A
Other languages
English (en)
Inventor
马晓雁
胡溪超
王磊
刘俊萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN202111548838.0A priority Critical patent/CN114409025A/zh
Publication of CN114409025A publication Critical patent/CN114409025A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4676Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明涉及饮用水安全保障技术领域,具体涉及一种维生素B12修饰铁电极催化电解三溴乙酸脱溴的方法。本发明所述方法为先将VB12粉末分散在含有聚合物全氟磺酸(Nafion)的乙醇溶液中,配制VB12分散液;再将VB12分散液负载于电极表面,风干后得到VB12修饰的改性电极。以石墨电极为阳极,改性电极为阴极,搭建电解池装置,电解三溴乙酸脱溴处理。本发明的目的是利用VB12催化性能电解三溴乙酸,本发明所述目标物脱溴的方法具有靶向性高、脱溴效率高、无二次污染、成本低、构造简单、安全稳定等优点。

Description

一种维生素B12修饰电极催化电解三溴乙酸脱溴的方法
技术领域
本发明涉及饮用水安全保障技术领域,特别是涉及卤代消毒副产物脱卤并降低毒性的电化学处理方法,具体涉及一种维生素B12修饰铁电极催化电解三溴乙酸脱溴的方法。
背景技术
氯消毒是长距离输水过程中抑制病原微生物生长最有效的最优质的方法。然而氯会与水中存在的天然有机物发生反应产生多种消毒副产物,普遍检出的高浓度类别主要包括三氯甲烷,氯代乙酸和氯代乙腈等;当水体中存在溴,碘离子时,会产生溴代,碘代等卤代消毒副产物。三溴乙酸是饮用水中常见卤代乙酸,国内报道饮用水水源处溴离子浓度在10~249μg/L。三溴乙酸相较于氯代消毒副产物,有更强的细胞毒性和遗传毒性,这些毒性甚至是氯代消毒副产物的上千倍。有研究认为卤乙酸是消毒副产物致病的主要因素。
消毒副产物可通过饮用、皮肤接触、呼吸等途径对人体健康产生影响,其中饮用为主要途径。国内习惯将自来水煮沸后再进行饮用,在煮沸过程中,挥发性卤代甲烷大量散失,而热稳定的卤代乙酸成为沸水中主要残留的有害消毒副产物。
在水源有机污染无法彻底去除,氯消毒仍为普遍采用的消毒工艺,饮用水中消毒副产物形成等不可避免的情况下,高效快捷的卤代乙酸末端控制技术是解决消毒副产物污染风险的有效途径。目前常用的末端处理法有催化氧化、吸附法等。吸附法常用于去除非极性物质或憎水性有机物,而消毒副产物多为极性或弱极性物质,不易被吸附法去除,效果一般;催化氧化法去除消毒副产物的效果优异,但存在材料利用效率不高、回收困难、高成本、高能耗等缺陷。
发明内容
本申请的目的在于提供一种维生素B12修饰电极催化电解三溴乙酸脱溴的方法,以降低饮用水中消毒副产物三溴乙酸的含量为目标,为卤代消毒副产物的处理提供了新的思路和方法。本发明基于卤代消毒副产物的毒性主要来源于卤元素这一特性,通过电化学方法对消毒副产物三溴乙酸进行还原脱溴。不需要额外添加氧化剂或催化剂,是一种安全、绿色、环保、高效的消毒副产物末端处理技术,可丰富饮水质安全保障理论与技术。
维生素B12是一种含有金属钴(Co)的维生素,可用于催化复杂的代谢还原反应。根据Co的氧化状态,可将维生素B12分为Co(III)、Co(II)(B12r)和Co(I)(B12s)。还原态的维生素B12s和超还原态的B12s在维生素B12介导的卤代有机物还原脱卤中起关键作用。本发明应用维生素B12修饰铁电极作为催化剂,电解过程中铁电极上的电子转移和VB12形成具有脱卤能力的还原剂,从而实现溴代消毒副产物三溴乙酸的脱溴,降低其毒性,改善饮用水水质。VB12的电化学催化脱卤具有效率高、耗能少、靶向能力强、无二次污染等多种优势,是处理卤代消毒副产物的一种优质方法。
本发明解决其技术问题所采用的技术方案是:
一种维生素B12修饰电极催化电解三溴乙酸脱溴的方法,包括步骤如下:
S1、制备VB12分散液;
S2、制备VB12修饰的改性电极:将VB12负载于电极上,得到改性电极;
S3、利用改性电极催化电解水中三溴乙酸。
优选的,所述步骤S1制备VB12分散液,包括如下步骤:
将VB12粉末分散在含有载体材料的溶剂中,超声搅拌,制备所需VB12分散液。
优选的,所述载体材料为聚合物全氟磺酸(Nafion),所述溶剂为乙醇。
优选的,所述VB12的投加量以溶剂体积计为0.2-2mmol/mL,更优选的为1.0mmol/mL;载体材料聚合物Nafion的投加量以溶剂体积计为50-150μL/mL,更优选的为50μL/mL。
优选的,超声时间为1-4h,更优选为1h。
优选的,所述步骤S2中电极的金属材质为铁、铝、铜或不锈钢,更优选为铝;更优选的,电极的形状为板形。
优选的,所述步骤S2制备VB12修饰的改性电极,还包括对电极进行杂质去除处理,确保电极表面负载VB12后仅有VB12存在;更优选的杂质去除处理包括如下步骤:
S2.1:将金属裸电极进行打磨和抛光,得到粗处理电极;
S2.2:将粗处理电极分别置于无水乙醇和水中进行超声,得到杂质去除处理后的电极。
优选的,所述步骤S2.1中采用磨砂纸(1200目)打磨,采用氧化铝浆液(20wt.%)进行抛光;更优选的,抛光至电极表面呈光亮镜面;更优选的,抛光后用水冲洗1-3次。
优选的,所述步骤S2.2中,无水乙醇中超声5-10min,水中超声5-10min。
优选的,所述步骤S2中VB12通过如下步骤负载于电极上:将VB12分散液涂覆于电极表面,干燥后得到改性电极;
更优选的,将VB12分散液通过移液器吸取后滴涂于电极表面,采用线棒涂覆器将电极表面的液面推移至覆盖整个电极表面,至涂层均匀平滑;
更优选的,移液器为移液枪、微量进液器、微量进样针、微量注射针、移液管、滴管等可以进行移液的常规器具。
更优选的,所述改性电极的VB12负载量为1-20mmol/30cm2;更优选为1-10mmol/30cm2
更优选的,干燥为自然风干,干燥时间为20-40h,更优选为24h。
优选的,所述步骤S2制备VB12修饰的改性电极,具体包括如下步骤:
S2.1:取金属裸电极采用磨砂纸打磨,然后采用氧化铝浆液抛光至电极表面呈光亮镜面,用蒸馏水冲洗两次,得到粗处理电极;
S2.2:将粗处理电极置于无水乙醇中,超声5min,再置于蒸馏水中,超声5min,冲洗之后晾干备用,得到杂质去除处理后的电极;
S2.3:采用微量进液器吸取VB12分散液滴涂于杂质去除处理后的电极表面,涂覆至涂层均匀平滑,置于室温下(0-40℃)自然风干24h后即得到修饰后的改性电极。
优选的,所述步骤S3采用改性电极催化电解水中三溴乙酸,包括如下步骤:
S3.1:以石墨电极为阳极、改性电极为阴极,组装电解池装置;
S3.2:以含三溴乙酸的水为电解液,搅拌条件下进行电解催化三溴乙酸脱溴反应。
优选的,所述步骤S3.1中阳极与阴极的间距为10-30mm。
优选的,所述步骤S3.1中电解池装置还用锡箔纸包覆周边,防止透光。
优选的,所述步骤S3.2中搅拌转速为100-300rpm,更优选为150rpm。
优选的,所述步骤S3.2中电解液pH为1-9,更优选为3-7。
优选的,所述步骤S3.2中电解液中三溴乙酸的浓度为10-300μg/L,更优选为50-300μg/L,更优选为50μg/L。溶液体积为2L。
优选的,所述步骤S3中催化电解反应中,三溴乙酸与VB12的计量关系为20-600μg/1mmol,更优选为100-600μg/1mmol,更优选为100μg/1mmol。
优选的,所述步骤S3.2中电解为调节电压使得电源输出恒定的电流,电流密度为2.5~20mA/cm2,更优选为7-20mA/cm2,更优选为15-20mA/cm2
优选的,所述步骤S3.2中反应时间为3-20h,更优选为6-12h。
优选的,所述步骤S3.2中反应温度为0-40℃,更优选为20-40℃。
与现有技术相比,本发明的有益效果是:本发明采用VB12负载在金属电极上的方法,制备改性电极,步骤简便,无污染。VB12修饰的改性电极可实现水中三溴乙酸电催化脱溴,脱溴率高达97%,具有脱卤效率高、无二次污染、成本低、安全稳定等优点,是饮用水处理中减少消毒副产物的优良方法。
附图说明
图1:为本发明不同电极材料对三溴乙酸去除率的影响对比图;
图2:为本发明VB12不同投加方式对三溴乙酸去除率的影响对比图;
图3:为本发明不同电流密度对三溴乙酸去除率的影响对比图;
图4:为本发明不同VB12负载剂量对三溴乙酸去除率的影响对比图;
图5:为本发明不同pH对三溴乙酸去除率的影响对比图;
图6:为本发明不同温度对三溴乙酸去除率的影响对比图;
图7:为本发明不同浓度底物对三溴乙酸去除率的影响对比图;
图8:为本发明三溴乙酸脱溴过程中各种产物生成量图;
图9:为本发明的电催化三溴乙酸脱溴装置示意图;
图中,1-电解池,11-改性电极,12-石墨电极,13-电解液,2-电源,3-搅拌装置,31-搅拌件。
具体实施方式
下面通过具体实施例,并结合附图,对本发明的技术方案作进一步的具体说明。实际案例仅作用于对本发明的说明描述,而非本发明的限制条件。案例所使用仪器及试剂未注明生产厂商,均为可以通过正常采购渠道购买获得的常规产品。
实施例1
实际案例中电催化三溴乙酸,三溴乙酸初始浓度分别为50、100、200和300μg/L。室温为0-40℃,更优选为25℃。
本发明提供一种维生素B12修饰电极催化电解三溴乙酸脱溴的方法,具体包括以下步骤:
S1、制备VB12分散液。通过超声搅拌将4.0mM VB12粉末分散在1.0mL含有50μLNafion的乙醇中,配制VB12分散液。
S2、制备改性电极。采用磨砂纸(1200目)对铁电极(40×70×2mm)进行打磨,然后用氧化铝浆液(20wt.%)对电极表面进行抛光至光亮镜面,两次蒸馏水冲洗干净,然后先置于无水乙醇中,超声5min,再置于蒸馏水中,超声5min,冲洗之后自然晾干备用。采用微量进液器(250μL)吸取超声后的VB12分散液(因微量进液器的体积限定,此处分多次将1mL VB12分散液吸取完毕)滴涂于金属电极表面,采用线棒涂覆器将液面推移至覆盖整个电极表面,置于室温下自然风干24h后即得到修饰后的改性电极,改性电极上VB12的负载量为4mM。
S3、组建电解池装置。玻璃电解池高158mm、外径105mm,距池底30mm设置一个固定卡槽用于稳定电极和控制电极。电极阳极采用石墨电极,阴极采用改性电极。调整极板间距为30mm。用锡箔纸将电解池四周包裹严密,为电催化提供避光反应条件,反应池取样口与池体接连处用保鲜膜密封缠绕。电解池内溶液通过磁力搅拌实现均匀反应,转速为150rpm。
S4、配制初始浓度分别为50、100、200和300μg/L的三溴乙酸溶液2L。调节pH值为7.5。调节电流密度为10mA/cm2。依次进行电催化脱溴反应,每组设置2组平行反应池,分别在0min、30min、1h、2h、3h、4h、5h和6h取出30mL样品通过GC/ECD测定三溴乙酸的浓度。
本发明的基本原理是原子H*和VB12转移电子对三溴乙酸的协同脱溴。
本发明的电催化还原反应,阴极上主要进行直接脱溴和间接脱溴两种形式。直接脱溴为三溴乙酸直接从电极接受电子来实现还原性脱溴。间接去溴机制包括两种情况:一种是通过电极表面或电解溶液中的氧化还原介质,一种是水或H+从电极表面接收电子,产生原子H*,与三溴乙酸反应释放氢溴酸。根据原子的电负性,VB12修饰电极处生成的原子H*会攻击缺电子的碳原子,原子H*与溴相邻的碳原子形成C-H键。C-H键的形成增强碳原子上的电子云密度,并削弱了C-Br的强度,此时C-Br键更易受到亲核基团的攻击,有利于体系中脱溴加氢反应。具体脱溴途径如下:
CBr3COOH→H++CBr3COO- (1)
CBr3COO-+H*→*CBr3COO+e- (2)
*CBr3COO+H++2e-→*CBr2HCOO+Br- (3)
*CBr2HCOO+H++2e-→*CBr1H2COO+Br- (4)
*CBr2COO+H++2e-→*CH3COO+Br- (5)
VB12修饰电极促进了还原体系中原子H*的生成,同时VB12自身也参与了三溴乙酸的还原过程。VB12(Co(III))通电后获得电子形成还原态的VB12(Co(II)),VB12(Co(II))与三溴乙酸反应生成中间产物(VB12-R)(式中X指还原态钴取代Br过程中可能出现的其他产物),VB12-R又可以自身断键恢复起始的VB12(Co(III))并产生脱溴产物。
RBr+VB12(Co(II))→VB12-R+Br-+X (3)
VB12-R+H+→VB12+RH (4)
使用VB12修饰电极进行电催化脱溴,当三溴乙酸的浓度为50μg/L和100μg/L时,电解1h后,三溴乙酸的去除率即可达到60.98%和53.59%。电解6h后,三溴乙酸去除率分别可达97.32%和84.94%。当底物浓度增加至200μg/L和300μg/L时,三溴乙酸的去除率分别为73.81%和61.99%。脱溴过程符合一级反应动力学,不同初始浓度三溴乙酸随时间脱溴效果如图7所示。
实施例2
在实施例1的基础上,初始浓度为10mg/L的三溴乙酸电解6h去除率为59.2%,其中二溴乙酸在1h时的浓度增加到最大值,浓度达到0.363mg/L。一溴乙酸的浓度在2h时达到顶峰,为0.664mg/L,随后缓慢下降。VB12修饰电极催化三溴乙酸脱溴的中间产物随时间变化如图8所示。
实施例3
在实施例1的基础上,电极分别为铁电极、铝电极、铜电极、不锈钢电极,进行不同电极的电解催化三溴乙酸脱溴反应,三溴乙酸水溶液的浓度为200μg/L。电流密度为10mA/cm2。pH为7.5。VB12投加量为4mM。不同电极材料的影响对比图见图1,其中,铝板和不锈钢板对三溴乙酸的6h降解率都达到73%,比铁板和铜板的降解率高出10%,而铝板在前2h的降解速率相比不锈钢板更高。
实施例4
在实施例1的基础上,对铁电极进行直接投加VB12通电,直接投加VB12不通电,不投加VB12通电和涂覆VB12通电四种形式进行对照的电解催化三溴乙酸脱溴反应,三溴乙酸水溶液的浓度200μg/L。电流密度为10mA/cm2。pH为7.5。VB12投加量为4mM。不同形式影响对比见图2,其中,未通电条件下VB12对水中三溴乙酸几乎不产生降解效果。电解6h后涂覆通电的电解效果最佳,达到74%去除率,明显优于不投通电59%的去除率和直投通电65%去除率的电解效果。
实施例5
在实施例1的基础上,改变电流密度分别为2.5、5、10、15、20mA/cm2。进行电解催化三溴乙酸,三溴乙酸水溶液的浓度200μg/L。pH为7.5。VB12投加量为4mM。不同形式影响对比见图3,其中,随着电流密度的增大,三溴乙酸6h后降解率逐步提高,20mA/cm2时达到最大的86%降解率。
实施例6
在实施例1的基础上,改变VB12涂覆量分别为0、1、2、3、5、10mM。进行电解催化三溴乙酸,三溴乙酸水溶液的浓度200μg/L。电流密度为10mA/cm2。pH为7.5。不同形式影响对比见图4,其中,随着涂覆量的增加,三溴乙酸6h后降解率逐步提高,涂覆量为0时降解率为59%,涂覆量达到10mM时,降解率可以达到77%。
实施例7
在实施例1的基础上,改变电解池内pH分别为3、5、7、9。进行电解催化三溴乙酸,三溴乙酸水溶液的浓度200μg/L。电流密度为10mA/cm2。VB12投加量为4mM。不同形式影响对比见图5,其中,酸性条件下VB12能更好的发挥作用,去除效率远高于其他pH条件,达到96%,碱性条件下对三溴乙酸依然有一定的降解效果。
实施例8
在实施例1的基础上,改变电解池内温度分别为10、20、30、40℃。进行电解催化三溴乙酸,三溴乙酸水溶液的浓度200μg/L。电流密度为10mA/cm2。pH为7.5。VB12投加量为4mM。不同形式影响对比见图6,其中,低温条件下,10℃时对降解效果明显不如其他温度条件,30℃、40℃条件下6h降解率相近,前2h时40℃降解速率更快。
综上,本申请通过采用VB12修饰电极,有效的实现了三溴乙酸的靶向脱溴、高效脱溴,具有无二次污染、成本低、结构简单、安全稳定等优势,提供了一种高效的卤代消毒副产物末端处理方法。
以上所述的实施例只是本发明的较佳方案,并非对本发明作任何形式上的限制,在不超出权利要求所记载的技术方案的前提下还有其它的变体及改型。

Claims (10)

1.一种维生素B12修饰电极催化电解三溴乙酸脱溴的方法,其特征在于,包括步骤如下:
S1、制备VB12分散液;
S2、制备VB12修饰的改性电极:将VB12负载于电极上,得到改性电极;
S3、利用改性电极催化电解水中三溴乙酸。
2.根据权利要求1所述一种维生素B12修饰电极催化电解三溴乙酸脱溴的方法,其特征在于,所述步骤S1制备VB12分散液,包括如下步骤:将VB12粉末分散在含有载体材料的溶剂中,超声制备所需VB12分散液。
3.根据权利要求2所述一种维生素B12修饰电极催化电解三溴乙酸脱溴的方法,其特征在于,VB12的投加量以溶剂体积计为0.2-2mmol/mL。
4.根据权利要求2所述一种维生素B12修饰电极催化电解三溴乙酸脱溴的方法,其特征在于,载体材料为聚合物全氟磺酸Nafion,投加量以溶剂体积计为50-150μL/mL。
5.根据权利要求1所述一种维生素B12修饰电极催化电解三溴乙酸脱溴的方法,其特征在于,所述步骤S2中VB12通过如下步骤负载于电极上:将VB12分散液涂覆于电极表面,干燥后得到改性电极。
6.根据权利要求1所述一种维生素B12修饰电极催化电解三溴乙酸脱溴的方法,其特征在于,所述改性电极的VB12负载量为1-20mmol/30cm2
7.根据权利要求1所述一种维生素B12修饰电极催化电解三溴乙酸脱溴的方法,其特征在于,所述步骤S3利用改性电极催化电解水中三溴乙酸,包括如下步骤:
S3.1:以石墨电极为阳极、改性电极为阴极,组装电解池装置;
S3.2:以含三溴乙酸的水为电解液,搅拌条件下进行电解催化三溴乙酸脱溴反应。
8.根据权利要求7所述一种维生素B12修饰电极催化电解三溴乙酸脱溴的方法,其特征在于,所述步骤S3.2中电解液中三溴乙酸的浓度为10-300μg/L。
9.根据权利要求7所述一种维生素B12修饰电极催化电解三溴乙酸脱溴的方法,其特征在于,所述步骤S3.2中电解的电流密度为2.5~20mA/cm2
10.根据权利要求7所述一种维生素B12修饰电极催化电解三溴乙酸脱溴的方法,其特征在于,所述步骤S3.2中搅拌转速为100-300rpm,反应时间为3-20h。
CN202111548838.0A 2021-12-17 2021-12-17 一种维生素b12修饰电极催化电解三溴乙酸脱溴的方法 Pending CN114409025A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111548838.0A CN114409025A (zh) 2021-12-17 2021-12-17 一种维生素b12修饰电极催化电解三溴乙酸脱溴的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111548838.0A CN114409025A (zh) 2021-12-17 2021-12-17 一种维生素b12修饰电极催化电解三溴乙酸脱溴的方法

Publications (1)

Publication Number Publication Date
CN114409025A true CN114409025A (zh) 2022-04-29

Family

ID=81268344

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111548838.0A Pending CN114409025A (zh) 2021-12-17 2021-12-17 一种维生素b12修饰电极催化电解三溴乙酸脱溴的方法

Country Status (1)

Country Link
CN (1) CN114409025A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4707226A (en) * 1986-03-07 1987-11-17 Hoechst Aktiengesellschaft Process for the dehalogenation of chloroacetic and bromoacetic acid
CN105036259A (zh) * 2015-07-01 2015-11-11 湖南大学 一种电沉积双金属修饰活性炭纤维电极的改性方法及应用
CN105399197A (zh) * 2015-12-15 2016-03-16 浙江工业大学 基于三维磁性有序介孔铁酸钴活化过硫酸盐处理染料废水的方法
CN112694198A (zh) * 2020-11-27 2021-04-23 浙江工业大学 一种维生素b12修饰电极催化电解三氯乙酸脱氯方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4707226A (en) * 1986-03-07 1987-11-17 Hoechst Aktiengesellschaft Process for the dehalogenation of chloroacetic and bromoacetic acid
CN105036259A (zh) * 2015-07-01 2015-11-11 湖南大学 一种电沉积双金属修饰活性炭纤维电极的改性方法及应用
CN105399197A (zh) * 2015-12-15 2016-03-16 浙江工业大学 基于三维磁性有序介孔铁酸钴活化过硫酸盐处理染料废水的方法
CN112694198A (zh) * 2020-11-27 2021-04-23 浙江工业大学 一种维生素b12修饰电极催化电解三氯乙酸脱氯方法

Similar Documents

Publication Publication Date Title
Zhou et al. Electrogeneration of hydrogen peroxide for electro-Fenton system by oxygen reduction using chemically modified graphite felt cathode
Tammam et al. Electrocatalytic oxidation of methanol on ordered binary catalyst of manganese and nickel oxide nanoparticles
CN108358282B (zh) 一种改性气体扩散电极及其制备方法
RU2395628C2 (ru) Цилиндрический электрод
JP6758628B2 (ja) 有機ハイドライド製造装置及び有機ハイドライドの製造方法
CN110713233B (zh) Pd/MnO2-Ni电极及其制备方法和应用
CN105293688B (zh) 一种耦合生物阳极电催化去除水中硝酸盐氮的系统
Li et al. Fabrication of Ti/TiO2/SnO2-Sb-Cu electrode for enhancing electrochemical degradation of ceftazidime in aqueous solution
CN105036259A (zh) 一种电沉积双金属修饰活性炭纤维电极的改性方法及应用
CN111018060A (zh) 一种高效去除水中硝酸盐的Ni/TiO2纳米管电极的制备方法
Wang et al. A novel strategy to achieve simultaneous efficient formate production and p-nitrophenol removal in a co-electrolysis system of CO2 and p-nitrophenol
Xu et al. Electrocatalytic dechlorination of florfenicol using a Pd-loaded on blue TiO2 nanotube arrays cathode
Zhang et al. Improved alkaline water electrolysis system for green energy: sulfonamide antibiotic-assisted anodic oxidation integrated with hydrogen generation
Lu et al. Construction of Pd, Ru/2D MXene nanosheets/3D self-supporting nickel foam composite electrode and its electrocatalytic synergistic degradation of antibiotics
Huang et al. Effective and continuous degradation of levofloxacin via the graphite felt electrode loaded with Fe3O4
CN109110882B (zh) 一种电化学去除对二甲苯的方法
CN108435165B (zh) 一种铑钯合金的制备方法、保存方法及其应用
CN104671362B (zh) 去除水中溴酸盐的电极及其制备方法
CN114409025A (zh) 一种维生素b12修饰电极催化电解三溴乙酸脱溴的方法
CN112694198B (zh) 一种维生素b12修饰电极催化电解三氯乙酸脱氯方法
CN116282393A (zh) 钯-磷化镍铜-泡沫镍复合电极及其制备方法和应用
CN110372068A (zh) 一种cof负载的金属氢氧化物电极的制备方法及其应用
CN114873708A (zh) 一种电催化还原n-亚硝基二甲胺的方法
Li et al. The electrochemical kinetics of chloride oxidation over multi-metallic Pt-Ni-Co electrodes affected by metal deposition method and electrode support
CN102276088B (zh) 串联电解池系统及利用其去除饮用水中溴酸盐的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220429

RJ01 Rejection of invention patent application after publication