CN114394766B - 一种新型vo2基热致变色复合薄膜制备方法及应用 - Google Patents

一种新型vo2基热致变色复合薄膜制备方法及应用 Download PDF

Info

Publication number
CN114394766B
CN114394766B CN202210081314.3A CN202210081314A CN114394766B CN 114394766 B CN114394766 B CN 114394766B CN 202210081314 A CN202210081314 A CN 202210081314A CN 114394766 B CN114394766 B CN 114394766B
Authority
CN
China
Prior art keywords
thermochromic
film layer
film
layer
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210081314.3A
Other languages
English (en)
Other versions
CN114394766A (zh
Inventor
宗海涛
胡强
李明
乔文涛
闫玲玲
蔡红新
卞琳艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Technology
Original Assignee
Henan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Technology filed Critical Henan University of Technology
Priority to CN202210081314.3A priority Critical patent/CN114394766B/zh
Publication of CN114394766A publication Critical patent/CN114394766A/zh
Application granted granted Critical
Publication of CN114394766B publication Critical patent/CN114394766B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3618Coatings of type glass/inorganic compound/other inorganic layers, at least one layer being metallic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3639Multilayers containing at least two functional metal layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3649Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer made of metals other than silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/366Low-emissivity or solar control coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/228Other specific oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种新型VO2基热致变色复合薄膜制备方法及应用。所述制备方法包括:(1)准备衬底材料;(2)调整所述衬底材料与靶材安装位置之间的距离至预定距离;(3)将用于制备热致变色功能薄膜层的靶材置于真空腔室内的所述安装位置,所述真空腔室连通有供氧设备(4)利用脉冲激光器对靶材进行照射,生长底层薄膜层;(5)停止生长,静置预定时间;(6)重复步骤(4)‑(5)分别生长中间薄膜层和顶部薄膜层。本发明还在各层薄膜之间添加了金属粒子层。本发明还通过工艺地改进,成功将Mo纳米粒子应用到热致变色薄膜体系中,提升了样品性能,大幅度降低了热致变色功能膜的成本,使得热致变色功能膜的规模化生产更近了一步。

Description

一种新型VO2基热致变色复合薄膜制备方法及应用
技术领域
本发明属于透明功能薄膜技术领域,具体涉及一种新型VO2基热致变色复合薄膜制备方法及其应用。
背景技术
在全球日益增长的能源消耗中,无论是发达国家还是发展中国家,建筑能耗都是国家总能耗中占比较重的一项,统计数据表明:目前我国社会总能耗中有30%左右来自于建筑能耗,而建筑能耗中有近50%来自于玻璃门窗的能量消耗。经过玻璃的能量交换是建筑节能的关键环节。目前,基于二氧化钒(VO2)热致变色薄膜的智能窗由于结构简单以及具有在使用过程中不需要消耗额外能源等优势,被公认为是最适合用于智能窗的热致变色材料。
对于VO2薄膜而言,单层薄膜的制备相对简便,但是其热致变色性能往往不如人意;一些精心制备的薄膜虽然在可见光区的透过率都比较高(可达到75%以上),并且在调控太阳能调节能力上有了一定的成果,可是受限于制备的步骤较为繁琐而不利于大规模生产,对其在智能窗领域的应用有一定的限制作用。尽管通过加入缓冲层等相对传统的方法可以通过实现界面结构的更好匹配以提升一些原本较低的热致变色性能,并且能改善薄膜的稳定性,但是制备出的复合薄膜往往很难实现可见光透过率和太阳能调节效率的同步提高,同时也涉及到两种甚至两种以上薄膜的制备以及膜层匹配问题,无形之中推高了复合薄膜的制备成本,难以实现高性能和低成本之间的平衡
基于金属纳米粒子的局域等离子体振荡(LSPR)效应,可以通过在VO2薄膜中嵌入金属纳米颗粒,调控其在特定波长范围内的光学透过性能,从而有效改善VO2薄膜的热致变色性能。截止目前,人们对其形成的金属纳米LSPR体系进行了大量的研究。可惜的是,关于VO2薄膜LSPR效应的研究大多集中在Au、Ag等贵金属,虽然掺入这些贵金属后样品的LSPR性能非常优异,但其智能窗性能却没有得到明显改善,另外贵金属本身高昂的价格限制了其实际应用。但是,目前除了Au、Ag、Pt等贵金属之外,其他非贵金属类的金属材料在热致变色薄膜材料中的作用还未见报道,非贵金属颗粒在VO2热致变色薄膜中的可控制备是业界尚未解决的一个难题。
发明内容
本发明的目的是为了解决现有技术的不足,而提供一种制备简单、性能优良的热致变色复合薄膜的制备方法。
具体而言,一方面本发明提供一种新型VO2基热致变色复合薄膜制备方法,其特征在于,所述制备方法包括如下步骤:
(1)准备洁净的衬底材料;
(2)将目标衬底材料置于真空腔室内,调整所述衬底材料与靶材安装位置之间的距离至预定距离;
(3)将用于制备热致变色功能薄膜层的靶材置于真空腔室内的所述安装位置,所述真空腔室连通有供氧设备,用于向所述真空腔室内提供纯氧;
(4)利用脉冲激光器对靶材进行照射,生长底层薄膜层;
(5)停止生长,静置预定时间;
(6)重复步骤(4)-(5)分别生长中间薄膜层和顶部薄膜层。
在一种优选实现方式中,在所述步骤(5)之后、生长中间薄膜层之前,还包括:将靶材更换为金属Mo靶,采用同一束激光对靶材进行照射,激光照射角度与步骤(4)相同,将氧气压力调节为0,采用脉冲激光沉积法生长第一金属纳米粒子层。
在另一种优选实现方式中,所述方法还包括,在生长中间薄膜层之后,预定时间间隔内,将靶材更换为金属Mo靶,采用同一束激光对靶材进行照射,激光照射角度与步骤(4)相同,将氧气压力调节为0,采用脉冲激光沉积法生长第二金属纳米粒子层。
在另一种优选实现方式中,热致变色功能薄膜层生长时腔室的背底真空为3×10-4~6×10-4Pa,VO2薄膜的生长速率为0.8~1.2nm/min。
在另一种优选实现方式中,生长底层薄膜层、中间薄膜层和顶部薄膜层时,调节氧气压力为0.5-2Pa,氧气流量为20-50sccm。
在另一种优选实现方式中,所述底层薄膜层、中间薄膜层和顶部薄膜层均为VO2薄膜,所述属纳米粒子层(2、4)为间隔分布的Mo纳米粒子团簇或集群。
在另一种优选实现方式中,每层VO2薄膜的厚度为5~25nm。
根据本发明的另一方面提供一种所述方法制备的复合薄膜的应用,其特征在于,所述复合薄膜用于热致变色智能窗中。
另一方面,本发明提供一种热致变色玻璃,其特征在于,所述热致变色玻璃包括玻璃衬底,并且所述热致变色玻璃上通过所述方法沉积有VO2基热致变色复合薄膜。
本发明的制备嵌入金属Mo纳米粒子的VO2基热致变色复合薄膜的方法可以在几乎不影响综合性能的前提下,大幅度降低了制备成本和制备的难度,并提升所制备薄膜的热致变色性能。
本发明通过改进工艺,实现了Mo嵌入薄膜的同时,保证了热致变色性能,提高了热致变色的可控性,并且,通过间歇式薄膜生长,可以进一步有效调控VO2薄膜的晶粒尺寸和表面粗糙度,继而改善VO2薄膜的相变特性及热致变色性能。综上所述,本发明找到了一种能够在热致变色薄膜体系中嵌入的金属纳米粒子层的新材料,并且通过工艺地改进,成功将其应用到热致变色薄膜体系中,提升了样品性能,大幅度降低了热致变色功能膜的成本,使得热致变色功能膜的规模化生产更近了一步。
更进一步地,所述嵌入金属纳米粒子的VO2基热致变色复合薄膜的制备方法,具体如下:沉积各层薄膜之前,将玻璃衬底(6)放入腔室内,将腔室真空度抽至3×10-4~6×10- 4Pa,首先,在玻璃衬底(6)上沉积第一热致变色功能薄膜层(5),靶材为V靶,激光频率为1~5Hz,氧气压力为0.5~1Pa,氧气流量为20~50sccm,沉积完成后原位退火5-10分钟,之后降温10-20分钟以促进成膜质量;然后在第一热致变色功能薄膜层(5)上沉积金属纳米粒子层(4),沉积用的靶材为纯金属Mo靶材,激光频率为5~10Hz;接着沉积第二热致变色功能薄膜层(3)和金属粒子层(2),条件同上;最后沉积第三热致变色功能薄膜层(1),条件同上。
本发明与现有技术相比,其有益效果为:
第一,本发明通过在二氧化钒功能膜成膜时,设置成膜间歇,逐层优化二氧化钒的结晶度,使得其颗粒度更加均匀,性能更加优良。
第二,在优选实现方式中,本发明嵌入金属纳米粒子的VO2基热致变色复合薄膜,通过在热致变色功能薄膜体系内引入金属纳米粒子层和数层二氧化钒热致变色功能层形成具有优异性能的透明功能薄膜,在保证薄膜光电性能的前提下,使用尽可能简单的原料改变了传统单层VO2薄膜性能不如人意的困境和采用贵金属和复杂工艺以提高性能的不便与昂贵,制作出了高性能的二氧化钒热致变色功能薄膜;
第三,本发明成功将金属Mo应用到热致变色结构中,以相对较低的成本和简便的制备办法,降低了金属纳米粒子层的制备难度和制备成本;
第四,本发明采用数层二氧化钒与金属纳米阵列的复合结构,有利于在最上层薄膜之上进一步引入其他功能薄膜(如减反层等),模块化的设计使进一步提高性能简便易行;
第五,本发明采用脉冲激光沉积系统简便制备了复合膜,制备温度适中,工艺简便易行,减少了制备过程中的能源消耗,改变了因提高性能而需要高成本高精度的制备条件,实现了可见光透过率和太阳能调节效率的同步提高,在热致变色智能窗的相关研究中鲜少见到,尤其是当溅射脉冲数控制在180左右时,可以实现12%左右的调节效率,这一调节效率是以往使用非贵金属材料制备的热致变色薄膜中从未见过报道的。
附图说明
图1为实施例1制备的透明功能复合薄膜的结构示意图。
图2为本实施例中制备的两个样品及对照组(单层VO2薄膜)室温下的Raman光谱图;
图3为本实施例中制备的两个样品及对照组在低温和高温下的透射光谱图;
图4为本发明实施例2中的透明功能复合薄膜的结构示意图,其中1、第三热致变色功能薄膜层;2,金属纳米粒子层;3、第二热致变色功能薄膜层;4、金属纳米粒子层;5、第一热致变色功能薄膜层;6、玻璃衬底。
图5为实施例2–5制备的复合薄膜及单层VO2薄膜(对照组)的拉曼光谱。从图中可以看出,实施例2–5条件下制备的复合薄膜及单层VO2薄膜都仅显示出单斜M相VO2的拉曼峰,表明制备的复合薄膜中含有纯度较高的M相VO2
图6为实施例2制备的复合薄膜及对照组在相变前后的透射率光谱。从图中可以看出,实施例2条件下制备的复合薄膜的热致变色性能明显优于对照组。
图7为实施例3条件下制备的复合薄膜及对照组在相变前后的透射率光谱。从图中可以看出,实施例3条件下制备的复合薄膜的热致变色性能明显优于对照组。
图8为实施例4条件下制备的复合薄膜及对照组在相变前后的透射率光谱。从图中可以看出,实施例4条件下制备的复合薄膜的热致变色性能明显优于对照组。
图9为实施例5条件下制备的复合薄膜及对照组在相变前后的透射率光谱。从图中可以看出,实施例5条件下制备的复合薄膜的热致变色性能明显优于对照组。
图10为实施例2–5条件下制备的复合薄膜及对照组样品的可见光透过率及太阳能调节能力的数据对比图。
图11为对照组的VO2薄膜的扫描图像,其粒径尺寸约为78.6nm。
图12为实施例2条件下制备的仅包含第一热致变色功能薄膜层5和金属纳米粒子层4的复合薄膜的扫描图像,其中,红色圆圈内的白色球形颗粒为相应的金属纳米粒子,此时,复合薄膜的平均粒径尺寸约为48.5nm。
图13为实施例2制备的仅包含第一热致变色功能薄膜层5、金属纳米粒子层4、第二热致变色功能薄膜层3和金属纳米粒子层2的复合薄膜的扫描图像,其中,红色圆圈内的白色球形颗粒为相应的金属纳米粒子,此时,复合薄膜的平均粒径尺寸约为70.2nm。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
下面结合具体实施例,进一步阐明本发明,应当理解这些实施例仅用于说明本发明而不是用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等效形式的修改均落于本申请所附权利要求所限定的范围。
实施例1
如图1所示,本实施例中提供一种分层制备的二氧化钒热致变色薄膜的方法。本实施例方法制备的是VO2/VO2/VO2三层膜,该薄膜包括顶层 (10)、中间层(20)和底层(30)VO2薄膜层,其中,所述底层VO2薄膜层通过沉积方式形成于石英玻璃衬底(40)表面,中间层VO2薄膜层沉积形成于底层VO2薄膜层上,顶层VO2薄膜层沉积形成于中间层VO2薄膜层上。
该VO2/VO2/VO2三层膜的制备方法包括以下步骤:采用脉冲激光沉积法生长底层(准备洁净的衬底材料;将目标衬底材料置于真空腔室内,调整衬底材料与靶材之间的距离为5cm;将金属钒靶置于真空腔室内,调节氧气压力为0.5-2Pa,氧气流量为20-50sccm,利用脉冲激光器(Coherent, COMPex,Pro-102F)对靶材进行照射,设定激光频率为1-5Hz,激光波长 248nm,能量密度约为2-15J/cm2,脉冲宽度25ns),生长10分钟后停止生长,静置预定时间(5~10min)后,再采用脉冲激光沉积法生长中间层,生长10分钟后停止生长,静置预定时间(5~10min),再采用脉冲激光沉积法生长顶层VO2薄膜,生长时真空为5.0×10-4Pa,VO2薄膜的生长速率为1.0nm/min,控制每层VO2层的沉积时间都为10min,形成样品1。
VO2/VO2/VO2三层膜的物相利用Raman光谱仪(SmartLab)进行表征,电阻率利用HMS-5300(Ecopia)霍尔效应测试仪进行测量,透光光谱利用 UV-3600(Shimazu)紫外-可见-红外分光光度计进行测量,所有测试都是在室温时大气环境下进行。
改变实验条件进行本实施例的第二次制备(样品2),具体改变为:生长时真空为5.0×10-4Pa,VO2薄膜的生长速率为1.0nm/min,控制每层VO2层的沉积时间都为30min。
通过对所制备的薄膜测量其室温下的Raman光谱可知,本实施例制备的VO2/VO2/VO2三层膜主要由高纯度的M相VO2组成,表明所制备的VO2薄膜结晶质量得到了显著提高。
实施例2
为了进一步改善热致变色薄膜的性能,本实施例中,对三层膜构造进行了金属纳米粒子嵌入。
如图4所示,本实施例的嵌入金属纳米粒子的VO2基热致变色复合薄膜包括第三热致变色功能薄膜层1、金属纳米粒子层2、第二热致变色功能薄膜层3、金属纳米粒子层4、第一热致变色功能薄膜层5和玻璃衬底6,其中三层热致变色功能薄膜层1、3、5分别通过沉积形成于下层衬底6以及金属纳米粒子层2、4上,任意两层热致变色功能薄膜层的沉积之间,设定预定时间间隔,静置预定时间(5~10min)后,并且,间隔以金属纳米粒子层,热致变色功能薄膜层和纳米粒子层所形成的层叠结构沉积形成于玻璃衬底上。
本实施例中,热致变色功能薄膜层1、3、5均为纯VO2薄膜;所述金属纳米粒子层2、4为金属Mo。所述热致变色功能薄膜层1、3、5的厚度为5~15nm。所述金属纳米粒子层2、4为尚未成膜的原子团簇或集群。(图 4为示意图)。
该嵌入金属纳米粒子的VO2基热致变色复合薄膜的制备方法,包括如下步骤:
(1)准备洁净的衬底材料;
(2)将目标衬底材料置于真空腔室内,调整衬底材料与靶材之间的距离为5cm;
(3)将用于制备热致变色功能薄膜层的靶材(金属钒靶)置于真空腔室内,调节氧气压力为0.5-2Pa,氧气流量为20-50sccm,利用脉冲激光器 (Coherent,COMPex,Pro-102F)对靶材进行照射,设定激光频率为1-5Hz,采用脉冲激光沉积法生长第一热致变色功能薄膜层5,生长时腔室的背底真空为3×10-4~6×10-4Pa,VO2薄膜的生长速率为0.8~1.2nm/min;
(4)将靶材更换为金属Mo靶,采用同一束激光,激光照射到靶材表面的角度与步骤(3)相同,将氧气压力调节为0。采用脉冲激光沉积法(激光波长:248nm,能量密度约为2-15J/cm2,脉冲宽度25ns)生长第一金属纳米粒子层4,生长金属纳米粒子层时脉冲数为60,生长时腔室的背底真空为3×10-4~6×10-4Pa;
(5)将用于制备热致变色功能薄膜层的靶材(金属钒)置于真空腔室内,具体制备步骤如步骤(3)利用激光器对靶材进行照射,采用脉冲激光沉积法生长第二热致变色功能薄膜层3,生长时腔室的背底真空为 3×10-4~6×10-4Pa,VO2薄膜的生长速率为0.8~1.2nm/min;
(6)重复步骤(4)得到第二金属纳米粒子层2;
(7)重复步骤(5)得到第三热致变色功能薄膜层5;
测试
复合薄膜的物相利用拉曼光谱仪进行表征,透光光谱利用UV-3600 (Shimazu)紫外-可见-红外分光光度计进行测量,所有测试都是在大气环境下进行。
本实施例所获得样品称为样品3。
实施例3
本实施例的嵌入金属纳米粒子的VO2基热致变色复合薄膜包括第三热致变色功能薄膜层1、金属纳米粒子层2、第二热致变色功能薄膜层3、金属纳米粒子层4、第一热致变色功能薄膜层5和玻璃衬底6,其中三层热致变色功能薄膜层1、3、5分别通过沉积形成于下层衬底6以及金属纳米粒子层2、4上,任意两层热致变色功能薄膜层的沉积之间,设定预定时间间隔,并且,间隔以金属纳米粒子层,热致变色功能薄膜层和纳米粒子层所形成的的层叠结构沉积形成于玻璃衬底上。
热致变色功能薄膜层1、3、5均为纯VO2薄膜;所述金属纳米粒子层 2、4为金属Mo。所述热致变色功能薄膜层1、3、5的厚度为5~15nm。所述金属纳米粒子层2、4为尚未成膜的原子团簇或集群。
本实施例复合膜制备方法与实施例2相同,只是生长金属纳米粒子层时脉冲数为180,生长时腔室的背底真空为3×10-4~6×10-4Pa,VO2薄膜的生长速率为0.8~1.2nm/min。
本实施例所获得样品称为样品4。
实施例4
本实施例的嵌入金属纳米粒子的VO2基热致变色复合薄膜包括第三热致变色功能薄膜层1、金属纳米粒子层2、第二热致变色功能薄膜层3、金属纳米粒子层4、第一热致变色功能薄膜层5和玻璃衬底6,其中三层热致变色功能薄膜层1、3、5分别通过沉积形成于下层衬底6以及金属纳米粒子层2、4上,任意两层热致变色功能薄膜层的沉积之间,设定预定时间间隔,并且,间隔以金属纳米粒子层,热致变色功能薄膜层和纳米粒子层所形成的的层叠结构沉积形成于玻璃衬底上。
本实施例复合膜制备方法与实施例2相同,只是在制备嵌入金属纳米粒子的VO2基热致变色复合薄膜薄膜时,采用脉冲激光沉积法生长金属纳米粒子层时脉冲数为540,所获得样品称为样品5。
实施例5
本实施例的嵌入金属纳米粒子的VO2基热致变色复合薄膜包括第三热致变色功能薄膜层1、金属纳米粒子层2、第二热致变色功能薄膜层3、金属纳米粒子层4、第一热致变色功能薄膜层5和玻璃衬底6,其中三层热致变色功能薄膜层1、3、5分别通过沉积形成于下层衬底6以及金属纳米粒子层2、4上,任意两层热致变色功能薄膜层的沉积之间,设定预定时间间隔,并且,间隔以金属纳米粒子层,热致变色功能薄膜层和纳米粒子层所形成的的层叠结构沉积形成于玻璃衬底上。
本实施例复合膜制备方法与实施例2相同,只是在制备嵌入金属纳米粒子的VO2基热致变色复合薄膜时,对于每个金属纳米粒子层,采用脉冲激光沉积法生长金属纳米粒子层时脉冲数为1620,所获得样品称为样品6。
经过大量对比实验,发明人发现,在进行纳米粒子层制备时,热致变色功能薄膜层粒度控制和金属纳米粒子生成的功率密度控制尤为重要。
本发明通过将单层的热致变色功能薄膜层拆分成多次进行生长,每生长一层之后,通过降温、冷却控制其无序生长,然后,再次进行生长,这可以有助于实现VO2薄膜结晶度的提高。优选地,将热致变色功能薄膜层的颗粒尺寸控制在60-100nm,这可以通过控制VO2薄膜的生长速率和生长时间来控制。另外,当进行金属纳米粒子生长时,通过控制脉冲激光沉积的脉冲数,可以保证金属纳米粒子的稀疏度,使其平均间距控制在40-600nm,这样可以获得最大的太阳能调节能力,本发明中,通过控制在当前能量密度下的溅射脉冲数,当将脉冲数控制在180左右时,可以实现高达~12%的太阳能调节能力。
本发明在简便条件下制备了数层具有优良光电性能的VO2多层膜结构,不仅节约了因繁复的制备条件而带来的能源和资源浪费,且不需要模板、光刻以及酸蚀等微纳加工工艺,制备工艺简单并且光电性能优良,在可见光区的透过率高,近红外波长范围内太阳能调节效率高。复合膜结构在保证了较高的透明度的条件下,具有良好的稳定性。这对于该透明功能薄膜应用于热致变色智能窗方向具有重要的应用前景。
本发明提出的嵌入金属纳米粒子的VO2基热致变色复合薄膜,通过工艺改进实现了纯金属Mo作为实现局域表面等离子体共振的金属纳米颗粒在VO2基热致变色复合薄膜中的应用,对于降低透明功能薄膜的制备难度,提高工艺兼容性,满足人们低成本需求有着重要的实用价值。
虽然上面结合本发明的优选实施例对本发明的原理进行了详细的描述,本领域技术人员应该理解,上述实施例仅仅是对本发明的示意性实现方式的解释,并非对本发明包含范围的限定。实施例中的细节并不构成对本发明范围的限制,在不背离本发明的精神和范围的情况下,任何基于本发明技术方案的等效变换、简单替换等显而易见的改变,均落在本发明保护范围之内。

Claims (5)

1.一种新型VO2基热致变色复合薄膜制备方法,其特征在于,所述制备方法包括如下步骤: (1)准备洁净的衬底材料; (2)将目标衬底材料置于真空腔室内,调整所述衬底材料与靶材之间的距离至预定距离;
(3)将用于制备热致变色功能薄膜层的靶材置于真空腔室内的安装位置,所述真空腔室连通有供氧设备,用于向所述真空腔室内供应纯氧; (4)利用脉冲激光器对靶材进行照射,生长底层薄膜层; (5)沉积完成后原位退火5-10分钟,之后降温10-20分钟; 在所述步骤(5)之后、生长中间薄膜层之前,还包括:将靶材更换为金属Mo靶,采用同一束激光对靶材进行照射,激光照射角度与步骤(4)相同,将氧气压力调节为0,采用脉冲激光沉积法生长第一金属纳米粒子层,所采用激光波长为248 nm,能量密度为2-15J/cm2,脉冲宽度 25 ns,脉冲数为150-200个; (6)重复步骤(4)-(5)分别生长中间薄膜层和顶部薄膜层,所述方法还包括,在生长中间薄膜层之后,预定时间间隔内,将靶材更换为金属Mo靶,采用同一束激光对靶材进行照射,激光照射角度与步骤(4)相同,将氧气压力调节为0,采用脉冲激光沉积法生长第二金属纳米粒子层,所采用激光波长为248 nm,能量密度为2-15J/cm2,脉冲宽度 25ns,脉冲数为150-200个,所述底层薄膜层、中间薄膜层和顶部薄膜层均为VO2薄膜,每层VO2薄膜的厚度为5~25nm,所述第一和第二金属纳米粒子层为间隔分布的Mo纳米粒子团簇或集群。
2.根据权利要求1所述的制备方法,其特征在于, 热致变色功能薄膜层生长时腔室的背底真空为3×10-4~6×10-4Pa,VO2薄膜的生长速率为0.8~1.2 nm/min。
3.根据权利要求1所述的制备方法,其特征在于,生长底层薄膜层、中间薄膜层和顶部薄膜层时,调节氧气压力为0.5-2Pa,氧气流量为20-50sccm。
4.一种权利要求1至3中任一项所述方法制备的复合薄膜的应用,其特征在于,所述复合薄膜用于热致变色智能窗中。
5.一种热致变色玻璃,其特征在于,所述热致变色玻璃包括玻璃衬底,并且所述热致变色玻璃上通过权利要求1所述方法沉积有VO2基热致变色复合薄膜。
CN202210081314.3A 2022-01-24 2022-01-24 一种新型vo2基热致变色复合薄膜制备方法及应用 Active CN114394766B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210081314.3A CN114394766B (zh) 2022-01-24 2022-01-24 一种新型vo2基热致变色复合薄膜制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210081314.3A CN114394766B (zh) 2022-01-24 2022-01-24 一种新型vo2基热致变色复合薄膜制备方法及应用

Publications (2)

Publication Number Publication Date
CN114394766A CN114394766A (zh) 2022-04-26
CN114394766B true CN114394766B (zh) 2023-09-26

Family

ID=81232802

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210081314.3A Active CN114394766B (zh) 2022-01-24 2022-01-24 一种新型vo2基热致变色复合薄膜制备方法及应用

Country Status (1)

Country Link
CN (1) CN114394766B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101205120A (zh) * 2007-11-30 2008-06-25 中国科学院广州能源研究所 光谱局域修饰的热色玻璃及其制备方法
CN102634758A (zh) * 2012-04-26 2012-08-15 南京理工大学 高透射率的钒基多层超晶格薄膜及其制备方法
CN204958726U (zh) * 2015-09-16 2016-01-13 中国南玻集团股份有限公司 热致变色玻璃
CN109652765A (zh) * 2017-10-10 2019-04-19 中国科学院上海硅酸盐研究所 一种高性能及高稳定性二氧化钒基热致变色涂层及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101205120A (zh) * 2007-11-30 2008-06-25 中国科学院广州能源研究所 光谱局域修饰的热色玻璃及其制备方法
CN102634758A (zh) * 2012-04-26 2012-08-15 南京理工大学 高透射率的钒基多层超晶格薄膜及其制备方法
CN204958726U (zh) * 2015-09-16 2016-01-13 中国南玻集团股份有限公司 热致变色玻璃
CN109652765A (zh) * 2017-10-10 2019-04-19 中国科学院上海硅酸盐研究所 一种高性能及高稳定性二氧化钒基热致变色涂层及其制备方法

Also Published As

Publication number Publication date
CN114394766A (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
Laukaitis et al. SILAR deposition of CdxZn1-xS thin films
Wang et al. Influence of Al/Cu thickness ratio and deposition sequence on photoelectric property of ZnO/Al/Cu/ZnO multilayer film on PET substrate prepared by RF magnetron sputtering
Venkatachalam et al. Preparation and characterization of nanocrystalline ITO thin films on glass and clay substrates by ion-beam sputter deposition method
CN109612976B (zh) 一种三维多层结构表面增强拉曼基底及其制备方法
Tao et al. Development of textured back reflector for n–i–p flexible silicon thin film solar cells
CN103700576A (zh) 一种自组装形成尺寸可控的硅纳米晶薄膜的制备方法
CN109652765A (zh) 一种高性能及高稳定性二氧化钒基热致变色涂层及其制备方法
Li et al. Effects of Mo single-doping and Mo-Al co-doping on ZnO transparent conductive films
Lin et al. Effects of the structural properties of metal oxide/Ag/metal oxide multilayer transparent electrodes on their optoelectronic performances
CN104818463B (zh) 一种纳米铂包覆金颗粒膜复合材料的制备方法
Chiang et al. Deposition of high-transmittance ITO thin films on polycarbonate substrates for capacitive-touch applications
CN108147679B (zh) 一种含氧氢化钇光致变色薄膜及其制备方法
CN114394766B (zh) 一种新型vo2基热致变色复合薄膜制备方法及应用
Li et al. Preparation of AZO-based multilayer thin films with high comprehensive properties by introducing Cu/Ag bimetallic layers
CN107487991B (zh) 一种二氧化钒多层膜及其制备方法
CN114394765B (zh) Vo2基热致变色复合薄膜及其应用
CN102220562B (zh) 一种绒面结构氧化锌透明导电薄膜的制备方法
CN104818464A (zh) 无模板制备大比表面积纳米银颗粒膜复合材料的方法
Lei et al. Sputtered ITO/Ag/ITO films: growth windows and Ag/ITO interfacial properties
Li et al. Changes in the growth orientation, morphological and optical properties of sol-gel nanocrystalline ZnO thin films coated with different thickness
Li et al. Pretreating temperature controls on structural, morphological and optical properties of sol–gel ZnO thin films
CN108149198B (zh) 一种wc硬质合金薄膜及其梯度层技术室温制备方法
Henry et al. Effect of annealing time on the optical properties of AZTSe thin films
CN105154841B (zh) 铋掺杂氧化锡薄膜的制备方法
Bandaru et al. Reheating induced atomic migration in Al-doped ZnO (AZO) films: effect on the growth of AZO/ZnO bilayer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant