CN114366856B - 一种明胶胶原蛋白复合3d打印生物支架的方法 - Google Patents

一种明胶胶原蛋白复合3d打印生物支架的方法 Download PDF

Info

Publication number
CN114366856B
CN114366856B CN202111552426.4A CN202111552426A CN114366856B CN 114366856 B CN114366856 B CN 114366856B CN 202111552426 A CN202111552426 A CN 202111552426A CN 114366856 B CN114366856 B CN 114366856B
Authority
CN
China
Prior art keywords
printing
gelatin
collagen
biological
biological scaffold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111552426.4A
Other languages
English (en)
Other versions
CN114366856A (zh
Inventor
秦黎黎
杜艾
崔柠薪
徐贞
杨建明
秦瑶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN202111552426.4A priority Critical patent/CN114366856B/zh
Publication of CN114366856A publication Critical patent/CN114366856A/zh
Application granted granted Critical
Publication of CN114366856B publication Critical patent/CN114366856B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/46Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/314Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/10Pre-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/06Materials or treatment for tissue regeneration for cartilage reconstruction, e.g. meniscus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明涉及一种生物支架,具体涉及一种明胶胶原蛋白复合3D打印生物支架的方法,包括如下步骤:S1:将明胶、胶原蛋白和琼脂糖混合后加水并进行搅拌,油浴加热至溶液澄清无粉末后放置,得到生物墨水;S2:采用步骤S1得到的生物墨水进行3D打印,将生物墨水沉积在打印基材上,随后冷冻干燥,得到明胶胶原蛋白复合3D打印生物支架。与现有技术相比,本发明的方法简单易实施,采用3D打印技术可以精确控制三维形状和内部孔隙结构,并且采用冷冻干燥技术可以进一步提高机械性能,延长降解时间并减缓降解速率,对于构建新型3D功能性纳米材料应用于运动损伤康复领域具有重要意义。

Description

一种明胶胶原蛋白复合3D打印生物支架的方法
技术领域
本发明涉及一种生物支架,具体涉及一种明胶胶原蛋白复合3D打印生物支架的方法。
背景技术
软骨损伤也可以称为软组织损伤,属于一种常见的骨科疾病,早期症状不是非常明显,但如果患者病情较为严重可能会导致软骨细胞死亡,而个人的活动能力也会受到一定程度的影响。由于关节软骨具有复杂的生物学特性和高度的耐用性,因而自然退变或创伤所引起的缺损都可能导致其结构和功能上的不可逆损害,严重影响了患者的生活质量,目前尚无最佳治疗方法。因此,针对软骨损伤的修复,研究者正积极地探索各种治疗方法。
软骨缺损的修复在临床治疗中具有很高的挑战性,现有的修复方法通常可分为关节灌洗清理术、微骨折术、软骨移植和生物治疗,其中生物治疗又可以分为基因治疗、细胞治疗和组织工程技术。组织工程技术主要是将生命科学与工程学相结合,在体外构建有生物活力的移植体,然后植入组织缺损处,从而替代部分或全部原组织器官,进而达到组织或器官功能的恢复的目的。组织工程软骨是目前认为最有希望从根本上解决关节软骨损伤的方法。作为组织工程的核心组成部分,生物支架对组织工程的发展起着至关重要的作用。但是,生物支架需要平衡生物相容性、降解速率、操控性能、机械支撑等多方面性能,因而生物支架的降解速度会较快,使得支架植入处的血管内膜容易发生过度增生而造成狭窄;且其支撑力相较于金属支架也存在操作性能、机械支撑性能较差的情况,如何精确地控制生物支架的结构、降解速率和力学性能仍然是一个巨大的挑战。
发明内容
对于软骨再生来说,最重要的是支架与软骨细胞结合成功再生成熟软骨,因而制备得到的生物支架还必须能够搭载细胞。
本发明的目的就是为了解决上述问题至少其一而提供一种明胶胶原蛋白复合3D打印生物支架的方法,实现了一种具有良好的机械性能和弹性模量以及生物相容性及细胞黏附性的生物支架的制备。
本发明的目的通过以下技术方案实现:
一种明胶胶原蛋白复合3D打印生物支架的方法,包括如下步骤:
S1:将明胶、胶原蛋白和琼脂糖混合后加水并进行搅拌,油浴加热至溶液澄清无粉末后放置,得到生物墨水;
S2:采用步骤S1得到的生物墨水进行3D打印,将生物墨水沉积在打印基材上,随后冷冻干燥,得到所述的明胶胶原蛋白复合3D打印生物支架。
优选地,所述的明胶、胶原蛋白和琼脂糖的质量比为7:0.1:0.2。通过流变检测进行优选,在明胶、胶原蛋白和琼脂糖的质量比为7:0.1:0.2时为最优比例,具有最优流变性能。明胶、胶原蛋白是软骨再生的理想仿生支架来源,适合作为软骨的生物支架原材料使用,并且以廉价的明胶作为主要成分、加入少量胶原蛋白和琼脂糖来改善支架的性能,可以使得产品的原料成本得到大幅降低。
优选地,所述的明胶与水的比例为7g:40mL。水选用蒸馏水。
优选地,所述的搅拌的转速为500rpm,搅拌时间为10min。
优选地,所述的油浴加热的温度为120℃。为保证琼脂糖能够完全溶解混合,需要加热达到120℃以上。
优选地,所述的放置为常温放置24h。使溶液充分凝胶。
优选地,所述的3D打印的打印针头直径为400μm,打印压强为18-22psi,打印速度为20mm/s。采用3D打印技术,精确控制三维形状和内部孔隙结构,而适宜的打印针头、打印速度和打印压力有利于生物墨水的挤出和成型,可以提升3D打印产品的性能。
优选地,所述的3D打印的打印针头为针筒。使用针筒可以使生物墨水被稳定地挤出,提高3D打印产品的质量。
优选地,所述的打印基材为玻璃板。
优选地,所述的冷冻干燥的压力为1.0Pa,温度为-50℃,时间为24h。采用冷冻干燥可以进一步提高3D打印产品的机械性能,延长降解时间并减缓降解速率。
胶原蛋白是软骨中的重要组成部分,明胶作为胶原蛋白的降解产物,不但包含了胶原蛋白的主要片段,且价格低廉,可加工性强,并且可以通过化学加工等手段使其具备光交联的特性。琼脂糖是从大型海洋藻类石花菜、紫菜、江蓠等提取分离制成的,广泛应用于食品和生化等行业。三者均属于易于取得的产品,并且使用胶原蛋白和明胶不仅具有更为优秀的性能,还更接近于真实的软骨。
与现有技术相比,本发明具有以下有益效果:
1、本发明的方法简单易实施,将明胶、胶原蛋白和琼脂糖制备成水凝胶,并采用3D打印技术进行生物支架的打印,可以精确控制三维形状和内部孔隙结构;并且采用冷冻干燥技术,可以进一步提高机械性能,延长降解时间并减缓降解速率,因而得到的生物支架具有优秀的性能,适合用于运动损伤软骨修复。制备过程中对条件限定缓和,以廉价的明胶作为主要成分,并加入少量胶原蛋白和琼脂糖来改善生物支架的性能,合成效率高,适用范围广,适于规模化生产。
2、采用本发明制备得到的生物支架具有良好的力学性能和生物相容性,且单根纤维的直径达到微米级,有利于细胞的攀爬和黏附,能够促进关节软骨的再生和修复,在生物医学领域具有广泛的应用前景,对开发出新型3D功能性纳米材料具有重要的应用价值。
3、本发明3D打印得到的生物支架具有:良好的生物相容性,在体外培养无细胞毒性,而在植入体内后,其自身和降解产物都不具毒性;三维立体结构,具有很大的内表面积,有利于细胞的植入和粘附以及粒子和营养物质的渗入与运输;良好的表面活性,能够促进软骨组织粘附和增值,能维持和促进软骨细胞的表型表达;生物可降解性和较缓慢的降解速率,在降解过程中不影响新生成组织的结构和功能;具有良好的可塑性,在制备过程中可以根据需要指定形状,选择材料的比例,以得到最符合要求的生物支架结构。
附图说明
图1为本发明实施例1制备过程中3D打印时的实物图;
图2为本发明实施例1制备过程中3D打印生物支架冷冻干燥前的实物图;
图3为本发明实施例1制备得到的3D打印生物支架一个角度的实物图;
图4为本发明实施例1制备得到的3D打印生物支架另一角度的实物图;
图5为本发明实施例1制备得到的3D打印生物支架的扫描电子显微镜图;
图6为本发明实施例1制备得到的3D打印生物支架的XPS图;
图7为本发明实施例1制备得到的3D打印生物支架的XRD图;
图8为本发明实施例1制备得到的3D打印生物支架的傅里叶红外光谱图;
图9为本发明制备得到的3D打印生物支架的流变性能图;
图10为本发明制备得到的3D打印生物支架的模量图;
图11为本发明实施例1制备得到的3D打印生物支架的力学性能图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
以下实施例中各原料均为常规市售原料,无特殊说明纯度均为分析纯等级。
实施例1
(1)生物墨水的制备:称量7g明胶、0.1g胶原蛋白和0.2g琼脂糖,分别盛放在容器中备用;将三种物质混合并加入50mL蒸馏水,在磁力搅拌机上搅拌10min,用油浴锅搅拌加热至120℃,待溶液澄清无粉末后,常温放置24h。
(2)复合支架的3D打印:通过CAD画出模型,并将模型转移到打印机中进行打印,调节打印机的参数后(打印针头直径为400μm;打印压强控制在20±2psi;打印速度为20mm/s),将支架直接打印在玻璃板上。使用针筒使生物墨水被稳定地挤出,沉积在玻璃板上,如图1所示。
(3)复合支架的冷冻干燥:将打印好的复合生物支架(如图2所示)放置在冷冻干燥机中,干燥24h后取出,待其回复至室温,即可得到用于运动损伤软骨修复的明胶胶原蛋白复合3D打印生物支架。
由图2可以看出,生物支架在冷冻干燥前已经具有了稳定的骨架结构和明显的空隙,通过冷冻干燥可以进一步提高其机械性能,进而延长降解时间并减缓降解速率。
由图3和图4可以看出,本实施例制备得到的生物支架的直径约为2cm。
由图5可以看出,本实施例制备得到的生物支架表明极不平整,这有利于细胞的黏附与攀爬,并且支架单根纤维的直径大约0.3mm,达到了微米级,使支架具有很大的内表面积,有利于细胞的植入和粘附以及粒子和营养物质的渗入与运输。
由图6可知,本实施例制备得到的生物支架的主要成分元素为C、N、O,因而其具有良好的生物安全性。
由图7可知,本实施例制备得到为无序晶体结构。
由图8的傅里叶红外光谱图像能看到支架主要成分明胶的特征峰,明胶是胶原进一步水解的产物,其保留了一些胶原蛋白的信号序列,如RGD序列,有利于软骨细胞的黏附以及关节软骨的再生与修复。
由图9的流变测试图像显示了不同比例的生物墨水制备得到的生物支架的流变性能,在剪切速率扫描模式下,表观黏度随剪切速率的变化分别为:从0到1000s-1持续100s,保持1000s-1的剪切速率100s,从1000到0s-1持续100s。
由图10的模量图像显示了不同比例的生物墨水制备得到的生物支架的模量,随着明胶含量的增加,墨水模量也显著提升,可打印性和保形性也有所提升。
结合图9和图10,可以看出不同比例的生物墨水制备得到的生物支架表观粘度(η)、储存(G')和损耗(G”)模量有较大差异,但都表现出剪切变稀的特性,剪切变稀能够使生物墨水快速挤出并且保持良好的成型性。其中的Gel7即为本实施例中所制备得到的3D打印生物支架,具有最优的性能。
由图11可以看出,力学测试图像显示随着压力的增加,由于支架内部骨架结构的挤压,使得孔隙尺寸减小,应力增加;3D打印复合生物支架在55%的应变下具有更大的应力,说明3D打印复合生物支架具有良好的机械性能。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (9)

1.一种明胶胶原蛋白复合3D打印生物支架的方法,其特征在于,包括如下步骤:
S1:将明胶、胶原蛋白和琼脂糖混合后加水并进行搅拌,油浴加热至溶液澄清无粉末后放置,得到生物墨水;
S2:采用步骤S1得到的生物墨水进行3D打印,将生物墨水沉积在打印基材上,随后冷冻干燥,得到所述的明胶胶原蛋白复合3D打印生物支架;
所述的明胶、胶原蛋白和琼脂糖的质量比为7:0.1:0.2。
2.根据权利要求1所述的一种明胶胶原蛋白复合3D打印生物支架的方法,其特征在于,所述的明胶与水的比例为7g:40mL。
3.根据权利要求1所述的一种明胶胶原蛋白复合3D打印生物支架的方法,其特征在于,所述的搅拌的转速为500rpm,搅拌时间为10min。
4.根据权利要求1所述的一种明胶胶原蛋白复合3D打印生物支架的方法,其特征在于,所述的油浴加热的温度为120℃。
5.根据权利要求1所述的一种明胶胶原蛋白复合3D打印生物支架的方法,其特征在于,所述的放置为常温放置24h。
6.根据权利要求1所述的一种明胶胶原蛋白复合3D打印生物支架的方法,其特征在于,所述的3D打印的打印针头直径为400μm,打印压强为18-22psi,打印速度为22mm/s。
7.根据权利要求6所述的一种明胶胶原蛋白复合3D打印生物支架的方法,其特征在于,所述的3D打印的打印针头为针筒。
8.根据权利要求1所述的一种明胶胶原蛋白复合3D打印生物支架的方法,其特征在于,所述的打印基材为玻璃板。
9.根据权利要求1所述的一种明胶胶原蛋白复合3D打印生物支架的方法,其特征在于,所述的冷冻干燥的压力为1.0Pa,温度为-50℃,时间为24h。
CN202111552426.4A 2021-12-17 2021-12-17 一种明胶胶原蛋白复合3d打印生物支架的方法 Active CN114366856B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111552426.4A CN114366856B (zh) 2021-12-17 2021-12-17 一种明胶胶原蛋白复合3d打印生物支架的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111552426.4A CN114366856B (zh) 2021-12-17 2021-12-17 一种明胶胶原蛋白复合3d打印生物支架的方法

Publications (2)

Publication Number Publication Date
CN114366856A CN114366856A (zh) 2022-04-19
CN114366856B true CN114366856B (zh) 2022-11-18

Family

ID=81141026

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111552426.4A Active CN114366856B (zh) 2021-12-17 2021-12-17 一种明胶胶原蛋白复合3d打印生物支架的方法

Country Status (1)

Country Link
CN (1) CN114366856B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115382020B (zh) * 2022-09-21 2023-12-15 银丰低温医学科技有限公司 基于人源脱细胞基质的生物墨水及其制备方法与应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3325611B1 (en) * 2015-07-22 2020-03-18 Inventia Life Science Pty Ltd. Process for printing 3d tissue culture models
CN107041971A (zh) * 2016-09-19 2017-08-15 盐城工业职业技术学院 一种基于三维打印的蚕丝蛋白/明胶支架材料及其制备方法
KR20180117417A (ko) * 2017-04-19 2018-10-29 한국과학기술연구원 하이드로겔 조성물 및 그를 포함하는 바이오 잉크 조성물
AU2018282131B2 (en) * 2017-06-09 2024-05-09 Collplant Ltd. Additive manufacturing using recombinant collagen-containing formulation
CN109320970A (zh) * 2018-10-09 2019-02-12 山西宾大干细胞生物科技有限公司 一种用于软骨修复的温敏性水凝胶及其制备方法与应用
CN109876190A (zh) * 2019-04-11 2019-06-14 北京大学口腔医学院 三维生物打印墨水的制备方法及其应用
CN110218342A (zh) * 2019-05-13 2019-09-10 暨南大学 琼脂糖-明胶接枝物温敏水凝胶及其制备方法与应用
CN112870453B (zh) * 2020-07-07 2022-01-07 深圳市第二人民医院(深圳市转化医学研究院) 一种明胶-iii型胶原蛋白水凝胶以及制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Hydroxyapatite Formation in Collagen, Gelatin, and Agarose Gels";Graeme K.Hunter et al;《Collagen and Related Research》;19860731;第6卷;第229-238页 *

Also Published As

Publication number Publication date
CN114366856A (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
Ahlfeld et al. Methylcellulose–a versatile printing material that enables biofabrication of tissue equivalents with high shape fidelity
Xue et al. Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering
Visscher et al. Advances in bioprinting technologies for craniofacial reconstruction
Maia et al. Recent approaches towards bone tissue engineering
CN107502061B (zh) 表面降解型3d打印生物墨水及3d打印方法
Ma Scaffolds for tissue fabrication
Zhou et al. Functionalized hydrogels for articular cartilage tissue engineering
CN111097068B (zh) 一种仿生的羟基磷灰石粉体/明胶/海藻酸钠复合3d打印支架及其制备方法
CN110075361A (zh) 一种高强度高韧性软骨支架的制备方法
Shirwaiker et al. Scaffolding hydrogels for rapid prototyping based tissue engineering
CN105079859A (zh) 一种敷料及其制备方法
Zhang et al. Advances in photocrosslinkable materials for 3D bioprinting
CN114366856B (zh) 一种明胶胶原蛋白复合3d打印生物支架的方法
Huang et al. Bioprinted gelatin-recombinant type III collagen hydrogel promotes wound healing
Willson et al. Bioprinting au natural: the biologics of bioinks
Iravani et al. Algae-derived materials for tissue engineering and regenerative medicine applications: Current trends and future perspectives
Geevarghese et al. Biodegradable and non-biodegradable biomaterials and their effect on cell differentiation
Tamay et al. Bioinks—materials used in printing cells in designed 3D forms
Forgacs et al. Biofabrication: micro-and nano-fabrication, printing, patterning and assemblies
CN108578780B (zh) 一种载银离子具有力学梯度的人工骨支架的制备方法
Sun et al. Analysis and demonstration of a scaffold finite element model for cartilage tissue engineering
Lapomarda et al. Pectin-based scaffolds for tissue engineering applications
Carriero et al. Cryogel Scaffolds for Tissue-Engineering: Advances and Challenges for Effective Bone and Cartilage Regeneration
Hashemi et al. Development of three-dimensional printed biocompatible materials for cartilage replacement
CN108084466A (zh) 一种基于蛋清和甲基丙烯酸衍生化聚合物的复合膜及其在培养干细胞方面的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant