CN114336278A - A kind of vertical emission ZnO suspended bowl laser and preparation method thereof - Google Patents
A kind of vertical emission ZnO suspended bowl laser and preparation method thereof Download PDFInfo
- Publication number
- CN114336278A CN114336278A CN202111443872.1A CN202111443872A CN114336278A CN 114336278 A CN114336278 A CN 114336278A CN 202111443872 A CN202111443872 A CN 202111443872A CN 114336278 A CN114336278 A CN 114336278A
- Authority
- CN
- China
- Prior art keywords
- layer
- silicon dioxide
- silicon
- disc
- suspended
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 130
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 100
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 65
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 56
- 239000011787 zinc oxide Substances 0.000 claims abstract description 50
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 32
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 32
- 239000010703 silicon Substances 0.000 claims abstract description 32
- 239000000758 substrate Substances 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 11
- 229920002120 photoresistant polymer Polymers 0.000 claims description 10
- 238000001451 molecular beam epitaxy Methods 0.000 claims description 6
- 239000000725 suspension Substances 0.000 claims description 5
- 238000004528 spin coating Methods 0.000 claims description 4
- 238000000137 annealing Methods 0.000 claims description 3
- 239000013078 crystal Substances 0.000 claims description 3
- 238000010791 quenching Methods 0.000 claims description 3
- 230000000171 quenching effect Effects 0.000 claims description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims 2
- 239000011701 zinc Substances 0.000 claims 2
- 229910052725 zinc Inorganic materials 0.000 claims 2
- 229910002092 carbon dioxide Inorganic materials 0.000 claims 1
- 239000001569 carbon dioxide Substances 0.000 claims 1
- 230000003287 optical effect Effects 0.000 abstract description 14
- 230000005693 optoelectronics Effects 0.000 abstract description 4
- 230000009286 beneficial effect Effects 0.000 abstract description 3
- 230000010354 integration Effects 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Semiconductor Lasers (AREA)
Abstract
本发明公开一种ZnO悬浮碗状结构的垂直腔面激光发射器及其制备方法,所述激光发射器以硅基SOI晶片为载体,包括从下至上依次设置的硅衬底层、二氧化硅层、二氧化硅支柱层、二氧化硅圆盘层、氧化锌圆盘层;所述激光发射器形成有多个从上至下刻穿氧化锌圆盘层、二氧化硅圆盘层、二氧化硅支柱层直至二氧化硅层的孔洞。本发明激光发射器具有极高的光学增益和极低的损耗,利于光电子器件集成,具有高品质低阈值低损耗的优势,其制备方法具有工艺性好、加工精度高的优势。
The invention discloses a vertical cavity surface laser transmitter with a ZnO suspended bowl-shaped structure and a preparation method thereof. The laser transmitter uses a silicon-based SOI wafer as a carrier, and includes a silicon substrate layer and a silicon dioxide layer sequentially arranged from bottom to top. , silicon dioxide pillar layer, silicon dioxide disc layer, zinc oxide disc layer; the laser emitter is formed with a plurality of zinc oxide disc layers, silicon dioxide disc layers, dioxide Silicon pillar layer up to the hole of the silicon dioxide layer. The laser transmitter of the invention has extremely high optical gain and extremely low loss, which is beneficial to the integration of optoelectronic devices, and has the advantages of high quality, low threshold and low loss, and the preparation method has the advantages of good manufacturability and high processing precision.
Description
技术领域technical field
本发明属于激光技术领域,具体涉及一种悬浮硅盘结构的垂直腔面激光发射器及其制备方法。The invention belongs to the technical field of lasers, and in particular relates to a vertical cavity surface laser emitter with a suspended silicon disk structure and a preparation method thereof.
背景技术Background technique
碗状激光器可以改变激光发射方向,使其垂直发射,制备更易耦合的垂直腔面激光发射器(VCSEL)。ZnO垂直腔面激光发射器是一种具有垂直出光结构的新型半导体激光器,其发光波长为近紫外波段。VCSEL具有圆形对称光斑、与光纤耦合效率高以及可以制备高密度二维阵列等优点,因此被认为是下一代半导体照明、微投影、全色显示等应用领域的理想光源。The bowl laser can change the direction of laser emission to make it emit vertically, and prepare a more easily coupled vertical cavity surface laser emitter (VCSEL). ZnO vertical cavity surface laser emitter is a new type of semiconductor laser with vertical light-emitting structure, and its emission wavelength is in the near-ultraviolet band. VCSELs have the advantages of circular symmetrical light spot, high coupling efficiency with optical fibers, and the ability to fabricate high-density two-dimensional arrays. Therefore, VCSELs are considered to be ideal light sources for next-generation semiconductor illumination, micro-projection, and full-color display applications.
氧化锌的宽直接带隙(3.4eV)和强激子结合能(60meV),使它成为短波光电功能材料与器件的重要候选。过去的十多年中,人们对这种半导体的紫外光电特性,尤其是激光特性给予了极大的关注。The wide direct band gap (3.4 eV) and strong exciton binding energy (60 meV) of ZnO make it an important candidate for short-wave optoelectronic functional materials and devices. Over the past decade, great attention has been paid to the ultraviolet optoelectronic properties of this semiconductor, especially the laser properties.
因此,如何利用氧化锌材料和微腔结构,实现高品质和低损耗的激光将是本发明要解决的问题。Therefore, how to use the zinc oxide material and the microcavity structure to achieve high-quality and low-loss laser will be the problem to be solved by the present invention.
发明内容SUMMARY OF THE INVENTION
为克服上述现有技术的不足,本发明提供一种ZnO悬浮碗状结构的垂直腔面激光发射器及其制备方法,其激光发射器具有极高的光学增益和极低的损耗,利于光电子器件集成,具有高品质低阈值低损耗的优势,其制备方法具有工艺性好、加工精度高的优势。In order to overcome the above-mentioned deficiencies of the prior art, the present invention provides a vertical cavity surface laser emitter with a ZnO suspended bowl structure and a preparation method thereof. The laser emitter has extremely high optical gain and extremely low loss, which is beneficial to optoelectronic devices. Integration has the advantages of high quality, low threshold and low loss, and its preparation method has the advantages of good manufacturability and high processing accuracy.
根据本发明说明书的一方面,提供一种ZnO悬浮碗状结构的垂直腔面激光发射器,所述激光发射器以硅基SOI晶片为载体,包括从下至上依次设置的硅衬底层、二氧化硅层、二氧化硅支柱层、二氧化硅圆盘层、氧化锌圆盘层;所述激光发射器形成有多个从上至下刻穿氧化锌圆盘层、二氧化硅圆盘层、二氧化硅支柱层直至二氧化硅层的孔洞;所述二氧化硅圆盘层和氧化锌圆盘层形成碗状微腔。According to an aspect of the present specification, a vertical cavity surface laser transmitter with a ZnO suspended bowl structure is provided. The laser transmitter uses a silicon-based SOI wafer as a carrier, and includes a silicon substrate layer, a silicon dioxide layer and a silicon dioxide layer sequentially arranged from bottom to top. a silicon layer, a silicon dioxide pillar layer, a silicon dioxide disc layer, and a zinc oxide disc layer; the laser transmitter is formed with a plurality of etched through the zinc oxide disc layer, the silicon dioxide disc layer, The silica pillar layer reaches the hole of the silica layer; the silica disc layer and the zinc oxide disc layer form a bowl-shaped microcavity.
上述技术方案具有柱状支撑的且边缘光滑的悬浮硅盘微腔,能够降低微腔的弯曲损耗和侧面粗糙引起的散射损耗,进而使激光发射器整体具有极低的损耗。The above technical solution has a suspended silicon disk microcavity supported by a columnar shape with smooth edges, which can reduce the bending loss of the microcavity and the scattering loss caused by the rough side surface, so that the overall laser emitter has extremely low loss.
上述技术方案中,“悬空”使氧化锌薄膜微腔上下表面被低折射率的空气所包裹,光线在高折射率半导体和它周围低折射率空气的微腔界面处的全内反射以WGM形式传导,垂直方向的光学模也受到强烈限制,这种WGM传导作用和光学限制极大地降低了光学散射和透射带来的光学损耗,可产生维持激射作用的足够大的光增益。In the above technical solution, "suspended" makes the upper and lower surfaces of the zinc oxide film microcavity surrounded by low-refractive-index air, and the total internal reflection of light at the interface of the high-refractive-index semiconductor and the microcavity interface of the low-refractive-index air around it is in the form of WGM. Conduction, the optical mode in the vertical direction is also strongly confined, and this WGM conduction effect and optical confinement greatly reduces the optical loss caused by optical scattering and transmission, resulting in a sufficiently large optical gain to maintain the lasing effect.
上述技术方案中,垂直腔面激光发射器的微腔形状为碗状,碗状微腔相当于一个凹面镜,能够使产生的WGM激光垂直聚焦发射。In the above technical solution, the shape of the microcavity of the vertical cavity surface laser transmitter is bowl-shaped, and the bowl-shaped microcavity is equivalent to a concave mirror, which can vertically focus and emit the generated WGM laser.
进一步地,所述二氧化硅层和二氧化硅圆盘层是硅在高温中退火所致。Further, the silicon dioxide layer and the silicon dioxide disc layer are caused by annealing silicon at high temperature.
进一步地,所述二氧化硅支柱层是利用BOE悬空得来。Further, the silica pillar layer is obtained by suspending the BOE.
进一步地,所述二氧化硅圆盘层上悬涂了氧化锌圆盘层。Further, a zinc oxide disk layer is suspended on the silica disk layer.
进一步地,所述二氧化硅圆盘层上的氧化锌圆盘层,是采用晶体生长技术MBE覆盖上的。Further, the zinc oxide disc layer on the silicon dioxide disc layer is covered by the crystal growth technology MBE.
根据本发明说明书的一方面,提供一种所述ZnO悬浮碗状结构的垂直腔面激光发射器的制备方法,包括以下步骤:According to an aspect of the present specification, there is provided a method for preparing a vertical cavity surface laser emitter with the ZnO suspended bowl structure, comprising the following steps:
在硅基SOI晶片的表面旋涂光刻胶,在旋涂的光刻胶层上定义圆盘结构;Spin-coating photoresist on the surface of a silicon-based SOI wafer, and define a disc structure on the spin-coated photoresist layer;
以光刻胶为掩膜,将硅层蚀刻至二氧化硅支柱层;Using the photoresist as a mask, the silicon layer is etched to the silicon dioxide pillar layer;
对蚀刻后的晶片进行BOE悬空,得到二氧化硅支柱层;The etched wafer is suspended by BOE to obtain a silicon dioxide pillar layer;
高温褪火,得到二氧化硅层和二氧化硅圆盘层;High temperature quenching to obtain silicon dioxide layer and silicon dioxide disc layer;
在二氧化硅圆盘层上,悬涂上氧化锌,得到氧化锌圆盘层。On the silica disc layer, zinc oxide is suspended and coated to obtain a zinc oxide disc layer.
上述技术方案利用光学光刻和RIE刻蚀以及氢氟酸与氨水混合溶液腐蚀二氧化硅工艺制备ZnO悬浮碗状微腔,通过设计合理的工艺步骤,包括刻蚀模板的形状,获得由柱状支撑的且边缘光滑的ZnO悬浮碗状微腔,降低微腔的弯曲损耗和侧面粗糙引起的散射损耗。The above technical scheme utilizes optical lithography, RIE etching, and hydrofluoric acid and ammonia mixed solution etching process to prepare ZnO suspended bowl-shaped microcavity. The ZnO suspended bowl-shaped microcavity with smooth edges reduces the bending loss of the microcavity and the scattering loss caused by the rough side.
进一步地,采用分子束外延在二氧化硅圆盘层上覆盖氧化锌圆盘层。Further, the zinc oxide disc layer is covered on the silicon dioxide disc layer by molecular beam epitaxy.
与现有技术相比,本发明的有益效果包括:Compared with the prior art, the beneficial effects of the present invention include:
本发明具有柱状支撑的且边缘光滑的ZnO悬浮碗状微腔,能够降低微腔的弯曲损耗和侧面粗糙引起的散射损耗,进而使激光发射器整体具有极低的损耗。The invention has a ZnO suspended bowl-shaped microcavity supported by a columnar shape with smooth edges, which can reduce the bending loss of the microcavity and the scattering loss caused by the rough side surface, so that the overall laser emitter has extremely low loss.
本发明通过“悬空”使氧化锌薄膜微腔上下表面被低折射率的空气所包裹,光线在高折射率半导体和它周围低折射率空气的微腔界面处的全内反射以WGM形式传导,垂直方向的光学模也受到强烈限制,这种WGM传导作用和光学限制极大地降低了光学散射和透射带来的光学损耗,可产生维持激射作用的足够大的光增益。In the present invention, the upper and lower surfaces of the zinc oxide film microcavity are surrounded by air with low refractive index by "suspending", and the total internal reflection of light at the interface of the high refractive index semiconductor and the microcavity interface of the surrounding low refractive index air is conducted in the form of WGM, The optical modes in the vertical direction are also strongly confined, and this WGM conduction and optical confinement greatly reduces the optical losses caused by optical scattering and transmission, resulting in a sufficiently large optical gain to maintain lasing.
本发明设计通过独特的碗状ZnO悬浮微腔研究WGM紫外激光性能提高的技术方法和物理过程,从激光的方向性聚焦发射、模式选择和提高Q值等角度去设计和优化WGM激光器。The present invention designs and optimizes the WGM laser from the perspectives of laser directional focused emission, mode selection and improvement of Q value through a unique bowl-shaped ZnO suspended microcavity to study the technical method and physical process of WGM ultraviolet laser performance improvement.
附图说明Description of drawings
图1为根据本发明实施例的ZnO悬浮碗状结构的垂直腔面激光发射器的侧视图。1 is a side view of a vertical cavity surface laser emitter with a ZnO suspended bowl structure according to an embodiment of the present invention.
图2为根据本发明实施例的ZnO悬浮碗状结构的垂直腔面激光发射器的俯视图。2 is a top view of a vertical cavity surface laser emitter with a ZnO suspended bowl structure according to an embodiment of the present invention.
图3为根据本发明实施例的ZnO悬浮碗状结构的垂直腔面激光发射器的工艺流程图。3 is a process flow diagram of a vertical cavity surface laser emitter with a ZnO suspended bowl structure according to an embodiment of the present invention.
图中:硅衬底层1,二氧化硅层2、二氧化硅支柱层3,二氧化硅圆盘层4,氧化锌圆盘层5。In the figure: silicon substrate layer 1,
具体实施方式Detailed ways
以下将结合附图对本发明各实施例的技术方案进行清楚、完整的描述,显然,所描述发实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施例,都属于本发明所保护的范围。The technical solutions of the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings. Obviously, the described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present invention.
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。In the present invention, unless otherwise expressly specified and limited, a first feature "on" or "under" a second feature may include the first and second features in direct contact, or may include the first and second features Not directly but through additional features between them. Also, the first feature being "above", "over" and "above" the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature is level higher than the second feature. The first feature is "below", "below" and "below" the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature has a lower level than the second feature.
本发明提供一种ZnO悬浮碗状结构的垂直腔面激光发射器,利用先进的微纳加工技术,设计并制备ZnO悬浮碗状微腔,通过独特的碗状氧化锌悬浮微腔研究WGM紫外激光性能提高的技术方法和物理过程,从激光的方向性聚焦发射、模式选择和提高Q值等角度去设计和优化WGM激光器。The invention provides a vertical cavity surface laser emitter with a ZnO suspended bowl-shaped structure. The advanced micro-nano processing technology is used to design and prepare a ZnO suspended bowl-shaped microcavity, and the WGM ultraviolet laser is studied through a unique bowl-shaped zinc oxide suspended microcavity. Technical methods and physical processes for performance improvement, design and optimize WGM lasers from the perspectives of laser directional focused emission, mode selection, and improvement of Q value.
该激光器以硅基SOI晶片为载体,从下至上依次为硅衬底层、二氧化硅层、二氧化硅支柱层、二氧化硅圆盘层、氧化锌圆盘层。The laser uses a silicon-based SOI wafer as a carrier, and from bottom to top is a silicon substrate layer, a silicon dioxide layer, a silicon dioxide pillar layer, a silicon dioxide disc layer, and a zinc oxide disc layer.
所述二氧化硅圆盘层和氧化锌圆盘层形成碗状微腔,碗状微腔相当于一个凹面镜,能够使产生的WGM激光垂直聚焦发射。The silicon dioxide disc layer and the zinc oxide disc layer form a bowl-shaped microcavity, and the bowl-shaped microcavity is equivalent to a concave mirror, which can make the generated WGM laser vertically focus and emit.
所述二氧化硅层和二氧化硅圆盘层是硅在高温中退火所致。所述二氧化硅支柱层是利用BOE悬空得来。The silicon dioxide layer and the silicon dioxide disc layer result from the annealing of silicon at high temperature. The silica pillar layer is obtained by using BOE to suspend.
所述二氧化硅圆盘层上悬涂了氧化锌圆盘层。在二氧化硅圆盘层上覆盖氧化锌圆盘层,工艺简单并且容易获得高品质低阈值激光,氧化锌圆盘层有较高的折射率且表面光滑,这保证了全内反射光学增益回路的有效形成,从而大大降低了光学散射与透射带来的损耗。A zinc oxide disc layer is suspended on the silica disc layer. The zinc oxide disk layer is covered on the silicon dioxide disk layer. The process is simple and it is easy to obtain high-quality low-threshold laser light. The zinc oxide disk layer has a high refractive index and a smooth surface, which ensures the total internal reflection optical gain loop. The effective formation of , thereby greatly reducing the loss caused by optical scattering and transmission.
进一步地,所述二氧化硅圆盘层上的氧化锌圆盘层,是采用晶体生长技术MBE覆盖上的。Further, the zinc oxide disc layer on the silicon dioxide disc layer is covered by the crystal growth technology MBE.
本发明提供一种制备悬浮硅盘结构的垂直腔面激光发射器的方法,用于制备悬浮硅盘结构的垂直腔面激光发射器,各层材料具体的参数为,硅衬底层1的厚度为750um,二氧化硅层2的厚度为2um,顶层硅盘的厚度约为240nm。The present invention provides a method for preparing a vertical cavity surface laser transmitter with a suspended silicon disk structure, which is used to prepare a vertical cavity surface laser transmitter with a suspended silicon disk structure. The specific parameters of the materials of each layer are: the thickness of the silicon substrate layer 1 is 750um, the thickness of the
制备过程如下:The preparation process is as follows:
第一步:将购买的硅衬底SOI晶片,经丙酮、无水乙醇和去离子水依次超声清洗后,然后用氮气吹干;使用匀胶机在晶片正面以4000转/分钟的转速旋涂光刻胶AZ-5214,旋涂时间为40s(光刻胶厚度为1.5微米)。Step 1: The purchased silicon substrate SOI wafer is ultrasonically cleaned in sequence with acetone, anhydrous ethanol and deionized water, and then blown dry with nitrogen gas; spin-coating at 4000 rpm on the front of the wafer using a glue spinner Photoresist AZ-5214, spin coating time is 40s (resist thickness is 1.5 microns).
第二步:采用光学光刻技术,在旋涂的光刻胶层上定义出圆盘结构的图形,光刻机型号为MA6。The second step: using optical lithography technology, define the pattern of the disc structure on the spin-coated photoresist layer, and the lithography machine model is MA6.
第三步:采用RIE刻蚀技术,以光刻胶为掩膜,将硅层蚀刻至二氧化硅支柱层3,最后去除残留的光刻胶。The third step: using the RIE etching technology and using the photoresist as a mask, the silicon layer is etched to the silicon
第四步:将晶片放入配好的氨水和氢氟酸的混合溶液中,进行BOE悬空,悬空时间30s,得到二氧化硅支柱层3。The fourth step: put the wafer into the prepared mixed solution of ammonia water and hydrofluoric acid, and carry out BOE suspension for 30s to obtain a silicon
第五步:将晶片在高温中褪火,使240nm厚度的硅层转变为二氧化硅层,得到二氧化硅层2(最底下的硅层材料经过高温褪火以后,表面240nm厚度的硅层受热发生化学变化转化成二氧化硅形成二氧化硅层)和二氧化硅圆盘层4(与二氧化硅层2形成原理类似,最上面较薄的硅层在经过高温以后变成二氧化硅圆盘层4)。The fifth step: quench the wafer at high temperature, so that the silicon layer with a thickness of 240nm is converted into a silicon dioxide layer to obtain a silicon dioxide layer 2 (after the bottom silicon layer material is quenched at a high temperature, a silicon layer with a thickness of 240nm on the surface is obtained. It is chemically transformed into silicon dioxide by heating to form silicon dioxide layer) and silicon dioxide disc layer 4 (similar to the formation principle of
第六步:采用分子束外延技术,在二氧化硅圆盘层表面覆盖氧化锌,得到氧化锌圆盘层5。The sixth step: using molecular beam epitaxy technology, the surface of the silicon dioxide disc layer is covered with zinc oxide to obtain the zinc
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that it can still be Modifications are made to the technical solutions described in the foregoing embodiments, or some or all of the technical features thereof are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the embodiments of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111443872.1A CN114336278B (en) | 2021-11-30 | 2021-11-30 | Vertical cavity surface laser emitter with ZnO suspension bowl-shaped structure and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111443872.1A CN114336278B (en) | 2021-11-30 | 2021-11-30 | Vertical cavity surface laser emitter with ZnO suspension bowl-shaped structure and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114336278A true CN114336278A (en) | 2022-04-12 |
CN114336278B CN114336278B (en) | 2023-08-15 |
Family
ID=81049174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111443872.1A Active CN114336278B (en) | 2021-11-30 | 2021-11-30 | Vertical cavity surface laser emitter with ZnO suspension bowl-shaped structure and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114336278B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050279994A1 (en) * | 2004-06-21 | 2005-12-22 | Matsushita Electric Industrial Co., Ltd. | Semiconductor laser device and manufacturing method thereof |
CN101512754A (en) * | 2006-07-28 | 2009-08-19 | 奈米系统股份有限公司 | Methods and devices for forming nanostructured monolayers, and devices comprising such monolayers |
CN101895060A (en) * | 2010-06-10 | 2010-11-24 | 中国科学院苏州纳米技术与纳米仿生研究所 | Multiband silicon-based microdisk mixing laser device thereof and preparation method thereof |
JP2012216742A (en) * | 2011-03-30 | 2012-11-08 | Sony Corp | Multi-wavelength semiconductor laser element |
WO2019152462A1 (en) * | 2018-01-31 | 2019-08-08 | Lumileds Llc | Transparent conducting film or coating on a lens that serves as an interlock on a semiconductor laser module |
CN111262132A (en) * | 2018-11-30 | 2020-06-09 | 中国科学院半导体研究所 | III-V family/silicon material slotting bonded laser structure and method thereof |
CN113708220A (en) * | 2021-07-27 | 2021-11-26 | 南京邮电大学 | Quantum dot micro laser and preparation method thereof |
-
2021
- 2021-11-30 CN CN202111443872.1A patent/CN114336278B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050279994A1 (en) * | 2004-06-21 | 2005-12-22 | Matsushita Electric Industrial Co., Ltd. | Semiconductor laser device and manufacturing method thereof |
CN101512754A (en) * | 2006-07-28 | 2009-08-19 | 奈米系统股份有限公司 | Methods and devices for forming nanostructured monolayers, and devices comprising such monolayers |
CN101895060A (en) * | 2010-06-10 | 2010-11-24 | 中国科学院苏州纳米技术与纳米仿生研究所 | Multiband silicon-based microdisk mixing laser device thereof and preparation method thereof |
JP2012216742A (en) * | 2011-03-30 | 2012-11-08 | Sony Corp | Multi-wavelength semiconductor laser element |
WO2019152462A1 (en) * | 2018-01-31 | 2019-08-08 | Lumileds Llc | Transparent conducting film or coating on a lens that serves as an interlock on a semiconductor laser module |
CN111262132A (en) * | 2018-11-30 | 2020-06-09 | 中国科学院半导体研究所 | III-V family/silicon material slotting bonded laser structure and method thereof |
CN113708220A (en) * | 2021-07-27 | 2021-11-26 | 南京邮电大学 | Quantum dot micro laser and preparation method thereof |
Non-Patent Citations (3)
Title |
---|
朱刚毅等: "Whispering-Gallery Mode Lasing in a Floating GaN Microdisk with a Vertical Slit", 《SCIENTIFIC REPORTS》, vol. 2020, no. 10, pages 1 * |
朱刚毅等: "悬空车轮形氮化镓发光二极管", 《发光学报》, vol. 41, no. 9, pages 1146 * |
钟昌明等: "光泵浦Si衬底GaN基回音壁模式微盘谐振腔激光器", 《半导体光电》, vol. 38, no. 5, pages 639 * |
Also Published As
Publication number | Publication date |
---|---|
CN114336278B (en) | 2023-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104092096B (en) | A kind of single mode silicon substrate hybrid laser light source of silicon waveguide output | |
CN107240857B (en) | A vertical cavity surface emitting laser and its manufacturing method | |
CN111403567B (en) | Quantum dot single photon source and preparation method of its microlens array by wet etching | |
CN109802296B (en) | Beam shaping structure of edge-emitting laser, laser chip and preparation method of laser chip | |
CN113140961B (en) | Photonic Crystal Vertical Cavity Surface Emitting Laser | |
CN102684069B (en) | Hybrid silicone monomode laser based on evanescent field coupling and period microstructural frequency selecting | |
CN109038214B (en) | Vertical cavity surface emitting laser based on super surface and manufacturing method thereof | |
CN105337168A (en) | Optical pumping nitride echo wall laser performing emission in single direction and preparation method thereof | |
CN106953234A (en) | Silicon-based monolithic integrated laser and manufacturing method thereof | |
CN113381293B (en) | Bessel beam emitter and manufacturing method thereof | |
CN107404067A (en) | Silicon substrate GaN laser based on distributed bragg reflector mirror waveguide microcavity | |
CN102790354B (en) | Vertical-cavity surface-emitting laser and production method thereof | |
CN201435526Y (en) | External-cavity high-power three-active-region photonic crystal vertical-cavity surface-emitting semiconductor laser | |
CN209561860U (en) | Beam shaping structure and laser chip of edge emitting laser | |
CN103972789B (en) | Nitride asymmetric whispering gallery mode optical microcavity device and preparation method thereof | |
CN113708220B (en) | Quantum dot micro-laser and preparation method thereof | |
CN114256737B (en) | A narrow linewidth DFB nanoplasma laser and its preparation method | |
CN107196187A (en) | A kind of GaAs based vertical cavity surface emitting lasers and its manufacture method | |
CN112612078B (en) | High-efficiency coupling waveguide based on GOI or SOI and preparation method thereof | |
CN114336278A (en) | A kind of vertical emission ZnO suspended bowl laser and preparation method thereof | |
CN101588018A (en) | Inner cavity type multiple-active region photon crystal vertical cavity surface transmission semiconductor laser device | |
CN117810809B (en) | Thin-film optically pumped vertical cavity surface emitting laser and preparation method thereof | |
CN102255240A (en) | Semiconductor laser structure capable of realizing high-power transverse low divergence angle | |
CN102623890A (en) | Porous Defect-Matched Photonic Crystal Surface Emitting Laser | |
CN104009394A (en) | Optical pumping gallium nitride microlaser emitting lasers in single direction and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |