CN114314951A - 一种废水中氟离子的去除方法 - Google Patents

一种废水中氟离子的去除方法 Download PDF

Info

Publication number
CN114314951A
CN114314951A CN202010865164.6A CN202010865164A CN114314951A CN 114314951 A CN114314951 A CN 114314951A CN 202010865164 A CN202010865164 A CN 202010865164A CN 114314951 A CN114314951 A CN 114314951A
Authority
CN
China
Prior art keywords
wastewater
fluorine
ions
activated alumina
fluorine ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010865164.6A
Other languages
English (en)
Inventor
李晨
梁燕婷
伏振宇
周小峰
袁久婷
蔡振山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan Huaqing Water Purification Technology Co ltd
Shenzhen Changlong Technology Co ltd
Original Assignee
Dongguan Huaqing Water Purification Technology Co ltd
Shenzhen Changlong Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan Huaqing Water Purification Technology Co ltd, Shenzhen Changlong Technology Co ltd filed Critical Dongguan Huaqing Water Purification Technology Co ltd
Priority to CN202010865164.6A priority Critical patent/CN114314951A/zh
Publication of CN114314951A publication Critical patent/CN114314951A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Removal Of Specific Substances (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

本发明公开了一种废水中氟离子的去除方法,并应用于污水处理。可通过改性活性氧化铝有效吸附去除废水中的氟离子。其实施步骤如下:1)筛取0.5~5mm活性氧化铝颗粒,加入1.0~10.0%的硫酸铁Fe2(SO4)3溶液浸泡12小时,过滤活性氧化铝颗粒,加入1.0~10.0%的硫酸铁AlCl3溶液浸泡12小时,过滤固体颗粒烘干备用。2)利用片碱和盐酸调整废水的pH值到5~6,利用氟离子计法测定废水样的氟离子浓度。3)按照每mg氟离子加入1~100ppm活性氧化铝,投加活性氧化铝到废水中,快速搅拌几分钟完全混合,沉淀半小时。4)提取上清液利用氟离子计法测定氟离子浓度,计算去除率。本发明公开一种废水中氟离子的去除方法的去除办法,具有成本低,速度快的特点具有较高的应用价值,可有效去除污水中氟离子。

Description

一种废水中氟离子的去除方法
技术领域
本发明涉及一种废水中氟离子的去除方法,具体地说,是一利用改性活性氧化铝吸附去除氟离子的方法。
背景技术
高氟水的主要来源有两种:第一种来源是自然界的含氟矿物如冰晶石(Na3AlF6)、磷灰石[Ca3(PO4)2·CaF]、萤石(CaF2)与水在自然作用下结合后形成。第二种来源是人类的生产活动产生的高氟废水。近些年,随着氟工业高速发展如炼铝工业、电镀工业、化工业以及化肥制造业等许多工业制造业排放大量高浓度含氟废水。
普遍的除氟方法有化学沉淀法、吸附法、混凝沉淀法等。
化学沉淀法除氟是通过向高氟废水中投加钙盐,使钙盐与氟离子形成氟化钙沉淀并固液分离以达到除氟效果。大部分高浓度含氟废水仅通过化学沉淀法除氟,处理后的废水中含氟量达不到国家一级污水排放标准。因此化学沉淀法作为工业高氟废水的预处理较为常见,而且氟化钙等处理产物会造成二次污染,回收难度较大。
混凝沉淀法除氟主要是通过向高氟废水中投加混凝剂,通过混凝剂的网捕、卷扫、吸附架桥以及电性中和等方式与氟离子形成絮体后沉降并经固液分离后即达到除氟目的。混凝沉淀法实用性强、设备成本较低。
吸附法是将待处理的废水与吸附材料混合振荡浸渍。吸附剂的除氟原理是:氟离子与吸附剂上的基团或离子进行交换从而达到除氟效果。
活性氧化铝是过渡态氧化铝,粉状、小球状或者柱状白色固体物质,其具有内部多孔性、高分散性、吸附性等多种性能,活性氧化铝的比表面积较大不溶于水,可以与酸性或者碱性物质发生反应,但一般的活性氧化铝存在,吸附容量小不易再生等缺点。
利用本方法对活性氧化铝进行改性,可有效增强活性氧化铝的内部多孔性、高分散性、吸附性等多种性能,可以有效的吸附降低废水中的氟离子至1mg/L以下。
发明内容
本发明需要解决的首要技术问题在于提供一种废水中氟离子的去除的方法,并且生产成本低,去除效果高,具有极高的应用价值。
本发明采用如下技术方案:
应用步骤如下:
1)筛取0.5~5mm活性氧化铝颗粒,加入1.0~10.0%的硫酸铁Fe2(SO4)3溶液浸泡12小时,浸泡过程中不断搅拌。
2)过滤活性氧化铝颗粒,加入1.0~10.0%的氯化铝AlCl3溶液浸泡12小时,浸泡过程中不断搅拌,过滤固体颗粒烘干备用,烘干温度为105℃。
3)利用片碱和盐酸调整废水的pH值到5~6,利用氟离子计法测定废水的氟离子浓度。
4)按照每mg氟离子加入1~100ppm活性氧化铝,投加活性氧化铝到废水中,快速搅拌几分钟完全混合,沉淀半小时。
5)提取上清液利用氟离子计法测定氟离子浓度,计算去除率。
本发明所述的方法用于含氟废水处理时,所述的工艺条件具体按照如下进行:
1)制备改性活性氧化铝:筛取0.5~5mm活性氧化铝颗粒100g,经清洗处理后,加入100ml 1.0~10.0%的硫酸铁Fe2(SO4)3溶液浸泡12小时,浸泡过程中不断搅拌,设置转速为170r/min。过滤活性氧化铝颗粒,水洗后,加入100ml 1.0~10.0%的氯化铝AlCl3溶液浸泡12小时,浸泡过程中不断搅拌,设置转速为170r/min,过滤固体颗粒水洗烘干备用,烘干温度为105℃。
Fe2(SO4)3溶液的制备过程:称取一定量的分析纯的Fe2(SO4)3固体在烧杯中加热至完全溶解,冷去后加入去离子水定容至1.0L,得到不同质量分水的Fe2(SO4)3溶液。
AlCl3溶液的制备过程:称取一定量的分析纯的AlCl3固体在烧杯中加热至完全溶解,冷去后加入去离子水定容至1.0L,得到不同质量分水的AlCl3溶液。
2)利用片碱调整废水的pH值到5~6,利用离子选择电极法(GB7484-87)测定废水的氟离子浓度。
3)按照每mg氟离子加入1~100ppm制备的改性活性氧化铝计算用量,快速投加改性活性氧化铝到含氟废水中,快速搅拌几分钟完全混合,搅拌速度为170r/min,后沉淀30min。
4)提取上清液利用离子选择电极法(GB 7484-87)测定废水的氟离子浓度,计算去除率。
本发明的有益效果:
(1)本发明所述的新型活性氧化铝吸附体系在含氟废水的处理应用中,可有效的降低废水的氟含量到1mg/L以下,达到深度除氟的效果。
(2)本法发明可以两个半小时内完成活性氧化铝的制作过程,高效快速完成新型活性氧化铝去除材料的制备。
(3)本发明的处理过程中,仅有搅拌沉淀工艺,可以有效节约设备投资。
(4)与现有技术相比,本发明的改性活性氧化铝吸附体系,与现有的氟去除方法对比,其具有如下优点:(1)制备工艺简单,流程短,不需要复杂的设备,成本低,应用前景极佳。(2)对比沉淀法和混凝法,本方法不带入其它的外加离子,不会对后续工艺产生影响。(3)与现有活性氧化铝吸附体系相比,本方法可提高活性氧化铝的吸附容量,大幅减少活性氧化铝的用量。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。
图1改性活性氧化铝制备流程。
具体实施
为了更清楚地说明本发明实施例的技术方案,下面结合三个具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此。
实施例1
将上述方法用于降低焦化废水中,具体操作步骤如下:
1.深圳某焦化厂产生的含氟废水,外观为黄色,有大量的悬浮物。
2.采用国标方法,检测含氟废水的指标如下表所示。
深圳某焦化含氟废水水质指标
编号 名称 数值 单位 方法名称
1 pH 7.8 GB6920
2 化学需氧量 2750 mg/L HJ828
3 5日生化需氧量 251 mg/L HJ505
4 总碳 4350 mg/L HJ501
5 氨氮 350 mg/L HJ535
6 氯化物 289 mg/L HJ84
7 总氮 451 mg/L HJ636
8 硫酸盐 10.1 mg/L HJ84
9 氟离子 23.5 mg/L GB 7484-87
3.按照如下步骤对焦化废水进行处理。
1)制备改性活性氧化铝:筛取2mm活性氧化铝颗粒100g,经清洗处理后,加入100ml1.5%的硫酸铁Fe2(SO4)3溶液浸泡12小时,浸泡过程中不断搅拌,设置转速为170r/min。过滤活性氧化铝颗粒,水洗后,加入100ml 1.5%的氯化铝AlCl3溶液浸泡12小时,浸泡过程中不断搅拌,设置转速为170r/min,过滤固体颗粒水洗烘干备用,烘干温度为105℃。
Fe2(SO4)3溶液的制备过程:称取15g分析纯的Fe2(SO4)3固体在烧杯中加热至完全溶解,冷去后加入去离子水定容至1.0L,得到质量分数为1.5%Fe2(SO4)3溶液。
AlCl3溶液的制备过程:称取25g分析纯的AlCl3固体在烧杯中加热至完全溶解,冷去后加入去离子水定容至1.0L,2.5%的AlCl3溶液。
1)将35%的盐酸稀释10倍,加入废水中调整废水的pH值到5.8,利用离子选择电极法(GB 7484-87)测定废水的氟离子浓度。
2)称取改性活性氧化铝1.5g,快速投加改性活性氧化铝到含氟废水中,快速搅拌几分钟完全混合,搅拌速度为170r/min,后沉淀30min。
3)利用中速滤纸过滤改性活性氧化铝和焦化废水混合物,利用离子选择电极法(GB 7484-87)测定滤液的氟离子浓度,计算氟离子去除率。
4)氟离子去除率,以w计。数值以%表示,其计算公式为:
Figure BDA0002649506590000061
式中:
C0——初始氟离子浓度,mL;
C1——反应后的氟离子浓度,mL;
4.采用国标方法,检测处理后的废水指标如下表所示。
深圳焦化废水经改性活性氧化铝处理后水质指标
编号 名称 数值 单位 方法名称
1 pH 5.7 GB6920
2 化学需氧量 835 mg/L HJ828
3 5日生化需氧量 169 mg/L HJ505
4 总碳 2600 mg/L HJ501
5 氨氮 189 mg/L HJ535
6 氯化物 263 mg/L HJ84
7 总氮 360 mg/L HJ636
8 硫酸盐 12.1 mg/L HJ84
9 氟离子 2.3 mg/L GB 7484-87
5.对比处理前后的焦化废水的指标,可以发现本处理方法对各种污染指标化学需氧量(COD)、5日生化需氧量(BOD5)、氨氮(NH4-N)、总氮(TN)、都有不同程度的去除,硫酸盐和氯化物的浓度微有的提高。
6.对比处理前后,氟离子的去除率达到89%。
7.利用氧化铝含量13%的聚合氯化铝,作为对比实验,其步骤如下:(1)利用盐酸调节焦化废水pH到4~6,利用离子选择电极法(GB 7484-87)测定废水的氟离子浓度;(2)投加氧化铝含量13%的聚合氯化铝100ppm到焦化废水中,快速搅拌几分钟完全混合,搅拌速度为170r/min,投加PAM,后沉淀30min。(3)利用中速滤纸过滤沉淀物混合物,利用离子选择电极法(GB 7484-87)测定滤液的氟离子浓度,计算氟离子去除率。(4)氟离子去除率,以w计。数值以%表示,其计算公式为:
Figure BDA0002649506590000071
式中:
C0——初始氟离子浓度,mL;
C1——反应后的氟离子浓度,mL;
聚合氯化铝与本发明处理焦化废水效果对比
Figure BDA0002649506590000072
经对比可以发现,本发明的处理效果明显好于聚合氯化铝混凝。本发明的化学需氧量去除率可达89%,聚合氯化铝絮凝仅有50%。
案例二
将上述方法用于降低焦化废水中,具体操作步骤如下:
1.采集长期储存、性质稳定的广东某煤化工调节池焦化废水,外观为深黄色,有轻微刺激性气味。
2.采用国标方法,检测焦化废水指标如下表所示。
广东某煤化工焦化废水水质指标
编号 名称 数值 单位 方法名称
1 pH 8.3 GB6920
2 化学需氧量 3752 mg/L HJ828
3 5日生化需氧量 353 mg/L HJ505
4 总碳 5353 mg/L HJ501
5 氨氮 453 mg/L HJ535
6 氯化物 385 mg/L HJ84
7 总氮 554 mg/L HJ636
8 硫酸盐 11.4 mg/L HJ84
9 氟离子 45.0 mg/L GB 7484-87
3.按照如下步骤对煤化工焦化废水进行处理。
1)制备改性活性氧化铝:筛取2mm活性氧化铝颗粒100g,经清洗处理后,加入100ml1.5%的硫酸铁Fe2(SO4)3溶液浸泡12小时,浸泡过程中不断搅拌,设置转速为170r/min。过滤活性氧化铝颗粒,水洗后,加入100ml 1.5%的氯化铝AlCl3溶液浸泡12小时,浸泡过程中不断搅拌,设置转速为170r/min,过滤固体颗粒水洗烘干备用,烘干温度为105℃。
Fe2(SO4)3溶液的制备过程:称取45g分析纯的Fe2(SO4)3固体在烧杯中加热至完全溶解,冷去后加入去离子水定容至1.0L,得到质量分数为4.5%Fe2(SO4)3溶液。
AlCl3溶液的制备过程:称取60g分析纯的AlCl3固体在烧杯中加热至完全溶解,冷去后加入去离子水定容至1.0L,5%的AlCl3溶液。
5)将35%的盐酸稀释10倍,加入废水中调整废水的pH值到5.8,利用离子选择电极法(GB 7484-87)测定废水的氟离子浓度。
6)称取改性活性氧化铝2.9g,快速投加改性活性氧化铝到含氟废水中,快速搅拌几分钟完全混合,搅拌速度为170r/min,后沉淀30min。
7)利用中速滤纸过滤改性活性氧化铝和焦化废水混合物,利用离子选择电极法(GB 7484-87)测定滤液的氟离子浓度,计算氟离子去除率。
8)氟离子去除率,以w计。数值以%表示,其计算公式为:
Figure BDA0002649506590000091
式中:
C0——初始氟离子浓度,mL;
C1——反应后的氟离子浓度,mL;
8.采用国标方法,检测处理后的废水指标如下表所示。
广东某煤化工焦化废水经改性活性氧化铝处理后水质指标
编号 名称 数值 单位 方法名称
1 pH 5.4 GB6920
2 化学需氧量 1235 mg/L HJ828
3 5日生化需氧量 349 mg/L HJ505
4 总碳 3610 mg/L HJ501
5 氨氮 219 mg/L HJ535
6 氯化物 343 mg/L HJ84
7 总氮 375 mg/L HJ636
8 硫酸盐 10.1 mg/L HJ84
9 氟离子 8.5 mg/L GB 7484-87
9.对比处理前后广东某煤化工焦化废水指标,可以发现本处理方法对各种污染指标化学需氧量(COD)、5日生化需氧量(BOD5)、总碳(TC)、氨氮(NH4-N)、总氮(TN)都有不同程度的去除,硫酸盐和氯化物含量有一定程度的提高。
10.对比处理前后,氟离子的去除率达到81%。
11.利用氧化铝含量13%的聚合氯化铝,作为对比实验,其步骤如下:(1)利用盐酸调节焦化废水pH到4~6,利用离子选择电极法(GB 7484-87)测定废水的氟离子浓度;(2)投加氧化铝含量13%的聚合氯化铝100ppm到焦化废水中,快速搅拌几分钟完全混合,搅拌速度为170r/min,投加PAM,后沉淀30min。(3)利用中速滤纸过滤沉淀物混合物,利用离子选择电极法(GB 7484-87)测定滤液的氟离子浓度,计算氟离子去除率。(4)氟离子去除率,以w计。数值以%表示,其计算公式为:
Figure BDA0002649506590000101
式中:
C0——初始氟离子浓度,mL;
C1——反应后的氟离子浓度,mL;
聚合氯化铝与本发明处理焦化废水效果对比
Figure BDA0002649506590000102
12.经对比可以发现,本发明的处理效果明显好于聚合氯化铝絮凝。本发明的氟离子去除率可达81%,高过聚合氯化铝絮凝41%个百分点。
案例三
将上述方法用于深圳某光伏废水处理,具体操作步骤如下:
1.采集长期储存、性质稳定的深圳某光伏废水调节池,外观为微黄色,没有气味。
2.采用国标方法(GB 7484-87),检测光伏废水指标如下表所示。
广东某光伏废水水质指标
编号 名称 数值 单位 方法名称
1 pH 2.5 GB6920
2 化学需氧量 552 mg/L HJ828
3 总碳 253 mg/L HJ501
4 氯化物 385 mg/L HJ84
5 总氮 56 mg/L HJ636
6 硫酸盐 10.4 mg/L HJ84
7 氟离子 54.3 mg/L GB 7484-87
3.按照如下步骤对光伏废水进行处理。
1)制备改性活性氧化铝:筛取2mm活性氧化铝颗粒100g,经清洗处理后,加入100ml5%的硫酸铁Fe2(SO4)3溶液浸泡12小时,浸泡过程中不断搅拌,设置转速为170r/min。过滤活性氧化铝颗粒,水洗后,加入100ml 6%的氯化铝AlCl3溶液浸泡12小时,浸泡过程中不断搅拌,设置转速为170r/min,过滤固体颗粒水洗烘干备用,烘干温度为105℃。Fe2(SO4)3溶液的制备过程:称取50g分析纯的Fe2(SO4)3固体在烧杯中加热至完全溶解,冷去后加入去离子水定容至1.0L,得到质量分数为5%Fe2(SO4)3溶液。
AlCl3溶液的制备过程:称取60g分析纯的AlCl3固体在烧杯中加热至完全溶解,冷去后加入去离子水定容至1.0L,6%的AlCl3溶液。
9)称取40g片碱固体加入1L去离子水中,配置成1mol/L的NaOH溶液,加入废水中调整废水的pH值到5.8,利用离子选择电极法(GB7484-87)测定废水的氟离子浓度。
10)称取改性活性氧化铝5.4g,快速投加改性活性氧化铝到含氟废水中,快速搅拌几分钟完全混合,搅拌速度为170r/min,后沉淀30min。
11)利用中速滤纸过滤改性活性氧化铝和光伏废水混合物,利用离子选择电极法(GB 7484-87)测定滤液的氟离子浓度,计算氟离子去除率。
12)氟离子去除率,以w计。数值以%表示,其计算公式为:
Figure BDA0002649506590000121
式中:
C0——初始氟离子浓度,mL;
C1——反应后的氟离子浓度,mL;
4.采用国标方法,检测光伏废水样品处理后指标如下表所示。
深圳光伏废水废水利用本发明处理后水质指标
编号 名称 数值 单位 方法名称
1 pH 5.0 GB6920
2 化学需氧量 470 mg/L HJ828
3 总碳 110 mg/L HJ501
4 氯化物 429 mg/L HJ84
5 总氮 30 mg/L HJ636
6 硫酸盐 15.1 mg/L HJ84
7 氟离子 12.3 mg/L GB 7484-87
5.对比处理前后深圳某光伏废水指标,可以发现本处理方法对各种污染指标化学需氧量(COD)、总碳(TC)、氨氮(NH4-N)、总氮(TN)都有不同程度的去除,硫酸盐和氯化物含量有一定程度的提高。
6.利用本发明处理前后,氟离子的去除率达到77%。
7.利用氧化铝含量13%的聚合氯化铝,作为对比实验,其步骤如下:(1)利用盐酸调节光伏废水pH到4~6,利用离子选择电极法(GB 7484-87)测定废水的氟离子浓度;(2)投加氧化铝含量13%的聚合氯化铝100ppm到焦化废水中,快速搅拌几分钟完全混合,搅拌速度为170r/min,投加PAM,后沉淀30min。(3)利用中速滤纸过滤沉淀物混合物,利用离子选择电极法(GB 7484-87)测定滤液的氟离子浓度,计算氟离子去除率。(4)氟离子去除率,以w计。数值以%表示,其计算公式为:
Figure BDA0002649506590000131
式中:
C0——初始氟离子浓度,mL;
C1——反应后的氟离子浓度,mL;
聚合氯化铝与本发明处理焦化废水效果对比
Figure BDA0002649506590000132
8.经对比可以发现,本发明的处理效果明显好于聚合氧氯化铝絮凝。本发明的氟离子去除率可达77%,高过聚合氯化铝絮凝30个百分点。
通过实施案例可以发现,本发明对含氟废水处理效果稳定,在75%~90%之间,且优于聚合氯化铝处理30个百分点以上。

Claims (6)

1.本发明公开一种废水中氟离子的去除方法,其特征在于其具体步骤如下:
1) 筛取0.5~5mm活性氧化铝颗粒,加入1.0~10.0%的硫酸铁Fe2(SO4)3溶液浸泡12小时;
2) 过滤活性氧化铝颗粒,加入1.0~10.0%的氯化铝AlCl3溶液浸泡12小时,过滤固体颗粒烘干备用;
3)利用片碱和盐酸调整废水的pH值到5~6, 利用离子选择电极法(GB 7484-87)测定废水的氟离子浓度;
测定废水样的氟离子浓度;
4)按照每mg氟离子加入1~100ppm活性氧化铝,投加活性氧化铝到废水中,快速搅拌几分钟完全混合,沉淀半小时;
5)提取上清液利用离子选择电极法(GB 7484-87)测定废水的氟离子浓度,计算去除率。
2.如权利要求1所述的一种废水中氟离子的去除方法,其特征在于所述的步骤1中,活性氧化铝颗粒的粒径大小为0.5~5mm。
3.如权利要求1所述的一种废水中氟离子的去除方法,其特征在于所述步骤1中,加入1.0~10.0%的硫酸铁Fe2(SO4)3对活性氧化铝颗粒的进行浸泡。
4.如权利要求1所述的一种废水中氟离子的去除方法,其特征在于所述步骤2中,加入1.0~10.0%的氯化铝AlCl3溶液浸泡12小时。
5.如权利要求1所述的一种废水中氟离子的去除方法,其特征在于利用片碱调整废水的pH值到5~6。
6.如权利要求1所述的一种废水中氟离子的去除方法,按照每mg氟离子加入1~100ppm活性氧化铝。
CN202010865164.6A 2020-08-25 2020-08-25 一种废水中氟离子的去除方法 Pending CN114314951A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010865164.6A CN114314951A (zh) 2020-08-25 2020-08-25 一种废水中氟离子的去除方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010865164.6A CN114314951A (zh) 2020-08-25 2020-08-25 一种废水中氟离子的去除方法

Publications (1)

Publication Number Publication Date
CN114314951A true CN114314951A (zh) 2022-04-12

Family

ID=81010936

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010865164.6A Pending CN114314951A (zh) 2020-08-25 2020-08-25 一种废水中氟离子的去除方法

Country Status (1)

Country Link
CN (1) CN114314951A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114873682A (zh) * 2022-06-10 2022-08-09 中关村至臻环保股份有限公司 一种去除矿井水中硫酸根和氟离子的低成本水处理剂及其制备方法
CN115583709A (zh) * 2022-10-13 2023-01-10 广州楷诚干燥设备有限公司 一种氟离子高效去除方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103693771A (zh) * 2012-09-27 2014-04-02 北京化工大学 多级串联的饮用水吸附除氟装置及方法
CN106000281A (zh) * 2016-06-08 2016-10-12 李明宇 一种对氟离子具高吸附能力的改性活性氧化铝及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103693771A (zh) * 2012-09-27 2014-04-02 北京化工大学 多级串联的饮用水吸附除氟装置及方法
CN106000281A (zh) * 2016-06-08 2016-10-12 李明宇 一种对氟离子具高吸附能力的改性活性氧化铝及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
段颖: "两种盐复合改性活性氧化铝除氟性能及再生研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114873682A (zh) * 2022-06-10 2022-08-09 中关村至臻环保股份有限公司 一种去除矿井水中硫酸根和氟离子的低成本水处理剂及其制备方法
CN114873682B (zh) * 2022-06-10 2023-09-05 中关村至臻环保股份有限公司 一种去除矿井水中硫酸根和氟离子的低成本水处理剂及其制备方法
CN115583709A (zh) * 2022-10-13 2023-01-10 广州楷诚干燥设备有限公司 一种氟离子高效去除方法

Similar Documents

Publication Publication Date Title
CN110372075B (zh) 一种高效除氟药剂及其应用
CN111573806A (zh) 一种深度除氟剂及其制备方法与应用
CN105314773A (zh) 一种湿法脱硫废水回收利用方法及其装置
CN111302465A (zh) 一种新型液体除氟药剂及其制备方法和应用
CN114314951A (zh) 一种废水中氟离子的去除方法
CN111498960A (zh) 一种除氟药剂及其应用
CN103723859A (zh) 高效去除反渗透浓水中铅离子和镉离子的方法
CN111484115A (zh) 一种新型污水除磷剂及其制备、应用方法
CN113401996A (zh) 一种水处理除氟药剂及其制备方法
CN106830251B (zh) 用于处理脱硫废水的复合壳聚糖絮凝剂及制备方法和应用
CN112321009A (zh) 一种脱硫废水处理剂及处理方法
CN112759050A (zh) 一种煤气化废水中氟离子的去除方法
CN1982230A (zh) 海水深度除浊及联产酸性废水中和剂的方法
CN114275868A (zh) 一种重金属靶向去除剂及其制备方法和应用
CN111559805B (zh) 一种反渗透进水预处理用除氟剂及其制备方法
CN104761039A (zh) 一种处理含镉废水的复合螯合剂及其应用方法
CN116081752A (zh) 一种废水中氟离子的去除方法
CN103007588B (zh) 一种烧结烟气氨法脱硫工艺产生的硫铵母液净化的方法
CN113428953A (zh) 一种煤脱硫废水中氟离子的去除方法
CN104882185B (zh) 一种处理污水中放射性元素的絮凝剂及其使用方法
CN114409141A (zh) 一种煤气化灰水除硬的方法
CN114804400A (zh) 一种焦化废水生化处理后除氟系统和工艺
CN113501599A (zh) 一种含氟废水的处理方法
CN110342713A (zh) 一种脱硫废水自回用及零排放系统
CN220976770U (zh) 一种树脂除氨氮并副产硫酸钡和碳酸铵的生产系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220412

WD01 Invention patent application deemed withdrawn after publication