CN114313300A - 一种预测并提高飞机部件机表连接件安装合格率的方法 - Google Patents

一种预测并提高飞机部件机表连接件安装合格率的方法 Download PDF

Info

Publication number
CN114313300A
CN114313300A CN202210161749.9A CN202210161749A CN114313300A CN 114313300 A CN114313300 A CN 114313300A CN 202210161749 A CN202210161749 A CN 202210161749A CN 114313300 A CN114313300 A CN 114313300A
Authority
CN
China
Prior art keywords
skin
aircraft
installation
nail hole
nail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210161749.9A
Other languages
English (en)
Other versions
CN114313300B (zh
Inventor
刘元吉
陈雪梅
舒阳
陈清良
骆金威
冯若琪
潘雨
叶翔宇
勾江洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Aircraft Industrial Group Co Ltd
Original Assignee
Chengdu Aircraft Industrial Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Aircraft Industrial Group Co Ltd filed Critical Chengdu Aircraft Industrial Group Co Ltd
Priority to CN202210161749.9A priority Critical patent/CN114313300B/zh
Publication of CN114313300A publication Critical patent/CN114313300A/zh
Application granted granted Critical
Publication of CN114313300B publication Critical patent/CN114313300B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明涉及飞机部件装配领域,尤其涉及一种预测并提高飞机部件机表连接件安装合格率的方法,用于预测并提高骨架/蒙皮独立制孔后连接件安装的合格率,分为根据实际蒙皮结构尺寸以及与骨架的装配关系,确定定位关系与分析对象;建立钉孔配合数学模型,理论上分析配合关系以及确定用于评价机表连接件安装合格率的指标;进行容差分析建模、分析,确定影响合格率的主要因素,提出压缩公差带和调整孔径名义尺寸的方法来提高连接件安装合格率。在综合考虑机床精度以及制孔能力情况下,保证理论计算安装合格率≥90%,从而保证实际机表连接件的安装质量。

Description

一种预测并提高飞机部件机表连接件安装合格率的方法
技术领域
本发明涉及飞机部件装配领域,尤其涉及一种预测并提高飞机部件机表连接件安装合格率的方法。
背景技术
在传统的飞机装配工艺中,机表蒙皮和机身部件骨架的装配采用“定位+配孔+分解去毛刺”的方法,在零件加工状态,分别在蒙皮和骨架零件上制出用于定位的少量初孔,在装配时使用穿心夹将蒙皮在骨架上定位,根据其余手工划线或者数控制出的导孔进行配孔。该工艺在实施过程中存在大量的手工作业,导致装配周期长、质量不稳定。目前提出了一种新的装配工艺方法,部件骨架和蒙皮分别在数控机床上制出终孔,减少装配阶段的手工划线、配孔等内容,可大幅缩短装配周期,骨架、蒙皮、连接件的装配关系如下图3所示,骨架与蒙皮之间设置有密封胶/胶垫。目前在部分地区已进行了该装配工艺相关技术的研究与应用,但依然存在以下问题:
1)在装配过程中,尤其是高精度配合的螺栓孔处,存在错孔、螺栓安装困难的现象,需要进行强迫装配或者补充铰孔,严重影响着装配的质量和效率;
2)针对上述错孔、螺栓安装困难的现象,对后续的骨架/蒙皮独立制孔孔位置度要求提高,而目前的数控机床精度以及工艺能力均无法满足其孔位置度的要求,制造和检验难度较大,孔位极易超差。
上述问题已严重影响了飞机机表蒙皮与部件骨架的装配,而现有的数控加工能力无法满足高精度独立制孔孔位要求,亟需新的工艺方法来改善飞机部件机表连接件的安装。
发明内容
针对现有的飞机部件机表连接件安装困难、孔位精度无法保证等问题,目前尚无可靠的、从理论数值上分析连接件是否能够顺利安装的手段,本发明提出了一种预测并提高飞机部件机表连接件安装合格率的方法,能够有效的提高钉孔配合精度以及放大配合间隙,提高螺栓的装配合格率,降低了对孔位置度的公差要求,减少了机床精度保障与工艺过程保障内容,大幅提高了加工效率,并保证了骨架和蒙皮合格加工与顺利交付。
为了实现上述目的,本发明提供具体技术方案如下:
一种预测并提高飞机部件机表连接件安装合格率的方法,包括以下步骤:
S1,确定定位关系与分析对象,即根据实际蒙皮结构尺寸以及与骨架的装配关系,确定定位原则,并规划分机表连接件的数量与分布;
S2,建立钉孔配合数学模型,即将机表连接件的安装合格率计算转换为基于钉孔配合的可数值量化数学计算模型,确定具体的计算指标;
S3,容差分析建模,即通过定义分析对象、装配约束关系以及尺寸公差,建立钉孔配合合格率分析模型;
S4,合格率计算,基于钉孔配合合格率分析模型,进行机表连接件安装合格率计算;
S5,判断步骤S4的计算结果是否满足装配需求;若满足装配需求,则结束计算,给出连接件安装可行性结论;若不满足装配需求,则进行关键因素识别,并调整关键因素数值,然后从步骤S2开始循环,直至步骤S4的计算结果满足装配需求。
优选的,所述步骤S1中,确定定位原则是采用预先在飞机蒙皮和骨架上的钉孔中选择出定位孔,通过两孔一面定位原则对飞机的蒙皮和骨架进行定位。
优选的,所述步骤S1的定位原则中,选择的两个定位孔在蒙皮长度方向上的间距L1=0.6~0.9L,在蒙皮宽度方向上的间距L2=0.5~0.8H,其中,L和H分别为蒙皮最大轮廓的长、宽尺寸。
优选的,所述步骤S1的定位原则中,是采用工艺螺栓9配合定位孔进行定位,且所用工艺螺栓9的直径等于机表连接件的直径。
优选的,所述步骤S2中,建立钉孔配合数学模型的过程中,是将机表连接件安装合格率的计算转换成在满足步骤S1中定位原则的钉孔配合间隙平均值的合格率,且钉孔配合间隙平均值要保证骨架和蒙皮独立制孔后,机表连接件不干涉装配,则有钉孔配合数学模型C=(D1+D2)/2-d,其中,D1和D2分别为蒙皮和骨架上钉孔的孔径,d为机连接件直径,C为骨架/蒙皮与机表连接件的钉孔配合间隙。
优选的,所述步骤S3中,是基于钉孔配合数学模型C=(D1+D2)/2-d建立钉孔配合合格率分析模型Cmean=((D1max+D1min+D2max+D2min)/2-(dmax+dmin))/2;其中,D1max和D1min分别为蒙皮上钉孔的最大孔径和最小孔径,D2max和D2min分别为骨架上钉孔的最大孔径和最小孔径,dmax和dmin分别为机表连接件的最大直径和最小直径,Cmean为钉孔配合间隙平均值。
优选的,所述步骤S5中,满足装配需求是指所有钉孔处的Cmean≥90%。
优选的,所述步骤S5中,关键影响因素识别是当Cmean<90%时,对影响合格率的因素按贡献度进行排序,贡献度超过10%的定义为主要影响因素。
优选的,所述步骤S5中,调整关键因素数值是通过压缩钉孔的孔径公差带,提高钉孔配合精度,以及更改孔径名义尺寸,放大配合间隙。
本发明带来的有益效果:
本技术方案采用了容差分析模型进行What-if分析以识别影响钉孔安装的关键因素,显性化各个因素对合格率的影响权重,根据量化结果找出关键因素并进行改进,并进一步提出压缩孔径公差以及调整孔径名义尺寸的方法,能够有效的提高钉孔配合精度以及放大配合间隙,提高螺栓的装配合格率,降低了对孔位置度的公差要求,减少了机床精度保障与工艺过程保障内容,大幅提高了加工效率,保证了骨架和蒙皮合格加工与顺利交付。
附图说明
图1是本技术方案的的实施流程。
图2是定位孔与待分析孔选择的示意图。
图3是骨架/蒙皮配孔配合关系示意图。
图4是骨架/蒙皮独立制孔钉孔配合关系示意图。
图5是影响合格率的关键因素及相互关系示意图。
图6是工艺螺栓和机表连接件的结构对比示意图。
图7是机表连接件安装合格率计算典型模型示意图。
图8是孔径名义值调整示意图。
图中:
1、骨架;2、蒙皮;3、机表连接件-螺栓;4、密封胶/胶垫;5、机表连接件-螺母;6、第一定位孔;7、第二定位孔;8、待分析孔;9、工艺螺栓。
具体实施方式
下面结合附图和实例对本发明做进一步说明,但不应理解为本发明仅限于以下实例,在不脱离本发明构思的前提下,本发明在本领域的变形和改进都应包含在本发明权利要求的保护范围内。
实施例1
本实施例公开了一种预测并提高飞机部件机表连接件安装合格率的方法,作为本发明一种优选的实施方案,如图1所示,包括确定定位关系与分析对象、建立钉孔配合数学模型、容差分析建模、合格率计算、关键影响因素识别以及调整关键因素数值。具体如下:
步骤一:确定定位关系与分析对象
根据实际蒙皮2结构尺寸以及与骨架1的装配关系,确定定位原则,并规划分机表连接件的数量与分布。同一张蒙皮2上一般采用相同的机表连接件(包括机表连接件-螺栓3和机表连接件-螺母4)进行连接。在实际蒙皮2安装过程中,根据工艺经验选取一定数量的定位孔,使用穿心夹进行定位拉紧,由于穿心夹直径小于定位孔孔径,且直径精度低,导致蒙皮2定位精度较差,影响后续连接件的安装,基于此,本技术方案如图2所示,确定待分析的骨架1和蒙皮2结构,蒙皮2和骨架1通过两孔一面定位,所选择两个定位孔(第一定位孔6和第二定位孔7)在蒙皮2长度方向上的间距L1=0.6~0.9L,在蒙皮2宽度方向上的间距L2=0.5~0.8H,其中,L和H分别为蒙皮2最大轮廓的长、宽尺寸。进一步的,采用工艺螺栓9进行定位,工艺螺栓9直径d1=d,d正式的机表连接件的直径,具体结构对比如图6所示。进一步的,如图2和图7所示,选取在蒙皮2表面选取一定数量的钉孔作为分析对象,并命名为待分析孔8(待分析孔8数量≥2),且相邻待分析孔8之间的间距L3=200~300mm。。
步骤二:建立钉孔配合数学模型
将机表连接件的安装合格率计算转换为基于钉孔配合的可数值量化数学计算模型,确定具体的计算指标。具体是根据步骤S1确定的分析对象,根据待分析孔8的配合关系以及几何尺寸,建立钉孔配合数学模型。如图4所示,骨架1和蒙皮2独立制孔后保证机表连接件不干涉装配,需满足D1-d-P1≥0,且D2-d2-P2≥0,其中,D1和D2分别为蒙皮2和骨架1上钉孔的孔径,d为机表连接件的直径,P1和P2分别为骨架1与蒙皮2制孔位置度要求,C为骨架1/蒙皮2与机表连接件的钉孔配合间隙。进一步的,机表连接件与钉孔过渡配合时,钉孔配合间隙C=(P1+P2)/2=(D1+D2)/2-d,取,C=(D1+D2)/2-d建立钉孔配合数学模型。
步骤三:容差分析建模与分析
其中,机表连接件安装合格率的分析可转换成在一定的装配约束关系下,满足钉孔配合间隙的合格率。即通过定义分析对象、装配约束关系以及尺寸公差,建立钉孔配合合格率分析模型。选取平均值作为分析目标,用于评价机表连接件安装合格率,基于如图4所示的钉孔配合关系,存在如下关系式:
Cmax=(D1max+D2max)/2-dmin
Cmin=(D1min+D2min)/2-dmax
Cmean=((D1max+D1min+D2max+D2min)/2-(dmax+dmin))/2;
其中,D1max和D1min分别为蒙皮2上钉孔的最大孔径和最小孔径,D2max和D2min分别为骨架1上钉孔的最大孔径和最小孔径,dmax和dmin分别为机表连接件的最大直径和最小直径,Cmax和Cmin分别表示骨架1/蒙皮2与机表连接件的钉孔配合间隙的最大值和最小值。
C= Cmax(孔最大轴最小),为最理想的配合关系,理论上合格率最高;
C= Cmin(孔最小轴最大),为最差的配合关系,理论上合格率最低;
C= Cmean(钉孔均取平均值),可用来评价实际装配的合格率。
步骤四:合格率计算
基于钉孔配合合格率分析模型,进行机表连接件安装合格率计算。
步骤五:关键影响因素识别
结合合格率计算结果进行分析,当结果Cmean的合格率(Cmean)≥90%时,则连接件能够顺利放入孔内,当合格率(Cmean)<90%时,则进行影响合格率的关键因素识别,对计算结果的贡献度超过10%的公差定义为主要影响因素。依据容差分析理论,贡献度是指参与计算的每个公差变量对计算目标累积偏差的百分比,所有公差贡献的百分比和为1,每个公差的贡献度可以通过尺寸链传递模型或者容差分析软件计算得出。对影响合格率的因素按贡献度进行排序,贡献度超过10%的定义为主要影响因素,根据计算结果,影响合格率的主要因素为蒙皮2/骨架1孔位置度、钉孔配合精度以及配合间隙,如图5所示。
步骤六:调整关键因素数值
由于孔位置度是由机床精度决定,孔位置度提升空间有限且难以达到,只能通过调整钉孔配合精度和配合间隙两个方面提升连接件安装合格率。由于连接件为标准件,公差更改困难,因此从可以通过压缩孔径公差来提高配合精度以及调整孔径名义尺寸增大配合间隙。
压缩孔径公差带:孔径精度越高,加工越稳定(Cpk),机表连接件安装越可控,而目前数控制孔的能力在3σ(3σ准则)以上,加工孔径较为稳定,因此,可以通过调整制钉孔精度,保持蒙皮2/骨架1上钉孔的孔径上偏差不变,调整孔径的下偏差,压缩公差带δ1和δ2为0.03~0.05mm,以达到增大孔径中间值Dmean以及增大配合间隙的效果,钉孔配合间隙越大,机表连接件安装越容易,安装合格率越高。压缩完公差后,从步骤二开始循环,判断合格率是否>90%。
调整孔径名义尺寸:
若压缩孔径公差依然无法满足合格率要求,则需要进一步放大配合间隙。则有钉孔配合间隙C=D11+D22-(d+δ3),其中,如图8所示,δ1、δ2、δ3分别为三个钉孔的直径公差带宽,在不改变连接件尺寸和孔径公差带的基础上,通过放大蒙皮2/骨架1上钉孔的孔径名义尺寸来增大配合间隙。在保证孔径公差带δ不变的情况,蒙皮2/骨架1上钉孔的孔径名义尺寸改为D+△,从步骤二开始循环,重复计算直至其满足合格率要求。△表示对应钉孔的孔径增量,每次的增量为+0.01mm;D为蒙皮2或骨架1上钉孔的孔径,可以是(蒙皮2或骨架1的)最大孔径Dmax或最小孔径Dmin

Claims (9)

1.一种预测并提高飞机部件机表连接件安装合格率的方法,其特征在于,包括以下步骤:
S1,确定定位关系与分析对象,即根据实际蒙皮(2)结构尺寸以及与骨架(1)的装配关系,确定定位原则,并规划分机表连接件的数量与分布;
S2,建立钉孔配合数学模型,即将机表连接件的安装合格率计算转换为基于钉孔配合的可数值量化数学计算模型,确定具体的计算指标;
S3,容差分析建模,即通过定义分析对象、装配约束关系以及尺寸公差,建立钉孔配合合格率分析模型;
S4,合格率计算,基于钉孔配合合格率分析模型,进行机表连接件安装合格率计算;
S5,判断步骤S4的计算结果是否满足装配需求;若满足装配需求,则结束计算,给出连接件安装可行性结论;若不满足装配需求,则进行关键因素识别,并调整关键因素数值,然后从步骤S2开始循环,直至步骤S4的计算结果满足装配需求。
2.如权利要求1所述一种预测并提高飞机部件机表连接件安装合格率的方法,其特征在于,所述步骤S1中,确定定位原则是采用预先在飞机蒙皮(2)和骨架(1)上的钉孔中选择出定位孔,通过两孔一面定位原则对飞机的蒙皮(2)和骨架(1)进行定位。
3.如权利要求2所述一种预测并提高飞机部件机表连接件安装合格率的方法,其特征在于,所述步骤S1的定位原则中,选择的两个定位孔在蒙皮(2)长度方向上的间距L1=0.6~0.9L,在蒙皮(2)宽度方向上的间距L2=0.5~0.8H,其中,L和H分别为蒙皮(2)最大轮廓的长、宽尺寸。
4.如权利要求2所述一种预测并提高飞机部件机表连接件安装合格率的方法,其特征在于,所述步骤S1的定位原则中,是采用工艺螺栓(9)配合定位孔进行定位,且所用工艺螺栓(9)的直径等于机表连接件的直径。
5.如权利要求2所述一种预测并提高飞机部件机表连接件安装合格率的方法,其特征在于,所述步骤S2中,建立钉孔配合数学模型的过程中,是将机表连接件安装合格率的计算转换成在满足步骤S1中定位原则的钉孔配合间隙平均值的合格率,且钉孔配合间隙平均值要保证骨架(1)和蒙皮(2)独立制孔后,机表连接件不干涉装配,则有钉孔配合数学模型C=(D1+D2)/2-d,其中,D1和D2分别为蒙皮(2)和骨架(1)上钉孔的孔径,d为机连接件直径,C为骨架(1)/蒙皮(2)与机表连接件的钉孔配合间隙。
6.如权利要求5所述一种预测并提高飞机部件机表连接件安装合格率的方法,其特征在于,所述步骤S3中,是基于钉孔配合数学模型C=(D1+D2)/2-d建立钉孔配合合格率分析模型Cmean=((D1max+D1min+D2max+D2min)/2-(dmax+dmin))/2;其中,D1max和D1min分别为蒙皮(2)上钉孔的最大孔径和最小孔径,D2max和D2min分别为骨架(1)上钉孔的最大孔径和最小孔径,dmax和dmin分别为机表连接件的最大直径和最小直径,Cmean为钉孔配合间隙平均值。
7.如权利要求6所述一种预测并提高飞机部件机表连接件安装合格率的方法,其特征在于,所述步骤S5中,满足装配需求是指所有钉孔处的Cmean≥90%。
8.如权利要求6所述一种预测并提高飞机部件机表连接件安装合格率的方法,其特征在于,所述步骤S5中,关键影响因素识别是当Cmean<90%时,对影响合格率的因素按贡献度进行排序,贡献度超过10%的定义为主要影响因素。
9.如权利要求5所述一种预测并提高飞机部件机表连接件安装合格率的方法,其特征在于,所述步骤S5中,调整关键因素数值是通过压缩钉孔的孔径公差带,提高钉孔配合精度,以及更改孔径名义尺寸,放大配合间隙。
CN202210161749.9A 2022-02-22 2022-02-22 一种预测并提高飞机部件机表连接件安装合格率的方法 Active CN114313300B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210161749.9A CN114313300B (zh) 2022-02-22 2022-02-22 一种预测并提高飞机部件机表连接件安装合格率的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210161749.9A CN114313300B (zh) 2022-02-22 2022-02-22 一种预测并提高飞机部件机表连接件安装合格率的方法

Publications (2)

Publication Number Publication Date
CN114313300A true CN114313300A (zh) 2022-04-12
CN114313300B CN114313300B (zh) 2022-07-15

Family

ID=81031134

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210161749.9A Active CN114313300B (zh) 2022-02-22 2022-02-22 一种预测并提高飞机部件机表连接件安装合格率的方法

Country Status (1)

Country Link
CN (1) CN114313300B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114741793A (zh) * 2022-04-22 2022-07-12 成都飞机工业(集团)有限责任公司 飞机部件框梁间隙设计方法、装置、设备和存储介质
CN116021425A (zh) * 2023-03-28 2023-04-28 江苏中科云控智能工业装备有限公司 一种基于物联网的去毛刺设备性能测试系统及方法

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1194041A (zh) * 1995-06-28 1998-09-23 波音公司 统计公差确定方法
US20100063770A1 (en) * 2008-09-08 2010-03-11 Wilson Bruce A Finding minimum remaining float for a pattern of non-uniform sized features
JP2011100392A (ja) * 2009-11-09 2011-05-19 Mazda Motor Corp 設計検証方法及び設計検証装置
JP2013210910A (ja) * 2012-03-30 2013-10-10 Suzuki Motor Corp モデル作成方法、それをコンピュータに実行させるためのプログラム、及びそれを記録したコンピュータ読取り可能な記録媒体、並びにモデル作成装置。
US20140100831A1 (en) * 2012-10-09 2014-04-10 The Boeing Company Float Remaining Volume Identification
US20150114071A1 (en) * 2013-10-24 2015-04-30 The Boeing Company Cold Working Holes in a Composite and Metal Stack
CN106020147A (zh) * 2016-05-23 2016-10-12 北京理工大学 一种复杂精密机械产品的装配精度系统分析方法
US20160325851A1 (en) * 2015-05-04 2016-11-10 The Boeing Company Assembly of an aircraft structure assembly without shimming, locating fixtures or final-hole-size drill jigs
CN108875176A (zh) * 2018-06-05 2018-11-23 西安交通大学 一种提高载荷保持性的装配结合面形状主动设计方法
CN109582989A (zh) * 2017-09-29 2019-04-05 中国商用飞机有限责任公司 用于飞机的一面多孔装配的三维偏差建模分析方法
CN109583073A (zh) * 2018-11-23 2019-04-05 东南大学 基于外围Bezier参数空间的公差建模方法
CN109614686A (zh) * 2018-12-05 2019-04-12 北京理工大学 一种轴孔动态装配过程中的装配参数优化方法
US20200191182A1 (en) * 2018-12-14 2020-06-18 Airbus Operations S.A.S. Method For Assembling At Least Two Parts By Means Of Main And Secondary Definitive Connections And Assembly Obtained Using This Method
US20200216198A1 (en) * 2019-01-03 2020-07-09 The Boeing Company Predictive preparation of material for joint assembly
US20200269988A1 (en) * 2019-02-22 2020-08-27 Airbus Operations (S.A.S.) Assembly of parts assembled by a through-shaft that can be fitted if the parts are in approximate alignment
CN111753428A (zh) * 2020-06-28 2020-10-09 南京航空航天大学 一种复合材料干涉连接结构预紧松弛规律计算与评估方法
CN112558549A (zh) * 2021-02-09 2021-03-26 成都飞机工业(集团)有限责任公司 一种面向大部件群孔加工孔位误差最小的基准选取方法
CN113335557A (zh) * 2021-04-30 2021-09-03 成都飞机工业(集团)有限责任公司 一种飞机机身表面装配质量数字化检测方法及系统
CN113420363A (zh) * 2021-08-25 2021-09-21 成都飞机工业(集团)有限责任公司 一种飞机部件蒙皮骨架匹配性预测方法
EP3922567A1 (en) * 2020-06-11 2021-12-15 Airbus SAS Method for joining two pieces

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1194041A (zh) * 1995-06-28 1998-09-23 波音公司 统计公差确定方法
US20100063770A1 (en) * 2008-09-08 2010-03-11 Wilson Bruce A Finding minimum remaining float for a pattern of non-uniform sized features
JP2011100392A (ja) * 2009-11-09 2011-05-19 Mazda Motor Corp 設計検証方法及び設計検証装置
JP2013210910A (ja) * 2012-03-30 2013-10-10 Suzuki Motor Corp モデル作成方法、それをコンピュータに実行させるためのプログラム、及びそれを記録したコンピュータ読取り可能な記録媒体、並びにモデル作成装置。
US20140100831A1 (en) * 2012-10-09 2014-04-10 The Boeing Company Float Remaining Volume Identification
US20150114071A1 (en) * 2013-10-24 2015-04-30 The Boeing Company Cold Working Holes in a Composite and Metal Stack
US20160325851A1 (en) * 2015-05-04 2016-11-10 The Boeing Company Assembly of an aircraft structure assembly without shimming, locating fixtures or final-hole-size drill jigs
CN106020147A (zh) * 2016-05-23 2016-10-12 北京理工大学 一种复杂精密机械产品的装配精度系统分析方法
CN109582989A (zh) * 2017-09-29 2019-04-05 中国商用飞机有限责任公司 用于飞机的一面多孔装配的三维偏差建模分析方法
CN108875176A (zh) * 2018-06-05 2018-11-23 西安交通大学 一种提高载荷保持性的装配结合面形状主动设计方法
CN109583073A (zh) * 2018-11-23 2019-04-05 东南大学 基于外围Bezier参数空间的公差建模方法
CN109614686A (zh) * 2018-12-05 2019-04-12 北京理工大学 一种轴孔动态装配过程中的装配参数优化方法
US20200191182A1 (en) * 2018-12-14 2020-06-18 Airbus Operations S.A.S. Method For Assembling At Least Two Parts By Means Of Main And Secondary Definitive Connections And Assembly Obtained Using This Method
US20200216198A1 (en) * 2019-01-03 2020-07-09 The Boeing Company Predictive preparation of material for joint assembly
US20200269988A1 (en) * 2019-02-22 2020-08-27 Airbus Operations (S.A.S.) Assembly of parts assembled by a through-shaft that can be fitted if the parts are in approximate alignment
EP3922567A1 (en) * 2020-06-11 2021-12-15 Airbus SAS Method for joining two pieces
CN111753428A (zh) * 2020-06-28 2020-10-09 南京航空航天大学 一种复合材料干涉连接结构预紧松弛规律计算与评估方法
CN112558549A (zh) * 2021-02-09 2021-03-26 成都飞机工业(集团)有限责任公司 一种面向大部件群孔加工孔位误差最小的基准选取方法
CN113335557A (zh) * 2021-04-30 2021-09-03 成都飞机工业(集团)有限责任公司 一种飞机机身表面装配质量数字化检测方法及系统
CN113420363A (zh) * 2021-08-25 2021-09-21 成都飞机工业(集团)有限责任公司 一种飞机部件蒙皮骨架匹配性预测方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
孙辉鹏: "飞机壁板类柔性部件的装配偏差分析与预测", 《中国优秀硕士学位论文全文数据库工程科技II辑》 *
孙辉鹏: "飞机壁板类柔性部件的装配偏差分析与预测", 《中国优秀硕士学位论文全文数据库工程科技II辑》, no. 12, 15 December 2016 (2016-12-15) *
陈洪宇,朱绪胜,陈雪梅,王顺龙,吕传景: "基于数字化测量技术的装配阶差间隙预测方法", 《制造技术与机床》 *
陈洪宇,朱绪胜,陈雪梅,王顺龙,吕传景: "基于数字化测量技术的装配阶差间隙预测方法", 《制造技术与机床》, no. 1, 2 January 2021 (2021-01-02) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114741793A (zh) * 2022-04-22 2022-07-12 成都飞机工业(集团)有限责任公司 飞机部件框梁间隙设计方法、装置、设备和存储介质
CN116021425A (zh) * 2023-03-28 2023-04-28 江苏中科云控智能工业装备有限公司 一种基于物联网的去毛刺设备性能测试系统及方法
CN116021425B (zh) * 2023-03-28 2023-06-09 江苏中科云控智能工业装备有限公司 一种基于物联网的去毛刺设备性能测试系统及方法

Also Published As

Publication number Publication date
CN114313300B (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
CN114313300B (zh) 一种预测并提高飞机部件机表连接件安装合格率的方法
CN111461431B (zh) 一种基于手机制造中锁螺丝工艺的优化方法和系统
CN1194041A (zh) 统计公差确定方法
CN110281017B (zh) 一种曲面锻件中心孔的钻取方法
CN106624541B (zh) 一种扇形块焊接组件的装配焊接方法
CN111889730B (zh) 面向弱刚性飞机部件装配的机器人制孔基准设置方法
CN109582989A (zh) 用于飞机的一面多孔装配的三维偏差建模分析方法
CN209465991U (zh) 一种用于轴叉侧面加工的工装
CN107728578A (zh) 一种基于加工变形监测数据的加工顺序自适应调整方法
CN108319736B (zh) 基于工艺设计参数的砂型铸造过程碳排放计算方法
CN111545803A (zh) 盲孔定位钻削导孔工装和使用方法
Balaji et al. Trends in manufacturing and assembly technologies for next generation combat aircraft
CN112034786B (zh) 基于表面粗糙度控制的整体环型机匣数控加工优化方法
CN210146793U (zh) 一种曲面锻件的冷校正工装
CN208696058U (zh) 一种用于生产汽车连杆的冲孔工装
CN113500359A (zh) 一种长轴距变直径复杂薄壁结构件的精密加工方法
CN113500358B (zh) 一种锥形体精密加工方法
CN110170676A (zh) 一种大型飞机机身对接面结构的制孔方法
CN210997485U (zh) 一种龙门z轴舱滑块消隙装置
CN1474356A (zh) 数学模型在企业数字化制造集成技术中的应用
CN116981175A (zh) 一种pcb板槽孔加工方法
CN113894334B (zh) 一种大型薄壁壳体网格蒙皮厚度误差补偿加工方法
CN219443753U (zh) 一种用线切割加工硬质合金多斜孔喷嘴的夹具
CN213379435U (zh) 一种工件斜向钻孔位置预判装置
CN112959016A (zh) 滑油喷嘴类零件的加工方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant