CN114307946A - 一种改性铜矿尾矿渣及其制备方法和应用 - Google Patents

一种改性铜矿尾矿渣及其制备方法和应用 Download PDF

Info

Publication number
CN114307946A
CN114307946A CN202210006746.8A CN202210006746A CN114307946A CN 114307946 A CN114307946 A CN 114307946A CN 202210006746 A CN202210006746 A CN 202210006746A CN 114307946 A CN114307946 A CN 114307946A
Authority
CN
China
Prior art keywords
copper ore
ore tailing
solution
reaction
tailing slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210006746.8A
Other languages
English (en)
Other versions
CN114307946B (zh
Inventor
黄正文
雷佳佳
王浩
张宁
童华美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu University
Original Assignee
Chengdu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu University filed Critical Chengdu University
Priority to CN202210006746.8A priority Critical patent/CN114307946B/zh
Publication of CN114307946A publication Critical patent/CN114307946A/zh
Application granted granted Critical
Publication of CN114307946B publication Critical patent/CN114307946B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明公开了一种改性铜矿尾矿渣及其制备方法和应用,涉及固体废物处理处置与资源化以及水污染处理技术领域。具体公开的制备方法为:将铜矿尾矿渣粉末置于硅酸钠溶液中浸泡后干燥,然后将其配制成铜矿尾矿渣悬浮水溶液,向铜矿尾矿渣悬浮水溶液中加入FeCl3和AlCl3的混合溶液,震荡反应;震荡反应结束后,调节反应体系pH为6.9,将反应体系进行离心分离后收集固相,即得改性铜矿尾矿渣。本发明的改性铜矿尾矿渣用作水体钝磷吸附剂,在添加于水体沉积物中和覆盖水体沉积物的情况下,均能实现优异的钝磷效果。同时,本发明的制备方法简单、适合大规模推广应用。

Description

一种改性铜矿尾矿渣及其制备方法和应用
技术领域
本发明涉及固体废物处理处置与资源化以及水污染处理技术领域,特别是涉及一种改性铜矿尾矿渣及其制备方法和应用。
背景技术
目前,原生铜矿的存量较少,但铜尾矿二次资源量却极为丰富。铜矿石组成复杂性,加上选矿技术及设备落后,导致尾矿的成分中铜含量高低不一。没被充分利用的大量铜尾矿渣不仅占用大量土地,造成资源浪费,而且对环境产生严重污染。所以,实施铜尾矿渣资源综合开发利用,兴利除害,变废为宝,利国利民,一举多得,有着重大的现实意义和深远的历史意义。铜尾矿渣资源综合开发利用是保护生态环境的第一需要,保护生态环境是企业的重要责任,做好铜尾矿渣综合开发利用,是保护金山银山自然生态环境的必然要求;铜尾矿资源综合开发利用是消除安全隐患的迫切需要。铜尾矿渣库因历史遗留原因简单露天长期堆放,如遇极端天气或不可预见因素诱发,有可能出现滑坡、泥石流、溃坝等危险,直接威胁人们生命财产安全。加强铜尾矿渣资源综合开发利用技术研发应用及管理,有利于从根本上消除安全隐患,保护人民生命财产安全。铜尾矿渣资源综合开发利用是矿山冶金业转型升级的重要契机。目前,部分铜矿产业链条短,产品档次低。铜尾矿渣资源综合开发利用技术,是发展循环经济、转变经济发展方式、调整产业结构、增强可持续发展能力、节约用地、增加就业渠道的重要途径。
同时,湖泊、水库、池塘等缓流水体的富营养化已成为制约经济社会持续发展的重大环境问题。磷是导致水体富营养化的主要影响因子之一,水体中的磷按来源可分为外源磷和内源磷。沉积物是水体的重要组成部分,外源磷经地表径流、大气沉降等途径进入水体中后,可经吸附、络合、絮凝、沉降等作用埋藏于沉积物中,成为潜在的污染源。当外界环境条件合适时,原先蓄积于沉积物中的磷会通过解吸、溶解或生物分解等过程而释放出来,成为水体中磷的内源。随着人们对污染排放控制及水体修复管理力度的加大,外源磷的输入已经得到有效控制,沉积物中内源磷的释放逐渐成为富营养水体生态修复的主要障碍之一。因此,控制沉积物磷的释放,对于水环境富营养化的防治具有重要意义。
当前,国内外主要的水体沉积物磷释放控制技术包括原位控制技术和异位控制技术。其中,原位控制技术由于不需要额外的沉积物处理处置场地,具有显著的技术优势。国内外常见的沉积物磷释放原位控制技术有曝气复氧、铝盐钝化、硝酸盐注射、生态修复、物理覆盖、活性覆盖/改良等技术。其中,活性覆盖/改良技术,即将钝磷吸附剂材料覆盖到沉积物-水界面上方或添加进沉积物中对沉积物磷进行钝化,近年来已经引起研究人员的广泛关注,它被认为是一种极具应用前景的水体沉积物磷释放控制技术。
因此,能否废渣不废,将铜尾矿渣开发利用成一种新的材料水体钝磷吸附剂更具实际意义。
发明内容
本发明的目的是提供一种改性铜矿尾矿渣及其制备方法和应用,以解决上述现有技术存在的问题,打破传统思维环境工程领域有关水、气、渣、声、土等学科细分的思维及技术桎梏,利用时间和空间错配形成的所谓固体废物改性制备作为治理缓流水体富营养化的钝磷吸附剂,以实现以废物治理废水之资源化目的。
为实现上述目的,本发明提供了如下方案:
本发明的目的之一是提供一种改性铜矿尾矿渣的制备方法,包括以下步骤:
(1)将铜矿尾矿渣粉末置于硅酸钠溶液中浸泡,浸泡结束后干燥处理;
(2)将步骤(1)制得的铜矿尾矿渣粉末配制成铜矿尾矿渣悬浮水溶液,向所述铜矿尾矿渣悬浮水溶液中加入FeCl3和AlCl3的混合溶液,震荡反应;
(3)震荡反应结束后,调节步骤(2)反应体系的pH为6.9,离心分离,收集固相,即得所述改性铜矿尾矿渣。
进一步地,所述硅酸钠溶液的质量浓度为39%。
进一步地,步骤(1)所述浸泡时间为16-21min。
进一步地,所述FeCl3和AlCl3的混合溶液中,FeCl3浓度为0.05-0.06g/mL,AlCl3浓度为0.07-0.08g/mL。
进一步地,所述震荡反应的温度为26℃,反应时间为25-30min。
进一步地,步骤(3)中采用氢氧化钠调节体系pH。
本发明的目的之二是提供上述制备方法制备得到的改性铜矿尾矿渣。
本发明的目的之三是提供上述改性铜矿尾矿渣作为水体钝磷吸附剂的应用。
本发明公开了以下技术效果:
本发明对铜矿尾矿渣进行改性处理,制得的改性铜矿尾矿渣材料能够很好的控制水体沉积物内源磷的释放,将制得的改性铜矿尾矿渣用作水体钝磷吸附剂,在添加于水体沉积物中和覆盖水体沉积物的情况下,均能实现优异的钝磷效果。同时,本发明的制备方法简单、适合大规模推广应用。
具体实施方式
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。
应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见的。本发明说明书和实施例仅是示例性的。
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
本发明实施例所用原料铜矿尾矿渣主要成分组成如表1所示:
表1
Figure BDA0003457177990000051
实施例1
(1)将原料铜矿尾矿渣粉碎成粉末,置于质量浓度39%的硅酸钠溶液中浸泡19min,浸泡结束后常温干燥;
(2)取10g步骤(1)干燥后的铜矿尾矿渣于反应瓶中,加入100mL去离子水,配制成铜矿尾矿渣悬浮溶液,然后向铜矿尾矿渣悬浮溶液中加入100mLFeCl3和AlCl3的混合溶液,混合溶液中FeCl3浓度为0.055g/mL,AlCl3浓度为0.07g/mL;将反应体系置于恒温空气振荡器中,在100r/min,26℃条件下震荡反应30min;
(3)震荡反应结束后,利用氢氧化钠溶液调节步骤(2)反应体系的pH为6.9,离心分离,收集固相,经去离子水清洗、干燥后,即得改性铜矿尾矿渣材料。
实施例2
(1)将原料铜矿尾矿渣粉碎成粉末,置于质量浓度39%的硅酸钠溶液中浸泡16min,浸泡结束后常温干燥;
(2)取10g步骤(1)干燥后的铜矿尾矿渣于反应瓶中,加入100mL去离子水,配制成铜矿尾矿渣悬浮溶液,然后向铜矿尾矿渣悬浮溶液中加入100mLFeCl3和AlCl3的混合溶液,混合溶液中FeCl3浓度为0.05g/mL,AlCl3浓度为0.08g/mL;将反应体系置于恒温空气振荡器中,在150r/min,26℃条件下震荡反应27min;
(3)震荡反应结束后,利用氢氧化钠溶液调节步骤(2)反应体系的pH为6.9,离心分离,收集固相,经去离子水清洗、干燥后,即得改性铜矿尾矿渣材料。
实施例3
(1)将原料铜矿尾矿渣粉碎成粉末,置于质量浓度39%的硅酸钠溶液中浸泡21min,浸泡结束后常温干燥;
(2)取10g步骤(1)干燥后的铜矿尾矿渣于反应瓶中,加入100mL去离子水,配制成铜矿尾矿渣悬浮溶液,然后向铜矿尾矿渣悬浮溶液中加入100mLFeCl3和AlCl3的混合溶液,混合溶液中FeCl3浓度为0.06g/mL,AlCl3浓度为0.075g/mL;将反应体系置于恒温空气振荡器中,在100r/min,26℃条件下震荡反应25min;
(3)震荡反应结束后,利用氢氧化钠溶液调节步骤(2)反应体系的pH为6.9,离心分离,收集固相,经去离子水清洗、干燥后,即得改性铜矿尾矿渣材料。
对比例1
与实施例1不同之处在于,将步骤(2)中FeCl3和AlCl3的混合溶液替换为FeCl3溶液,FeCl3浓度不变。
对比例2
与实施例1不同之处在于,将步骤(2)中FeCl3和AlCl3的混合溶液替换为AlCl3溶液,AlCl3浓度不变。
对比例3
与实施例1不同之处在于,不进行步骤(1)的浸泡处理,直接将原料铜矿尾矿渣粉碎成粉末后与FeCl3和AlCl3的混合溶液混合。
对比例4
与实施例1不同之处在于,调整步骤(2)中FeCl3和AlCl3混合溶液中FeCl3浓度为0.09g/mL。
对比例5
与实施例1不同之处在于,调整步骤(2)中FeCl3和AlCl3混合溶液中AlCl3浓度为0.10g/mL。
对制备得到的改性铜矿尾矿渣材料进行磷钝化吸附性能验证:
验证例1
分别取10g实施例1-3及对比例1-5的改性铜矿尾矿渣材料于8个反应瓶中,分别向反应瓶中加入100mL磷酸盐水溶液中(磷酸盐水溶液中磷浓度为30mg·L-1,pH值为6.9)。将体系置于空气振荡器中,在150r/min,26℃条件下,反应4h、8h和24h。离心获取上清液,采用钼锑抗分光光度法测定上清液残留的磷浓度。
改性铜矿尾矿渣对水中磷酸盐的去除率(η,%)计算公式如式(1)所示,单位吸附量计算公式如式(2)所示:
Figure BDA0003457177990000081
Figure BDA0003457177990000082
式中,Ci和Ce分别表示磷酸盐溶液初始磷浓度和平衡磷浓度(mg·L-1);V指磷酸盐溶液的体积(L);m指材料的投加量(g)。
结果如表2所示。
表2
Figure BDA0003457177990000083
验证例2
采集某校园景观河道内的湿沉积物,将其过100目筛以去除树枝、碎石、贝壳等杂质,自然风干后研磨再次过100目筛,收集干沉积物。分别称取25g干沉积物放入18个反应瓶中,将18个反应瓶分为9组,每组两个平行。第一组试剂瓶中不添加任何材料,作为对照组。第二至第九组试剂瓶中依次添加2.5g实施例1-3及对比例1-5的改性铜矿尾矿渣材料,并将材料与沉积物充分混合均匀。然后配制含有10mmol·L-1NaCl、1mmol·L-1CaCl2、1mmol·L- 1NaHCO3、0.5mmol·L-1Na2SO4的溶液,再进行脱氧处理,使溶液的溶解氧(DO)浓度小于0.5mg·L-1。再将所配制的溶液加入到上述试剂瓶中,加满后盖上橡皮塞,用凡士林封口,密封厌氧培养2周。2周后,采用钼锑抗分光光度法测定各试剂瓶上覆水中的溶解性活性磷(SRP)浓度,计算上覆水SRP削减率(RE,%)。计算公式如下:
Figure BDA0003457177990000091
式中,C0为对照组上覆水SRP浓度(mg·L-1);C1为处理组上覆水SRP浓度(mg·L-1)。
各实施例及对比例实现的上覆水SRP削减率(RE,%)如表3所示。
表3
磷酸盐去除率(%)
实施例1 96.3
实施例2 96.5
实施例3 95.9
对比例1 86.3
对比例2 87.2
对比例3 87.6
对比例4 89.6
对比例5 88.7
验证例3
准备18根圆柱型有机玻璃装置(直径为10cm、高度为20cm),分成9组,每组2个平行。在各装置中加入过100目筛的湿沉积物(同验证例2中的湿沉积物),直至高度达到10cm。制作内含覆盖材料的圆形包裹体,直径约为8cm。即采用透水织物分别将10g的实施例1-3及对比例1-5改性铜矿尾矿渣材料包裹其中,并保证覆盖材料均匀分布,制备得到对应包裹体。
对照组和各处理组如下:
对照组:不添加任何材料;
实施例1包裹覆盖组:将实施例1包裹体覆盖到沉积物-水界面上方;
实施例2包裹覆盖组:将实施例2包裹体覆盖到沉积物-水界面上方;
实施例3包裹覆盖组:将实施例3包裹体覆盖到沉积物-水界面上方;
对比例1包裹覆盖组:将对比例1包裹体覆盖到沉积物-水界面上方;
对比例2包裹覆盖组:将对比例2包裹体覆盖到沉积物-水界面上方;
对比例3包裹覆盖组:将对比例3包裹体覆盖到沉积物-水界面上方;
对比例4包裹覆盖组:将对比例4包裹体覆盖到沉积物-水界面上方;
对比例5包裹覆盖组:将对比例5包裹体覆盖到沉积物-水界面上方;
采集天然河道水作为培养装置的上覆水,对所采集的天然河道水进行脱氧处理。然后将脱氧处理后的天然河道水体加入到各反应器中,再盖上橡胶塞,用凡士林封口,密封培养。培养24h后,采用钼锑抗分光光度法测定上覆水溶解性活性磷(SRP)浓度,计算上覆水SRP削减率(RE,%),
结果如表4所示。
表4
磷酸盐去除率(%)
实施例1 91.5
实施例2 92.4
实施例3 91.9
对比例1 75.2
对比例2 74.6
对比例3 73.2
对比例4 77.9
对比例5 78.6
本发明对铜矿尾矿渣进行改性处理,方法简单、适合大规模推广应用。制得的改性铜矿尾矿渣用作水体钝磷吸附剂,在添加于水体沉积物中和覆盖水体沉积物的情况下,均能实现优异的钝磷效果。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (8)

1.一种改性铜矿尾矿渣的制备方法,其特征在于,包括以下步骤:
(1)将铜矿尾矿渣粉末置于硅酸钠溶液中浸泡,浸泡结束后干燥处理;
(2)将步骤(1)制得的铜矿尾矿渣粉末配制成铜矿尾矿渣悬浮水溶液,向所述铜矿尾矿渣悬浮水溶液中加入FeCl3和AlCl3的混合溶液,震荡反应;
(3)震荡反应结束后,调节步骤(2)反应体系的pH为6.9,离心分离,收集固相,即得所述改性铜矿尾矿渣。
2.根据权利要求1所述的制备方法,其特征在于,所述硅酸钠溶液的质量浓度为39%。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)所述浸泡时间为16-21min。
4.根据权利要求1所述的制备方法,其特征在于,所述FeCl3和AlCl3的混合溶液中,FeCl3浓度为0.05-0.06g/mL,AlCl3浓度为0.07-0.08g/mL。
5.根据权利要求1所述的制备方法,其特征在于,所述震荡反应的温度为26℃,反应时间为25-30min。
6.根据权利要求1所述的制备方法,其特征在于,步骤(3)中采用氢氧化钠调节体系pH。
7.如权利要求1-6任一项所述的制备方法制备得到的改性铜矿尾矿渣。
8.如权利要求7所述的改性铜矿尾矿渣作为水体钝磷吸附剂的应用。
CN202210006746.8A 2022-01-05 2022-01-05 一种改性铜矿尾矿渣及其制备方法和应用 Active CN114307946B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210006746.8A CN114307946B (zh) 2022-01-05 2022-01-05 一种改性铜矿尾矿渣及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210006746.8A CN114307946B (zh) 2022-01-05 2022-01-05 一种改性铜矿尾矿渣及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114307946A true CN114307946A (zh) 2022-04-12
CN114307946B CN114307946B (zh) 2023-08-15

Family

ID=81024016

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210006746.8A Active CN114307946B (zh) 2022-01-05 2022-01-05 一种改性铜矿尾矿渣及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114307946B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115090285A (zh) * 2022-07-12 2022-09-23 安徽中持环境科技有限公司 一种铜基多金冶炼矿渣的吸附颗粒及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6350383B1 (en) * 1997-03-26 2002-02-26 Commonwealth Scientific And Industrial Research Organisation Remediation material and remediation process for sediments
CN102557221A (zh) * 2012-02-15 2012-07-11 中国科学院地球化学研究所 一种富营养化水体底泥磷原位钝化剂的制备方法及应用
CN102674513A (zh) * 2012-05-07 2012-09-19 浙江省环境保护科学设计研究院 一种适用于污水厂生化出水深度处理的复合药剂及其制备
CN102824893A (zh) * 2012-09-05 2012-12-19 中国科学院地球化学研究所 一种改性粘土矿物钝化剂的制备方法、应用方法
CN107032439A (zh) * 2017-06-20 2017-08-11 安徽师范大学 一种改性铜尾矿吸附废水中磷酸盐污染物的方法
CN111484115A (zh) * 2020-06-08 2020-08-04 贵州中车绿色环保有限公司 一种新型污水除磷剂及其制备、应用方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6350383B1 (en) * 1997-03-26 2002-02-26 Commonwealth Scientific And Industrial Research Organisation Remediation material and remediation process for sediments
CN102557221A (zh) * 2012-02-15 2012-07-11 中国科学院地球化学研究所 一种富营养化水体底泥磷原位钝化剂的制备方法及应用
CN102674513A (zh) * 2012-05-07 2012-09-19 浙江省环境保护科学设计研究院 一种适用于污水厂生化出水深度处理的复合药剂及其制备
CN102824893A (zh) * 2012-09-05 2012-12-19 中国科学院地球化学研究所 一种改性粘土矿物钝化剂的制备方法、应用方法
CN107032439A (zh) * 2017-06-20 2017-08-11 安徽师范大学 一种改性铜尾矿吸附废水中磷酸盐污染物的方法
CN111484115A (zh) * 2020-06-08 2020-08-04 贵州中车绿色环保有限公司 一种新型污水除磷剂及其制备、应用方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115090285A (zh) * 2022-07-12 2022-09-23 安徽中持环境科技有限公司 一种铜基多金冶炼矿渣的吸附颗粒及其制备方法
CN115090285B (zh) * 2022-07-12 2024-02-20 安徽中持环境科技有限公司 一种铜基多金冶炼矿渣的吸附颗粒及其制备方法

Also Published As

Publication number Publication date
CN114307946B (zh) 2023-08-15

Similar Documents

Publication Publication Date Title
Lan et al. A novel method for solidification/stabilization of Cd (II), Hg (II), Cu (II), and Zn (II) by activated electrolytic manganese slag
Jing et al. Behavior of ammonium adsorption by clay mineral halloysite
Bai et al. Corrosion effect of acid/alkali on cementitious red mud-fly ash materials containing heavy metal residues
Shi et al. Using modified quartz sand for phosphate pollution control in cemented phosphogypsum (PG) backfill
CN104326634B (zh) 一种复合淤泥处理工艺
CN111097373B (zh) 多孔吸附材料和载氧+吸附复合功能材料及它们的应用
CN111570494B (zh) 一种重金属污染土壤修复方法
CN114307946A (zh) 一种改性铜矿尾矿渣及其制备方法和应用
Li et al. High-efficient phosphate removal from wastewater by weak magnetic La (OH) 3 modified platanus biochar
Li et al. Preparation of MnO 2 and calcium silicate hydrate from electrolytic manganese residue and evaluation of adsorption properties
CN107089786B (zh) 一种利用铝灰提高市政污泥脱水效果的方法
CN108975626B (zh) 一种具有氮磷回收作用的景观水处理装置
CN113426402B (zh) 一种镧铝多元复合矿物除磷材料的制备方法及应用
He et al. Preparation and performance of multi-ionic composite coagulants based on coal gasification coarse slag by one-step acid leaching
CN110314637B (zh) 一种改性针铁矿及其制备方法和应用
CN108499531B (zh) 一种煤炭地下气化污染水中重金属离子的净化方法
CN115041128B (zh) 矿物基重金属污染修复剂及其制备方法和应用
CN105712454B (zh) 一种在岸滤取水过程中原位去除氨氮的装置
CN108176350A (zh) 一种利用煤质飞灰制备低成本吸附剂的工艺
CN209829856U (zh) 有机污染地下水与土壤一体化修复装置
CN114751480A (zh) 一种高砷地下水改良材料、其制备方法及应用
Zou et al. Enhancing road performance of lead-contaminated soil through biochar-cement solidification: An experimental study
CN110255847B (zh) 一种盾构渣土无害化的处理方法
CN113480118A (zh) 疏浚底泥固化改性方法
Zhang et al. Immobilization of copper from aqueous solution and contaminated sediment using modified clinoptilolite

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant