CN114292126A - A kind of preparation method of porous ceramic local reinforcement composite material automobile brake pad - Google Patents
A kind of preparation method of porous ceramic local reinforcement composite material automobile brake pad Download PDFInfo
- Publication number
- CN114292126A CN114292126A CN202210089532.1A CN202210089532A CN114292126A CN 114292126 A CN114292126 A CN 114292126A CN 202210089532 A CN202210089532 A CN 202210089532A CN 114292126 A CN114292126 A CN 114292126A
- Authority
- CN
- China
- Prior art keywords
- porous ceramic
- automobile brake
- brake pad
- composite material
- organic foam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 115
- 238000002360 preparation method Methods 0.000 title claims abstract description 32
- 239000002131 composite material Substances 0.000 title description 41
- 230000002787 reinforcement Effects 0.000 title description 5
- 238000000034 method Methods 0.000 claims abstract description 54
- 239000006260 foam Substances 0.000 claims abstract description 50
- 238000005245 sintering Methods 0.000 claims abstract description 28
- 239000007788 liquid Substances 0.000 claims abstract description 23
- 239000011208 reinforced composite material Substances 0.000 claims abstract description 22
- 238000005242 forging Methods 0.000 claims abstract description 21
- 238000005470 impregnation Methods 0.000 claims abstract description 8
- 239000002002 slurry Substances 0.000 claims description 32
- 239000011159 matrix material Substances 0.000 claims description 26
- 239000011230 binding agent Substances 0.000 claims description 25
- 229910000838 Al alloy Inorganic materials 0.000 claims description 20
- 238000010438 heat treatment Methods 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 239000004094 surface-active agent Substances 0.000 claims description 12
- 239000000956 alloy Substances 0.000 claims description 11
- 239000003795 chemical substances by application Substances 0.000 claims description 11
- 239000002270 dispersing agent Substances 0.000 claims description 11
- 229910045601 alloy Inorganic materials 0.000 claims description 10
- 239000000243 solution Substances 0.000 claims description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 9
- KBPLFHHGFOOTCA-UHFFFAOYSA-N caprylic alcohol Natural products CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 claims description 8
- 238000003756 stirring Methods 0.000 claims description 8
- 239000000843 powder Substances 0.000 claims description 7
- 238000002791 soaking Methods 0.000 claims description 7
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 239000007864 aqueous solution Substances 0.000 claims description 6
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 6
- 239000012153 distilled water Substances 0.000 claims description 6
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 6
- 239000002518 antifoaming agent Substances 0.000 claims description 5
- 238000007581 slurry coating method Methods 0.000 claims description 5
- 229910000861 Mg alloy Inorganic materials 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 claims description 4
- 239000005995 Aluminium silicate Substances 0.000 claims description 3
- 229920005830 Polyurethane Foam Polymers 0.000 claims description 3
- 235000012211 aluminium silicate Nutrition 0.000 claims description 3
- 239000000440 bentonite Substances 0.000 claims description 3
- 229910000278 bentonite Inorganic materials 0.000 claims description 3
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical group O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 claims description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 3
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- FPAFDBFIGPHWGO-UHFFFAOYSA-N dioxosilane;oxomagnesium;hydrate Chemical compound O.[Mg]=O.[Mg]=O.[Mg]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O FPAFDBFIGPHWGO-UHFFFAOYSA-N 0.000 claims description 3
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 claims description 3
- 229920002401 polyacrylamide Polymers 0.000 claims description 3
- 239000011496 polyurethane foam Substances 0.000 claims description 3
- 229920006395 saturated elastomer Polymers 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 229910018137 Al-Zn Inorganic materials 0.000 claims description 2
- 229910018464 Al—Mg—Si Inorganic materials 0.000 claims description 2
- 229910018573 Al—Zn Inorganic materials 0.000 claims description 2
- 229910018569 Al—Zn—Mg—Cu Inorganic materials 0.000 claims description 2
- 229910018594 Si-Cu Inorganic materials 0.000 claims description 2
- 229910008465 Si—Cu Inorganic materials 0.000 claims description 2
- 229910010293 ceramic material Inorganic materials 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 229920000728 polyester Polymers 0.000 claims description 2
- 238000010521 absorption reaction Methods 0.000 claims 2
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 claims 1
- 229910033181 TiB2 Inorganic materials 0.000 claims 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims 1
- 239000003513 alkali Substances 0.000 claims 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims 1
- 229910052593 corundum Inorganic materials 0.000 claims 1
- 238000005520 cutting process Methods 0.000 claims 1
- 238000004898 kneading Methods 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 229910001845 yogo sapphire Inorganic materials 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 18
- 238000004519 manufacturing process Methods 0.000 abstract description 11
- 238000005516 engineering process Methods 0.000 abstract description 3
- 238000012545 processing Methods 0.000 abstract description 2
- 238000004904 shortening Methods 0.000 abstract description 2
- 229910052782 aluminium Inorganic materials 0.000 description 17
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 17
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 12
- 229910001018 Cast iron Inorganic materials 0.000 description 10
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000013530 defoamer Substances 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 229910001060 Gray iron Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 238000000518 rheometry Methods 0.000 description 4
- 229910001208 Crucible steel Inorganic materials 0.000 description 3
- 238000003723 Smelting Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- 238000009750 centrifugal casting Methods 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 238000004513 sizing Methods 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 238000004227 thermal cracking Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 235000006508 Nelumbo nucifera Nutrition 0.000 description 1
- 240000002853 Nelumbo nucifera Species 0.000 description 1
- 235000006510 Nelumbo pentapetala Nutrition 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000011226 reinforced ceramic Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Images
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
技术领域technical field
本发明属于材料加工工程,具体涉及一种多孔陶瓷局部增强复合材料汽车刹车片的制备方法。The invention belongs to material processing engineering, and particularly relates to a preparation method of a porous ceramic partially reinforced composite material automobile brake pad.
背景技术Background technique
刹车片是汽车制动系统中的关键零件。优质汽车刹车片需要具有较高的抗拉强度、耐磨性、耐热性和减振性。从刹车片发展历程来看,目前广泛使用的刹车片材料主要有普通铸铁、低合金铸铁、普通铸钢、特殊合金铸钢、低合金锻钢及铸铁-铸钢(锻钢)复合材料等。铸铁刹车片材料主要是灰铸铁,包括HT150、HT200、HT250和HT300等四种典型牌号。现有汽车刹车片材料多以铸铁为主,正向锻钢材质方向发展,特殊锻钢刹车片的强度比铸铁刹车片要高两倍左右。但是铸铁和锻钢两类材料均存在制造周期长、导热性差和易产生热裂纹等不足,极大地影响汽车的性能。刹车片的变形、热裂纹和异常磨损是主要的故障问题。避免或减少以上故障的出现,刹车片材料的选用非常关键。目前主要的解决办法是通过添加微量元素对材料进行优化以提高刹车片性能。Brake pads are the key parts in the automobile braking system. High-quality automotive brake pads need to have high tensile strength, wear resistance, heat resistance and vibration damping. Judging from the development history of brake pads, the currently widely used brake pad materials mainly include ordinary cast iron, low alloy cast iron, ordinary cast steel, special alloy cast steel, low alloy forged steel and cast iron-cast steel (forged steel) composite materials. The material of cast iron brake pads is mainly gray cast iron, including four typical grades such as HT150, HT200, HT250 and HT300. Most of the existing automobile brake pads are made of cast iron, and they are developing in the direction of forged steel materials. The strength of special forged steel brake pads is about twice as high as that of cast iron brake pads. However, both cast iron and forged steel have shortcomings such as long manufacturing cycle, poor thermal conductivity and easy occurrence of thermal cracks, which greatly affect the performance of automobiles. Deformation, thermal cracking and abnormal wear of the brake pads are the main failure problems. To avoid or reduce the occurrence of the above failures, the selection of brake pad materials is very critical. The main solution at present is to optimize the material by adding trace elements to improve the performance of brake pads.
随着汽车轻量化要求日趋强烈,铝基复合材料刹车片开始应用于汽车刹车片,如美国福特公司已研制出SiCp/Al铝基复合材料刹车片,替换了常规铸铁刹车片,并将其批量用于Lincoln Town Car;Lotus公司将铝基复合材料应用于运动轿车(Elise)的前后轮刹车片。齐海波等则采用液态模锻工艺制备了20%SiCp/Al复合材料,其拉伸抗拉强度达到320MPa,较铸铁HT250提高了约28%,可完全满足刹车片强度指标要求。通过反复连续制动的工况条件发现,SiCp/Al复合材料刹车片的表面温升低,摩擦系数稳定。而在制动磨损试验中,SiCp A复合材料刹车片的质量磨损量约为铸铁刹车片的1/4。邹茂华等则采用离心铸造工艺制备了内生颗粒增强Mg2Si/Al复合材料,通过添加SiC在离心铸造时可获得初晶Si和初晶Mg2Si,通过添加Cu、Ni等合金化元素可强化基体,并进行T6处理后,可得到硬度(HRB)为89.6和耐磨性较好的材料,硬度和耐磨性均可满足制作刹车片的性能要求。采用重量轻、性能优异的铝基复合材料制动盘替代铸铁制动盘将成为未来刹车片制备的发展方向。With the increasingly strong requirements for automobile lightweight, aluminum-based composite brake pads have begun to be used in automotive brake pads. For example, Ford has developed SiCp/Al aluminum-based composite brake pads, replacing conventional cast iron brake pads and mass-produced them. For Lincoln Town Car; Lotus company applies aluminum matrix composites to front and rear brake pads of sports sedan (Elise). Qi Haibo et al. used liquid die forging to prepare 20% SiC p /Al composite material, and its tensile strength reached 320 MPa, which is about 28% higher than that of cast iron HT250, which can fully meet the requirements of the strength index of brake pads. Through the working conditions of repeated continuous braking, it is found that the surface temperature rise of the SiC p /Al composite brake pad is low and the friction coefficient is stable. In the brake wear test, the mass wear of SiCp A composite brake pads is about 1/4 of that of cast iron brake pads. Zou Maohua et al. used the centrifugal casting process to prepare endogenous particle reinforced Mg 2 Si/Al composites. By adding SiC, primary Si and primary Mg 2 Si can be obtained during centrifugal casting. By adding Cu, Ni and other alloying elements, After strengthening the matrix and performing T6 treatment, a material with a hardness (HRB) of 89.6 and good wear resistance can be obtained, and both hardness and wear resistance can meet the performance requirements for making brake pads. The replacement of cast iron brake discs with aluminum-based composite brake discs with light weight and excellent performance will become the development direction of brake pad preparation in the future.
为寻求一种高耐磨铝合金及铝基复合材料制备高性能的汽车刹车片,国内外研究人员纷纷开展相关材料的研发制备和性能优化研究。目前开发的高耐磨铝合金材料主要有颗粒增强铝基复合材料、纤维增强铝基复合材料等。一般添加SiC、Al2O3、ZrO2等陶瓷颗粒及短纤维进行性能局部增强制备颗粒增强铝基复合材料的制备。但是外加的陶瓷颗粒及陶瓷纤维润湿性较差、容易发生团聚,导致造成制备难度较大,材料制件性能不易控制。如果采用特殊制备工艺,则对设备提出更高要求,大大增加生产制造的成本。为此,探索开发一种工艺操作简便、性能优异稳定的铝基复合材料制备成形工艺具有显著的现实意义和应用价值,为制备轻量化高耐磨汽车刹车片提供了新的制备思路和研发方向。In order to seek a high wear-resistant aluminum alloy and aluminum-based composite materials to prepare high-performance automobile brake pads, researchers at home and abroad have carried out research and development, preparation and performance optimization of related materials. Currently developed high wear-resistant aluminum alloy materials mainly include particle reinforced aluminum matrix composite materials, fiber reinforced aluminum matrix composite materials and so on. Generally, ceramic particles and short fibers such as SiC, Al 2 O 3 and ZrO 2 are added to locally enhance the properties to prepare particle-reinforced aluminum matrix composites. However, the added ceramic particles and ceramic fibers have poor wettability and are prone to agglomeration, which makes the preparation difficult and the performance of the material parts is difficult to control. If a special preparation process is adopted, higher requirements are placed on the equipment, which greatly increases the cost of production. Therefore, it is of significant practical significance and application value to explore and develop a preparation and forming process of aluminum matrix composites with simple process operation, excellent and stable performance, and provides a new preparation idea and research and development direction for the preparation of lightweight and high wear-resistant automobile brake pads. .
发明内容SUMMARY OF THE INVENTION
本发明旨在解决以汽车刹车片为典型制件的局部增强一体化成形技术难题,从而实现汽车刹车片的轻量化及高性能,缩短生产周期,提高材料利用率,延长刹车片使用寿命。本发明采用有机泡沫浸渍法烧结制备大尺寸连续性多孔陶瓷预制体,通过液态模锻一体化成形技术,采用定量浇注,制备获得尺寸精度高、耐磨性好的连续多孔陶瓷局部增强复合材料汽车刹车片,具体为大尺寸连续多孔陶瓷局部增强复合材料汽车刹车片的液态模锻一体化成形技术。The invention aims to solve the technical problem of local reinforcement integrated forming with automobile brake pads as typical parts, thereby realizing the lightweight and high performance of automobile brake pads, shortening the production cycle, improving the utilization rate of materials, and prolonging the service life of the brake pads. The invention adopts the organic foam impregnation method to sinter to prepare the large-size continuous porous ceramic preform, and adopts the liquid die forging integrated forming technology and quantitative pouring to prepare the continuous porous ceramic local reinforced composite material automobile with high dimensional accuracy and good wear resistance. The utility model relates to a brake pad, specifically a liquid die forging integrated forming technology of a large-size continuous porous ceramic partially reinforced composite material automobile brake pad.
为此,本发明提供一种高效、简单的大尺寸连续多孔陶瓷局部增强铝合金结构制件液态模锻一体化成形方法,制备生产轻量化、高耐磨、高强度的连续局部增强复合材料汽车刹车片的典型制件,并以此为基础,扩大其在铝合金复合材料、镁合金复合材料等局部增强复合材料结构制件的工程成形设计和制备生产应用。To this end, the present invention provides an efficient and simple liquid die forging integrated forming method for large-size continuous porous ceramic locally reinforced aluminum alloy structural parts, which is used to prepare and produce lightweight, high wear-resistant, high-strength continuous local reinforced composite materials for automobiles It is a typical part of brake pads, and based on this, it will expand its application in the engineering forming design and production of locally reinforced composite structural parts such as aluminum alloy composite materials and magnesium alloy composite materials.
本发明的一种多孔陶瓷局部增强复合材料汽车刹车片的制备方法,它包括以下步骤:A preparation method of a porous ceramic partially reinforced composite material automobile brake pad of the present invention comprises the following steps:
步骤一、多孔陶瓷预制体的制备Step 1. Preparation of Porous Ceramic Preforms
通过有机泡沫浸渍法制备得到多孔陶瓷预制体,具体过程为:The porous ceramic preform is prepared by the organic foam impregnation method. The specific process is as follows:
1)有机泡沫的预处理包括碱溶液处理、表面活性剂处理和粘结剂处理三个过程:首先将有机泡沫裁制成规定形状后,置于10wt.%~20wt.%的NaOH溶液中,在40~60℃水浴恒温条件下浸泡2h,浸泡后反复揉搓并用清水冲净,晾干待用;而后采用1wt.%~2wt.%的CMC溶液对有机泡沫浸泡处理1h;最后采用15wt.%~20wt.%的硅溶胶对有机泡沫浸泡1h,以待挂浆备用;1) The pretreatment of organic foam includes three processes: alkaline solution treatment, surfactant treatment and binder treatment: first, after the organic foam is cut into a specified shape, it is placed in a 10wt.% to 20wt.% NaOH solution, Soak for 2 hours under the constant temperature condition of 40-60 ℃ water bath, after soaking, rub repeatedly and rinse with clean water, then dry for use; then use 1wt.%~2wt.% CMC solution to soak the organic foam for 1 hour; finally, use 15wt.% ~20wt.% of silica sol was soaked in organic foam for 1h, to be used for hanging pulp;
2)按照陶瓷骨料、助烧剂、高温粘结剂、低温粘结剂、分散剂、流变剂、表面活性剂和浆料溶剂的顺序依次加料,在搅拌电机正转转速为400~600r/min的速度下搅拌20~40min后,加入消泡剂,然后在搅拌电机反转转速为400~600r/min的速度下搅拌5~15min;得到陶瓷浆料;其中,陶瓷浆料中陶瓷骨料占比为45wt.%~55wt.%,助烧剂质量占比9wt.%~12wt.%,高温粘结剂质量占比4wt.%~5wt.%,低温粘结剂质量占比15wt.%~18wt.%,分散剂质量占比0.2wt.%~0.5wt.%,流变剂和表面活性剂质量占比0.2wt.%~0.5wt.%,消泡剂质量占比为0.2wt.%~0.5wt.%,其余为蒸馏水;2) Add materials in the order of ceramic aggregate, sintering aid, high temperature binder, low temperature binder, dispersant, rheological agent, surfactant and slurry solvent, and the forward rotation speed of the stirring motor is 400~600r After stirring for 20 to 40 minutes at a speed of The proportion of material is 45wt.%~55wt.%, the mass of sintering aid is 9wt.%~12wt.%, the mass of high temperature binder is 4wt.%~5wt.%, and the mass of low temperature binder is 15wt.%. %~18wt.%, the mass proportion of dispersant is 0.2wt.%~0.5wt.%, the mass proportion of rheology agent and surfactant is 0.2wt.%~0.5wt.%, and the mass proportion of defoamer is 0.2wt% .%~0.5wt.%, the rest is distilled water;
3)将步骤1)处理后的有机泡沫挤压排出空气,放置于挂浆模具中,连带模具整体浸入步骤2)得到的陶瓷浆料中,使之饱吸,直至完全排除内部的空气为止;取出控干,并放置于工作平台,吹干;再次浸入陶瓷浆料中;反复挂浆4-6次;制备获得多孔陶瓷坯体,即完成有机泡沫挂浆;3) extruding the organic foam processed in step 1) to discharge the air, placing it in a slurry-hanging mold, and immersing the entirety of the mold in the ceramic slurry obtained in step 2), so that it is fully absorbed until the air inside is completely eliminated; Take out the controllable dry, place it on the working platform, and blow it dry; immerse it in the ceramic slurry again; repeat the slurry 4-6 times; prepare the porous ceramic green body, that is, complete the organic foam hanging slurry;
4)对步骤3)挂浆后的有机泡沫进行烧结,具体烧结工艺如下:按照6~7℃/min的升温速度由室温升至200℃;然后再按照1℃/min的升温速度由200℃升温至700℃,在700℃下保温120min后,在5℃/min的升温速度由700℃升温至1500℃;并在1500℃下保温120min后,在8~9℃/min的降温速度由1500℃降温至1000℃,最后随炉冷却,得到多孔陶瓷预制体;4) Sintering the organic foam after sizing in step 3), and the specific sintering process is as follows: the temperature rises from room temperature to 200°C at a heating rate of 6-7°C/min; and then increases from 200°C at a heating rate of 1°C/min The temperature was raised to 700°C, and after holding at 700°C for 120 minutes, the temperature was increased from 700°C to 1500°C at a heating rate of 5°C/min; The temperature is lowered from 1500°C to 1000°C, and finally cooled with the furnace to obtain a porous ceramic preform;
步骤二、多孔陶瓷局部增强汽车刹车片一体化成形
通过液态模锻成形,将合金基体与多孔陶瓷陶预制体的一体化成形,制备获得多孔陶瓷局部增强复合材料汽车刹车片。Through liquid die forging, the alloy matrix and the porous ceramic ceramic preform are integrally formed to prepare the porous ceramic partial reinforced composite material automobile brake pad.
进一步地,所述的陶瓷材料为Al2O3、ZrO2、SiC或TiB2。Further, the ceramic material is Al 2 O 3 , ZrO 2 , SiC or TiB 2 .
进一步地,所述的有机泡沫为聚氨酯泡沫或聚酯泡沫。Further, the organic foam is polyurethane foam or polyester foam.
进一步地,所述的铝合金基体为Al-Mg-Si系、Al-Mg-Si-Cu系、Al-Zn-Mg-Cu系铝合金或Mg-Al-Zn系镁合金。Further, the aluminum alloy matrix is Al-Mg-Si series, Al-Mg-Si-Cu series, Al-Zn-Mg-Cu series aluminum alloy or Mg-Al-Zn series magnesium alloy.
进一步地,所述的助烧剂为硅石粉或高岭土;所述的高温粘结剂为膨润土或滑石粉;所述的低温粘结剂为工业硅溶胶;所述的分散剂为聚丙烯酰胺水溶液;所述的流变剂和表面活性剂均为羧甲基纤维素水溶液;所述的消泡剂为正辛醇;所述的浆料溶剂为蒸馏水。Further, the sintering aid is silica powder or kaolin; the high temperature binder is bentonite or talc powder; the low temperature binder is industrial silica sol; the dispersant is polyacrylamide aqueous solution ; The rheological agent and the surfactant are both carboxymethyl cellulose aqueous solutions; the defoaming agent is n-octanol; the slurry solvent is distilled water.
进一步地,所述的陶瓷浆料的粘度为300~400mPa.S,张角为12%~15%。Further, the viscosity of the ceramic slurry is 300-400 mPa.S, and the opening angle is 12%-15%.
进一步地,步骤4)中所述的烧结是采用KJ-SJ17高温升降炉进行的。Further, the sintering described in step 4) is carried out using a KJ-SJ17 high temperature lifting furnace.
进一步地,步骤2)中陶瓷浆料中陶瓷骨料占比为45wt.%~55wt.%,助烧剂质量占比12wt.%,高温粘结剂质量占比5wt.%,低温粘结剂质量占比15wt.%,分散剂质量占比0.2wt.%,流变剂和表面活性剂质量占比0.2wt.%,消泡剂质量占比为0.5wt.%。Further, in step 2), the proportion of ceramic aggregate in the ceramic slurry is 45wt.% to 55wt.%, the mass of sintering aid is 12wt.%, the mass of high-temperature binder is 5wt.%, and the mass of low-temperature binder is 5wt.%. The mass ratio is 15wt.%, the mass ratio of dispersant is 0.2wt.%, the mass ratio of rheology agent and surfactant is 0.2wt.%, and the mass ratio of defoamer is 0.5wt.%.
进一步地,步骤3)中饱吸后有机泡沫体取出控干至没有连续流浆。Further, in step 3), the organic foam is taken out after being saturated and controlled to be dried until there is no continuous slurry flow.
进一步地,步骤3)中饱吸后有机泡沫体两面轮流吹干,保证浆料涂覆的均匀性。Further, in step 3), the two sides of the organic foam body are blown dry in turn after being saturated to ensure the uniformity of slurry coating.
本发明的原理在于:通过有机泡沫浸渍法制备具有制件局部形状的多孔陶瓷预制体,利用液态模锻一体化成形工艺,制备性能局部增强的复合材料汽车刹车片。多孔陶瓷预制体制备过程中,主要通过陶瓷颗粒的选择(Al2O3、ZrO2、SiC或TiB2等粉料)、成分比例的调控(确定最优浆料固相率为65wt.%~75wt.%)、烧结工艺方案的优化等提高预制体的强度、硬度、孔隙率、抗热震性及结构完整性,以提高其在铝基复合材料内部的局部增强效果。多孔陶瓷局部增强复合材料汽车刹车片制备成形过程中,则利用液态金属发生高温凝固、塑性变形及局部补缩,增强铝合金基体与多孔陶瓷预制体的结合强度,提高汽车刹车片整体的强度、耐磨性及使用性能。The principle of the invention lies in: preparing a porous ceramic preform with a partial shape of a workpiece by an organic foam impregnation method, and using a liquid die forging integrated forming process to prepare a composite material automobile brake pad with locally enhanced performance. In the preparation process of the porous ceramic preform, the selection of ceramic particles (Al 2 O 3 , ZrO 2 , SiC or TiB 2 and other powders) and the control of the composition ratio (the optimal solid phase ratio of the slurry is determined to be 65wt.%~ 75wt.%), optimization of the sintering process plan, etc. to improve the strength, hardness, porosity, thermal shock resistance and structural integrity of the preform, so as to improve its local reinforcement effect inside the aluminum matrix composite. In the process of preparing and forming porous ceramic partially reinforced composite automobile brake pads, high temperature solidification, plastic deformation and local feeding of liquid metal are used to enhance the bonding strength of aluminum alloy matrix and porous ceramic preform, and improve the overall strength of automobile brake pads. Wear resistance and performance.
本发明包含以下有益效果:The present invention includes the following beneficial effects:
1)本发明多孔陶瓷预制体是保证汽车刹车片高耐磨性的重要组成部分,多孔陶瓷预制体制备工艺决定着连续多孔陶瓷局部增强汽车刹车片的结构和性能表现,本发明采用有机泡沫浸渍法制备大尺寸连续多孔陶瓷预制体。有机泡沫浸渍法工艺简单、操作方便、制造成本低,是制备高气孔率多孔陶瓷的一种经济实用且具有广阔前景的多孔陶瓷制备工艺。其独特之处在于借助有机泡沫体的三维网状结构,通过将陶瓷浆料均匀涂覆在有机泡沫体干燥后高温烧结制备获得具备网状孔隙的大尺寸连续多孔陶瓷。本发明通过选用合适的有机泡沫体、陶瓷粉、溶剂及添加剂,经预处理、挂浆、烧结可制得具有一定强度、高孔隙的大尺寸连续多孔陶瓷预制体。1) The porous ceramic preform of the present invention is an important component to ensure high wear resistance of automobile brake pads. The preparation process of the porous ceramic preform determines the structure and performance of the continuous porous ceramic to locally enhance the automobile brake pad. The present invention uses organic foam impregnation. method to prepare large-scale continuous porous ceramic preforms. The organic foam impregnation method has the advantages of simple process, convenient operation and low manufacturing cost, and is an economical, practical and promising porous ceramic preparation process for preparing porous ceramics with high porosity. Its unique feature is that with the help of the three-dimensional network structure of the organic foam, a large-scale continuous porous ceramic with network pores is obtained by uniformly coating the ceramic slurry on the organic foam and then sintering at high temperature after drying. In the present invention, a large-size continuous porous ceramic preform with certain strength and high porosity can be prepared by selecting suitable organic foam, ceramic powder, solvent and additives, and through pretreatment, sizing and sintering.
2)本发明利用多孔陶瓷预制体烧结制备与液态模锻一体化成形工艺相结合,可制备获得多孔陶瓷连续局部增强的铝基复合材料典型结构制件。一方面多孔陶瓷预制体的制备保证了增强陶瓷在铝基体的连续完整,提高了铝基复合材料使用性能局部增强的效果,另一方面,液态模锻一体化实现了增强相在铝合金基体内的均匀可控的分布,提高了铝合金基体与增强相间的结合强度,优化了铝基复合材料制件的使用性能。同时,本发明中采用一体化成形工艺实现了近净绿色生产,减少制备工序,节约材料和时间成本。2) In the present invention, the sintering preparation of porous ceramic preforms is combined with the integrated forming process of liquid die forging, and the typical structural parts of aluminum matrix composite materials with continuous local reinforcement of porous ceramics can be prepared and obtained. On the one hand, the preparation of porous ceramic preforms ensures the continuous integrity of reinforced ceramics in the aluminum matrix, and improves the effect of local enhancement of the performance of aluminum matrix composites. On the other hand, the integration of liquid die forging realizes the reinforcement phase in the aluminum alloy matrix. The uniform and controllable distribution of aluminum alloy improves the bonding strength between the aluminum alloy matrix and the reinforcing phase, and optimizes the performance of aluminum matrix composite parts. At the same time, the integrated forming process in the present invention realizes near-net green production, reduces the preparation process, and saves material and time costs.
附图说明Description of drawings
图1汽车刹车片液态模锻成形模具总装示意图;图中,1-上模板,2-上模,3-上模外套,4-下模外套,5-下模,6-螺栓,7-顶杆,8-螺栓,9-刹车片制件,10-托盘,11-螺栓,12-下模外套,13-定位销,14-下模垫板;Figure 1. Schematic diagram of the assembly of liquid die forging forming die for automobile brake pads; in the figure, 1-upper die plate, 2-upper die, 3-upper die jacket, 4-lower die jacket, 5-lower die, 6-bolt, 7-top Rod, 8-bolt, 9-brake piece, 10-pallet, 11-bolt, 12-lower die jacket, 13-positioning pin, 14-lower die pad;
图2多孔陶瓷预制体制备工艺流程图;Figure 2 is a flow chart of the preparation process of the porous ceramic preform;
图3连续多孔陶瓷预制体实物图;Figure 3 is a physical diagram of a continuous porous ceramic preform;
图4多孔陶瓷局部增强复合材料汽车刹车片一体化成形工艺流程图;Figure 4. Flow chart of the integrated forming process of porous ceramic partially reinforced composite automobile brake pads;
图5连续多孔陶瓷局部增强复合材料汽车刹车片实物图。Figure 5. Physical image of continuous porous ceramic locally reinforced composite automobile brake pads.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚明白,下面将详细叙述本发明所揭示内容的精神,任何所属技术领域技术人员在了解本发明内容的实施例后,当可由本发明内容所教示的技术,加以改变及修饰,其并不脱离本发明内容的精神与范围。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention clearer, the spirit of the contents disclosed in the present invention will be described in detail below. Changes and modifications may be made to the techniques taught without departing from the spirit and scope of this disclosure.
本发明的示意性实施例及其说明用于解释本发明,但并不作为对本发明的限定。The exemplary embodiments of the present invention and their descriptions are used to explain the present invention, but are not intended to limit the present invention.
实施例Example
以Al2O3多孔陶瓷,有机泡沫为聚氨酯泡沫为例,按照图2和4的流程制备汽刹车片。Taking Al 2 O 3 porous ceramics and the organic foam as polyurethane foam as an example, the brake pads were prepared according to the process shown in Figures 2 and 4.
图2为多孔陶瓷预制体制备工艺流程图,显示了多孔陶瓷预制体制备过程中的材料选择、浆料制备、高温烧结等多孔陶瓷预制体结构和性能影响因素的控制。图4为多孔陶瓷局部增强复合材料汽车刹车片一体化成形工艺示意图,根据汽车刹车片的制件尺寸和使用需求,设计制备汽刹车片的液态模锻成形模具(图1),并按照合金熔炼、模具预热、液态模锻成形等工序,可实现多孔陶瓷局部增强复合材料汽车刹车片的成形制备和连续生产。Figure 2 is a flow chart of the preparation process of the porous ceramic preform, which shows the control of the porous ceramic preform structure and performance factors such as material selection, slurry preparation, and high temperature sintering during the preparation of the porous ceramic preform. Figure 4 is a schematic diagram of the integrated forming process of porous ceramic partially reinforced composite automobile brake pads. According to the size and use requirements of the automobile brake pads, a liquid die forging forming die (Figure 1) for preparing the automobile brake pads is designed and smelted according to the alloy. , mold preheating, liquid die forging and other processes can realize the forming and continuous production of porous ceramic partially reinforced composite automobile brake pads.
本实施例的一种多孔陶瓷局部增强复合材料汽车刹车片的制备方法,它包括以下步骤:The preparation method of a porous ceramic partially reinforced composite material automobile brake pad of the present embodiment comprises the following steps:
步骤一、多孔陶瓷预制体的制备Step 1. Preparation of Porous Ceramic Preforms
通过有机泡沫浸渍法制备得到多孔陶瓷预制体,具体过程为:The porous ceramic preform is prepared by the organic foam impregnation method. The specific process is as follows:
1)在保证有机泡沫硬度的同时对有机泡沫进行表面改性,改善有机泡沫与浆料之间的润湿性和粘附性,提高有机泡沫表面浆料的涂覆厚度。有机泡沫的预处理包括碱溶液处理、表面活性剂处理和粘结剂处理三个过程:首先将有机泡沫裁制成规定形状后,置于10wt.%的NaOH溶液中,在60℃水浴恒温条件下浸泡2h,浸泡后反复揉搓并用清水冲净,干燥后测量其失重情况,晾干待用;而后采用1wt.%的CMC溶液对有机泡沫浸泡处理1h;最后采用20wt.%的工业硅溶胶对有机泡沫浸泡1h,以待挂浆备用;1) Surface modification of the organic foam while ensuring the hardness of the organic foam, improving the wettability and adhesion between the organic foam and the slurry, and increasing the coating thickness of the organic foam surface slurry. The pretreatment of organic foam includes three processes: alkaline solution treatment, surfactant treatment and binder treatment: First, the organic foam is cut into a specified shape, placed in a 10wt.% NaOH solution, and heated in a water bath at 60°C Soak for 2 hours, rub repeatedly and rinse with water after soaking, measure its weight loss after drying, and dry it for use; then use 1 wt.% CMC solution to soak the organic foam for 1 hour; finally use 20 wt.% industrial silica sol to Soak in organic foam for 1 hour, ready to hang pulp for use;
2)选用Al2O3粉料作为陶瓷骨料,硅石粉与高岭土作为助烧剂,膨润土与滑石粉为高温粘结剂,工业硅溶胶作为低温粘结剂,聚丙烯酰胺水溶液为分散剂,羧甲基纤维素水溶液为流变剂和表面活性剂,正辛醇为消泡剂,蒸馏水为浆料溶剂。按照固相率(陶瓷骨料质量占比45wt.%)配制陶瓷浆料,其中助烧剂质量占比12wt.%,高温粘结剂质量占比5wt.%,低温粘结剂质量占比15wt.%,分散剂质量占比0.2wt.%,流变剂和表面活性剂质量占比0.2wt.%,消泡剂质量占比为0.5wt.%,其余为蒸馏水。按助烧剂、高温粘结剂、少量水、分散剂、流变剂、低温粘结剂、陶瓷粉顺序依次加入陶瓷浆料配料,补水至预设重量后借助搅拌电机进行搅拌(转速500r/min),正转30min后加入消泡剂正辛醇,反转10min后获得具有一定粘度和流动性(粘度300~400mPa.S,张角12%~15%)的陶瓷浆料; 2 ) select Al 2 O powder as ceramic aggregate, silica powder and kaolin as sintering aid, bentonite and talcum powder as high temperature binder, industrial silica sol as low temperature binder, polyacrylamide aqueous solution as dispersant, Carboxymethyl cellulose aqueous solution is rheology agent and surfactant, n-octanol is defoamer, and distilled water is slurry solvent. The ceramic slurry is prepared according to the solid phase ratio (the mass of ceramic aggregate is 45wt.%), in which the mass of sintering aid is 12wt.%, the mass of high-temperature binder is 5wt.%, and the mass of low-temperature binder is 15wt.% %, the mass of dispersant is 0.2wt.%, the mass of rheology agent and surfactant is 0.2wt.%, the mass of defoamer is 0.5wt.%, and the rest is distilled water. Add the ceramic slurry ingredients in the order of sintering aid, high temperature binder, a small amount of water, dispersant, rheological agent, low temperature binder and ceramic powder. After replenishing the water to the preset weight, stir with a stirring motor (speed 500r/ min), add the defoamer n-octanol after forward rotation for 30 minutes, and obtain ceramic slurry with certain viscosity and fluidity (viscosity 300~400mPa.S, opening
3)将处理后的有机泡沫挤压排出空气,放置于挂浆模具中,连带模具整体浸入配置好的陶瓷浆料中,使之饱吸,直至完全排除内部的空气为止;取出控干至没有连续流浆,并放置于工作平台,采用风动设备均匀吹干,翻面后再次吹干,保证浆料的均匀性;再次浸入陶瓷浆料中,反复挂浆4-6次,保证浆料均匀地涂覆在有机泡沫的网状结构上,并形成一定厚度(以完全包覆泡沫为准)的陶瓷毛坯层;制备获得多孔陶瓷坯体,完成有机泡沫挂浆。3) Squeeze the treated organic foam to expel the air, place it in the slurry-hanging mold, and immerse the mold as a whole in the prepared ceramic slurry, so that it is fully absorbed until the air inside is completely eliminated; take it out and control it to dry until no more Continuously flow the slurry and place it on the working platform. It is evenly blown dry by pneumatic equipment. After turning it over, it is blown dry again to ensure the uniformity of the slurry; it is immersed in the ceramic slurry again, and the slurry is repeatedly hung for 4-6 times to ensure the slurry. It is uniformly coated on the network structure of the organic foam, and a ceramic blank layer with a certain thickness (subject to complete covering of the foam) is formed; the porous ceramic blank is prepared to complete the organic foam hanging.
4)采用KJ-SJ17高温升降炉按制定的烧结工艺方案烧结制备获得多孔陶瓷预制体,具体烧结工艺如下:按照6.6℃/min的升温速度由室温升至200℃;然后再按照1℃/min的升温速度由200℃升温至700℃,在700℃下保温120min后,在5℃/min的升温速度由700℃升温至1500℃;并在1500℃下保温120min后,在8.3℃/min的降温速度由1500℃降温至1000℃,最后随炉冷却,得到多孔陶瓷预制体;4) The porous ceramic preform was prepared by sintering the KJ-SJ17 high temperature lifting furnace according to the formulated sintering process plan. The specific sintering process is as follows: according to the heating rate of 6.6 ℃/min from room temperature to 200 ℃; then according to 1 ℃/min The heating rate of min was increased from 200 °C to 700 °C, and after holding at 700 °C for 120 minutes, the temperature was increased from 700 °C to 1500 °C at a heating rate of 5 °C/min; The cooling rate is lowered from 1500 °C to 1000 °C, and finally cooled with the furnace to obtain a porous ceramic preform;
步骤二、多孔陶瓷局部增强汽车刹车片一体化成形
通过液态模锻成形,将合金基体与多孔陶瓷陶预制体的一体化成形,制备获得多孔陶瓷局部增强复合材料汽车刹车片。Through liquid die forging, the alloy matrix and the porous ceramic ceramic preform are integrally formed to prepare the porous ceramic partial reinforced composite material automobile brake pad.
根据汽车刹车片的使用需求,设计制备汽车刹车片毛坯件的成形模具,并按照熔炼、预热、成形等工序,完成多孔陶瓷局部增强复合材料汽车刹车片的一体化成形制备,其中试验设备主要包括压力机、合金熔炼设备、模具加热装置以及相应控制装置,压力装置为X323-500B型5000KN四柱油压机,熔炼设备为SDL-FZ-500型有色金属熔化保温炉。According to the use requirements of automobile brake pads, a forming mold for preparing automobile brake pad blanks is designed, and the integrated forming and preparation of porous ceramic partially reinforced composite automobile brake pads is completed according to the processes of melting, preheating, and forming. The test equipment is mainly Including press, alloy smelting equipment, mold heating device and corresponding control device, the pressure device is X323-500B 5000KN four-column hydraulic press, and the smelting equipment is SDL-FZ-500 non-ferrous metal melting and holding furnace.
按照图2所示多孔陶瓷预制体制备工艺流程图制备烧结大尺寸连续多孔陶瓷预制体,所得到的多孔陶瓷预制体如图3所示。本实施以例Al2O3多孔陶瓷的高温烧结制备具有高孔隙率、高抗压强度、结构完整的Al2O3多孔陶瓷预制体(孔隙率达55%,抗压强度达180.94MPa,无宏观裂纹)。The sintered large-size continuous porous ceramic preform is prepared according to the flow chart of the preparation process of the porous ceramic preform shown in FIG. 2 , and the obtained porous ceramic preform is shown in FIG. 3 . In this example, high-temperature sintering of Al 2 O 3 porous ceramics is used to prepare Al 2 O 3 porous ceramic preforms with high porosity, high compressive strength and complete structure (porosity reaches 55%, compressive strength reaches 180.94 MPa, no macro cracks).
按图4所示多孔陶瓷局部增强复合材料汽车刹车片一体化成形方案制备连续Al2O3多孔陶瓷局部铝基复合材料汽车刹车片(汽车刹车片如图5所示),具体工序如下:将图1所示汽车刹车片液态模锻成形模具安装于液压机上;启动熔炼炉,待熔炼炉预热后将清洁干燥的铝合金坯料置于炉中,待其升温熔化;将成形模具电阻丝电源接通,设定模具温度后加热,待模具温度达100℃-200℃时模具表面喷涂石墨后合模继续加热;将Al2O3多孔陶瓷预制体放入加热炉中200℃-300℃预热保温;待铝合金完全熔化后精炼;待铝合金熔体温度(730℃)、模具温度(300℃)达到预定值时启动液压机;开模后先将Al2O3多孔陶瓷预制体放入模具中,将定量液态铝合金倒入模具中,合模加压,保压40s开模,从而成形制备获得连续Al2O3陶瓷局部增强铝合金复合材料汽车刹车片;待制件冷却5min后顶出,取件后可进行下一个汽车刹车片的成形制备,以实现制件的连续化生产。The continuous Al 2 O 3 porous ceramic partial aluminum matrix composite automobile brake pads (as shown in Figure 5 ) were prepared according to the integrated forming scheme of the porous ceramic partial reinforced composite automobile brake pads shown in Figure 4. The specific procedures are as follows: As shown in Figure 1, the liquid die forging forming die of the automobile brake pad is installed on the hydraulic press; the melting furnace is started, and after the melting furnace is preheated, the clean and dry aluminum alloy billet is placed in the furnace, and the temperature is heated and melted; the forming die resistance wire power supply Turn on , set the mold temperature and heat it up. When the mold temperature reaches 100℃-200℃, the mold surface is sprayed with graphite, and then the mold is closed and heated ; Heat preservation; refining after the aluminum alloy is completely melted; start the hydraulic press when the aluminum alloy melt temperature (730°C) and the mold temperature (300°C) reach predetermined values; after the mold is opened, the Al 2 O 3 porous ceramic preform is put into the In the mold, the quantitative liquid aluminum alloy is poured into the mold, the mold is closed and pressurized, and the mold is opened for 40s to form a continuous Al 2 O 3 ceramic partially reinforced aluminum alloy composite material for automobile brake pads; after the workpiece is cooled for 5 minutes After ejection and removal, the next automobile brake pad can be formed and prepared, so as to realize the continuous production of parts.
图1为汽车刹车片液态模锻成形模具总装示意图,展示了汽车刹车片液态模锻成形过程中的液态浸渗、高温成形及局部补缩等的工艺原理;Figure 1 is a schematic diagram of the assembly of the liquid forging forming die for automobile brake pads, showing the process principles of liquid infiltration, high temperature forming and local feeding in the liquid forging forming process of automobile brake pads;
如图1所示,模具通过上模板1、下模板14装配在压机横梁与工作台上,上模2、上模外套3通过螺栓联接构成了成形模具凸模,而下模外套4、下模5、托盘10、下模外套12则构成模具凹模,在液态模锻成形时凹模与凸模构成的型腔用来实现金属液在模具的压力下的成形。模具设计局部加载补缩装置,可在成形过程中对刹车片制件9加压补缩,提高制件的组织性能及多孔陶瓷与基体的结合强度。成形模具组装后,按照合金基体熔炼、模具及预制体预热、液态模锻成形等工序,完成多孔陶瓷局部增强汽车刹车片成形制备,其中试验设备主要包括压力机、合金熔炼设备、模具加热装置以及相应控制装置。As shown in Figure 1, the mold is assembled on the press beam and the worktable through the upper die plate 1 and the
与现有技术相比,改进的多孔陶瓷局部增强复合材料汽车刹车片制备成形方法有效解决了目前常用灰铸铁刹车片易变形、热裂纹及异常磨损的问题,改善了现有颗粒增强铝基复合材料的增强相团聚、润湿性较差等问题,通过多孔陶瓷预制体的烧结制备与液态模锻一体化成形工艺结合,制备获得了质量轻、结合强度好、耐磨性优异的局部增强铝基复合材料汽车刹车片。Compared with the prior art, the improved method for preparing and forming porous ceramic partially reinforced composite material automobile brake pads effectively solves the problems of easy deformation, thermal cracking and abnormal wear of the currently commonly used gray cast iron brake pads, and improves the existing particle-reinforced aluminum matrix composite materials. Due to the agglomeration of the reinforcing phase and poor wettability of the material, by combining the sintering preparation of porous ceramic preforms with the integrated forming process of liquid die forging, a locally reinforced aluminum alloy with light weight, good bonding strength and excellent wear resistance was prepared. Matrix composite automotive brake pads.
按本实施例方法制备的Al2O3-2A50复合材料汽车刹车片的摩擦系数为0.45,磨损率为7.427mg/(km·N),而常用的灰铸铁摩擦系数为0.56,磨损率为21.827mg/(km·N),故本实施例制备的复合材料汽车刹车片具有优异的耐磨性。同时Al2O3-2A50复合材料汽车刹车片的抗剪强度达119.63MPa,制件的一体化结合强度较高,同时与灰铸铁汽车刹车片相比,实现汽车刹车片减重64.71%(本实施例制备的Al2O3-2A50复合材料汽车刹车片重量为3.8-4.3Kg,灰铸铁汽车刹车片重量是11~12Kg)。The friction coefficient of the Al 2 O 3 -2A50 composite automobile brake pads prepared by the method of this example is 0.45 and the wear rate is 7.427mg/(km·N), while the friction coefficient of the commonly used gray cast iron is 0.56 and the wear rate is 21.827 mg/(km·N), so the composite automobile brake pads prepared in this example have excellent wear resistance. At the same time, the shear strength of the Al 2 O 3 -2A50 composite automobile brake pads reaches 119.63MPa, and the integrated bonding strength of the parts is relatively high. The weight of the Al 2 O 3 -2A50 composite automobile brake pads prepared in the examples is 3.8-4.3Kg, and the weight of the gray cast iron automobile brake pads is 11-12Kg).
本实施例方法实现了陶瓷增强相在铝合金基体内连续稳定可控的分布,改善了多孔陶瓷与铝合金基体的结合性能,提高了汽车刹车片的性能和寿命。通过液态模锻一体化成形,提高材料利用率,减少工序,缩短制备生产实践,提高生产效率。除了铝基复合材料制件以外,该方法也适用于镁合金复合材料、镍基高温复合材料等局部增强典型结构制件的制备生产,对于典型结构制件的性能优化、轻量化生产等具有重要的工程意义和应用价值。The method of this embodiment realizes the continuous, stable and controllable distribution of the ceramic reinforcing phase in the aluminum alloy matrix, improves the bonding performance of the porous ceramic and the aluminum alloy matrix, and improves the performance and life of the automobile brake pad. Through the integrated forming of liquid die forging, the utilization rate of materials is improved, the process is reduced, the preparation and production practice is shortened, and the production efficiency is improved. In addition to aluminum-based composite parts, this method is also suitable for the preparation and production of locally reinforced typical structural parts such as magnesium alloy composite materials and nickel-based high-temperature composite materials. It is important for the performance optimization and lightweight production of typical structural parts. engineering significance and application value.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210089532.1A CN114292126A (en) | 2022-01-25 | 2022-01-25 | A kind of preparation method of porous ceramic local reinforcement composite material automobile brake pad |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210089532.1A CN114292126A (en) | 2022-01-25 | 2022-01-25 | A kind of preparation method of porous ceramic local reinforcement composite material automobile brake pad |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114292126A true CN114292126A (en) | 2022-04-08 |
Family
ID=80976679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210089532.1A Pending CN114292126A (en) | 2022-01-25 | 2022-01-25 | A kind of preparation method of porous ceramic local reinforcement composite material automobile brake pad |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114292126A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114804828A (en) * | 2022-04-26 | 2022-07-29 | 鞍钢集团矿业有限公司 | Porous ceramic prepared from mine solid waste and preparation method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103952582A (en) * | 2014-04-28 | 2014-07-30 | 上海大学 | Preparation method of aluminum-based composite material applied to light brake disc |
CN105016758A (en) * | 2015-07-09 | 2015-11-04 | 余姚市海博机械有限公司 | Abrasion-resistance ceramic material, and ceramic-partially-reinforced aluminum-based composite material and preparation method thereof |
US20190016639A1 (en) * | 2016-01-11 | 2019-01-17 | Zhangjiagang Institute Of Industrial Technologies Soochow University | Barium titanate foam ceramic/thermosetting resin composites and preparation method thereof |
CN109261941A (en) * | 2018-10-17 | 2019-01-25 | 西安交通大学 | A kind of preparation method of the holey ceramics enhancing compound brake shoes of steel-based |
CN111992694A (en) * | 2020-08-24 | 2020-11-27 | 西安工业大学 | Configurable SiCp/Al-based composite material and preparation method thereof |
US20210171403A1 (en) * | 2017-11-13 | 2021-06-10 | Ningbo Highrise New Material Co.,Ltd. | Wear-resistant material, locally-reinforced light metal matrix composites and manufacturing method |
-
2022
- 2022-01-25 CN CN202210089532.1A patent/CN114292126A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103952582A (en) * | 2014-04-28 | 2014-07-30 | 上海大学 | Preparation method of aluminum-based composite material applied to light brake disc |
CN105016758A (en) * | 2015-07-09 | 2015-11-04 | 余姚市海博机械有限公司 | Abrasion-resistance ceramic material, and ceramic-partially-reinforced aluminum-based composite material and preparation method thereof |
US20190016639A1 (en) * | 2016-01-11 | 2019-01-17 | Zhangjiagang Institute Of Industrial Technologies Soochow University | Barium titanate foam ceramic/thermosetting resin composites and preparation method thereof |
US20210171403A1 (en) * | 2017-11-13 | 2021-06-10 | Ningbo Highrise New Material Co.,Ltd. | Wear-resistant material, locally-reinforced light metal matrix composites and manufacturing method |
CN109261941A (en) * | 2018-10-17 | 2019-01-25 | 西安交通大学 | A kind of preparation method of the holey ceramics enhancing compound brake shoes of steel-based |
CN111992694A (en) * | 2020-08-24 | 2020-11-27 | 西安工业大学 | Configurable SiCp/Al-based composite material and preparation method thereof |
Non-Patent Citations (3)
Title |
---|
刘静安等 编著: "《铝合金锻造技术》", 30 June 2012, 冶金工业出版社 * |
王晓敏 主编: "《工程材料学(第4版)》", 31 July 2017, 哈尔滨工业大学出版社 * |
程远胜等: "局部增强铝基复合材料挤压铸造一体化成形技术", 《特种铸造及有色合金》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114804828A (en) * | 2022-04-26 | 2022-07-29 | 鞍钢集团矿业有限公司 | Porous ceramic prepared from mine solid waste and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104235237B (en) | Brake disc made of carborundum foamed ceramics/aluminum alloy composite materials and production method of road vehicle brake disc | |
CN100453206C (en) | Process of making oil cylinder body and cover with aluminium alloy | |
CN103042195B (en) | Extrusion casting manufacture method of piston with reinforced pseudo-alloy circular groove | |
CN1107795C (en) | Air cylinder body and its metal base composite prefabricate element | |
CN109112444B (en) | A kind of silicon carbide whisker reinforced aluminum matrix composites isothermal multiway forging method | |
CN101444839A (en) | Lost foam casting-penetrating method for improving heat resistance of gray cast-iron based casting surface | |
CN104525829B (en) | Radially the Semi-solid Process of compressor of air conditioner aluminium alloy bent axle is prepared in forging strain induction | |
CN109627028A (en) | A kind of 3D printing carbon fiber toughened silicon carbide pottery aluminium composite material and preparation method thereof | |
CN103194630A (en) | Preparation method of SiCp/Al composite material with high volume fraction | |
CN107760894B (en) | A kind of preparation method of aluminum matrix composite automobile brake disc | |
CN107043882B (en) | A kind of preparation method of diamond composite | |
CN103846409A (en) | Preparation method of marine fiber reinforced composite material piston provided with cooling oil chamber | |
CN102689161A (en) | Liquid die-forging and rolling combined forming method for 7075 aluminum alloy irregular-section large-size annular piece | |
CN114292126A (en) | A kind of preparation method of porous ceramic local reinforcement composite material automobile brake pad | |
CN105200276A (en) | Method for manufacturing pseudo-alloy reinforced composite material piston with internal cooling oil cavity | |
CN109317644A (en) | A kind of preparation method of porous mesh ceramic reinforced steel matrix composite liner | |
CN107138708A (en) | Integrated die forging process | |
CN108677051A (en) | The method for preparing cluster type aluminum matrix composite using the SiCp/Al composite materials of recycling | |
CN102416462B (en) | A kind of preparation method of metal-base composites of local enhancement | |
CN100431777C (en) | Method for producing rocking-turn disk of motorcar air conditioner through technique of liquid forging | |
CN111390149B (en) | Casting ladle for casting aluminum alloy | |
CN1562522A (en) | Manufacturing technique for precision investment casting die body made from magnesium alloy | |
CN104087878B (en) | A kind of preparation method of composite material for engine cylinder piston | |
CN104475697B (en) | Semi-solid preparation process of short fiber/SiCp reinforced foamed aluminum-based bearing | |
CN102689155B (en) | Liquid die forging and rolling compound formation method for aluminum alloy irregular-section large ring piece |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |