CN114270545A - 具有降低的光降解的led dbr结构 - Google Patents

具有降低的光降解的led dbr结构 Download PDF

Info

Publication number
CN114270545A
CN114270545A CN202080060446.7A CN202080060446A CN114270545A CN 114270545 A CN114270545 A CN 114270545A CN 202080060446 A CN202080060446 A CN 202080060446A CN 114270545 A CN114270545 A CN 114270545A
Authority
CN
China
Prior art keywords
refractive index
index layer
low
carbon region
low refractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080060446.7A
Other languages
English (en)
Inventor
清水健太郎
久志增井
T·万跟斯蒂恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lumileds LLC
Original Assignee
Lumileds LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lumileds LLC filed Critical Lumileds LLC
Publication of CN114270545A publication Critical patent/CN114270545A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2218Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special optical properties
    • H01S5/222Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special optical properties having a refractive index lower than that of the cladding layers or outer guiding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45529Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making a layer stack of alternating different compositions or gradient compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18341Intra-cavity contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/34Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 reflector
    • G02F2201/346Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 reflector distributed (Bragg) reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0083Periodic patterns for optical field-shaping in or on the semiconductor body or semiconductor body package, e.g. photonic bandgap structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geometry (AREA)
  • Ceramic Engineering (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

一种衬底上的分布式布拉格反射器(DBR)结构,包括高折射率层(612)和低折射率层,该高折射率层(612)包括氧化钛,该低折射率层具有高碳区和与高折射率层(612)接触的至少一个低碳区。高折射率层(612)和低折射率层的多个层被堆叠。典型地,高折射率层(612)和低折射率层的多个层被堆叠至小于10微米的厚度,高折射率层(612)和低折射率层的相应层中的每一个具有小于0.2微米的厚度。

Description

具有降低的光降解的LED DBR结构
相关申请的交叉引用
本申请要求于2019年6月27日提交的美国专利申请第16/455051号的优先权权益,它以其全部内容通过引用并入本文。
技术领域
本公开一般涉及分布式布拉格反射器(DBR)的结构和制造,尤其涉及LED封装中的DBR。一组特定的低碳前驱体被用于提高反射器质量。
背景技术
半导体发光二极管和激光二极管(在本文中统称为“LED”)属于当前可用的最有效的光源。LED的发射光谱通常在由该器件的结构和由其构成的半导体材料的组分所确定的波长处显出单一的窄峰。通过合适地选择器件结构和材料体系,LED可以被设计为在紫外、可见、或红外波长处来操作。LED可以与吸收由LED发射的光并作为响应发射更长波长的光的一种或多种波长转换材料(在本文中一般称为“磷光体”)组合。这样的器件可以被称为磷光体转换LED(“pcLED”)。
制造具有能够重定向光以改进有用的光提取效率的光反射侧壁的发光二极管是常见的。例如,侧壁可以涂覆有粘合剂和反射颗粒的各种组合。一种常用的反射器是基于负载TiO2纳米颗粒的硅粘合剂。不幸地,由于颗粒尺寸和光的相互作用,这种反射涂层仍然会导致多余的杂散光,这些杂散光在涂层内被吸收或者被重定向到导致吸收的方向。
侧壁和基底也可以涂覆有反射金属。虽然与TiO2纳米颗粒相比,反射率可以改进,但是制造难度增加,并且由于将相对大量的金属引入LED封装中而导致的潜在损坏限制了金属反射器的广泛使用。
非金属分布式布拉格反射器(DBR)提供了更好的反射器。原子层沉积可以用于产生具有精确厚度的多个层、以及具有交替的低和高折射率材料的多个层。一种常见的多层堆叠基于低折射率氧化铝(Al2O3)和高折射率氧化钛(TiO2)。这些层与常规的LED加工温度和180℃的典型ALD加工温度两者都兼容。作为另外的优点,各种有机金属或卤化物前驱体是可使用的,包括用于形成Al2O3层的三甲基铝和用于形成TiO2层的TiCl4/H2O。
不幸地,由这种ALD工艺产生的TiO2无定形层是光催化的。在由LED生成的蓝光、和热量的存在下,TiO2层可以与来自有机金属前驱体的碳污染物反应,以产生石墨。随着时间的推移,这导致了LED器件中的显著吸收损失。为了减少这种损害,需要非碳前驱体和低碳膜制造技术来降低碳含量。
发明内容
根据本发明的实施例,衬底上的DBR结构包括高折射率层和低折射率层,该高折射率层包括氧化钛(TiO2),该低折射率层具有高碳区和与高折射率层接触的至少一个低碳区。高折射率层和低折射率层的多个层被堆叠。典型地,高折射率层和低折射率层的多个层被堆叠至小于10微米的厚度。例如,LED阵列中的两个像素可以由具有厚度小于10微米的DBR结构的侧壁分隔,该侧壁包括高折射率层和低折射率层的多个层。高折射率层和低折射率层的相应层中的每一个可以具有小于0.2微米的厚度。
在一个实施例中,低折射率层包括Al2O3,其可以由有机金属前驱体(诸如三甲基铝)形成。碳是导致低折射率层的高碳区的前驱体。
低折射率层的接触低碳区可以包括由卤化物前驱体(诸如AlCl3)形成的Al2O3。使用不包含碳的前驱体导致低折射率层的低碳区。
在一些实施例中,衬底是蓝宝石,但是它替代地可以是半导体材料,诸如GaN、玻璃或电介质结构、或者碳化硅。
在一个实施例中,用于在衬底上形成DBR结构的ALD工艺包括以下步骤:沉积具有高碳区的第一低折射率层;沉积具有低碳区的第一低折射率层,该低碳区接触高碳区;沉积包括氧化钛(TiO2)的高折射率层,该高折射率层接触第一低折射率层的低碳区;沉积具有低碳区的第二低折射率层,该低碳区接触高折射率层;以及沉积具有高碳区的第二低折射率层。
附图说明
参考以下各图描述了本公开的非限制性和非穷尽性实施例,其中除非另有说明,否则遍及各个图类似的附图标记指代类似的部件。
图1示出了示例pcLED的示意性截面视图。
图2A和图2B分别示出了pcLED阵列的示意性的截面视图和俯视图。图2C示出了pcLED单片阵列的透视图。
图3A示出了其上可以安装pcLED阵列的电子板的示意性俯视图,并且图3B类似地示出了安装在图3A的电子板上的pcLED阵列。
图4A示出了相对于波导和投影透镜布置的pcLED阵列的示意性截面视图。图4B示出了在没有波导的情况下与图4A的布置类似的布置。
图5示出了示例pcLED阵列的示意性截面视图。
图6图示了具有附接的高可靠性分布式布拉格反射器的LED衬底侧壁的一个实施例;以及
图7图示了高温工作寿命(HTOL)测试期间的改进的性能。
具体实施方式
应该参照附图来阅读以下具体实施方式,其中遍及不同的图相同的附图标记指代类似的元件。不一定成比例的附图描绘了选择性实施例并且不旨在限制本发明的范围。具体实施方式通过示例的方式、不通过限制的方式说明了本发明的原理。
图1示出了单独的pcLED 100的示例,其包括设置在衬底104上的半导体二极管结构102(LED),和设置在LED上的磷光体层或磷光体结构106。半导体二极管结构102通常包括设置在n型层和p型层之间的有源区。跨半导体结构的合适的正向偏压的施加导致来自有源区的光发射。发射的光的波长由有源区的成分和结构确定。
例如,LED可以是III族氮化物LED,其发射蓝色、紫色或紫外光。也可以使用由任何其他合适的材料体系形成并且发射任何其他合适波长的光的LED。其他合适的材料体系可以包括例如III族磷化物材料、III族砷化物材料、和II-IV族材料。
取决于来自pcLED的期望的光学输出,可以使用任何合适的磷光体材料。
图2A-图2B分别示出了设置在衬底202上的pcLED 100的阵列200的截面视图和俯视图。这种阵列可以包括以任何合适方式布置的任何合适数量的pcLED。在所说明的示例中,阵列被描绘为单片地形成在共享衬底上,但是替代地,可以由分离的各个pcLED形成pcLED阵列。衬底202可以可选地包括用于驱动LED的CMOS电路,并且可以由任何合适的材料形成。
如图3A-图3B中所示,pcLED阵列200可以安装在电子板300上,该电子板300包括电源和控制模块302、传感器模块304、和LED附接区306。电源和控制模块302可以接收来自外部源的电源和控制信号以及来自传感器模块304的信号,电源和控制模块302基于这些信号来控制LED的操作。传感器模块304可以从任何合适的传感器、例如从温度或光传感器接收信号。替代地,pcLED阵列200可以安装在与电源和控制模块以及传感器模块分离的板(未示出)上。
可选地,各个pcLED可以包含透镜或其他光学元件,或者布置成与透镜或其他光学元件组合,所述透镜或其他光学元件位于磷光体层附近或者设置在磷光体层上。这种光学元件(图中未示出)可以称为“初级光学元件”。另外,如图4A-图4B中所示,pcLED阵列200(例如,安装在电子板300上)可以布置成与次级光学元件(诸如波导、透镜、或二者)组合,以在预期应用中使用。在图4A中,由pcLED 100发射的光被波导402收集并被导向投影透镜404。例如,投影透镜404可以是菲涅尔透镜。例如,此布置可以适用于汽车头灯。在图4B中,由pcLED 100发射的光直接被投影透镜404收集而没有使用中间的波导。当pcLED可以间隔成足够靠近彼此时,此布置可以是特别合适的,并且也可以用于汽车头灯以及相机闪光应用。例如,microLED显示应用可以使用与图4A-图4B中描绘的光学布置相似的光学布置。一般地,取决于期望的应用,可以将光学元件的任何合适的布置与本文描述的pcLED组合使用。
再次参照图2A-图2B,虽然这些图示出了九个pcLED的三乘三的阵列,但是这种阵列可以包括例如数十个、数百个、或数千个LED。各个LED(像素)在阵列的平面中可以具有例如小于或等于1毫米(mm)、小于或等于500微米、小于或等于100微米、或者小于或等于50微米的宽度(例如,边长)。可以通过隔道(street)或巷道(lane)将这种阵列中的LED彼此间隔开,该隔道或巷道在阵列的平面中具有例如数百微米、小于或等于100微米、小于或等于50微米、小于或等于10微米、或者小于或等于5微米的宽度。虽然所图示的示例示出了以对称矩阵布置的矩形像素,但是这些像素和阵列可以具有任何合适的形状。
在阵列的平面中具有小于或等于约50微米的尺寸(例如,边长)的LED通常被称为microLED,并且这种microLED的阵列可以被称为microLED阵列。
LED阵列、或者这种阵列的部分,可以形成为分段的单片结构,其中各个LED像素通过沟槽和/或绝缘材料彼此电气隔离。图2C示出了这种分段的单片阵列1100的示例的透视图。此阵列中的像素被沟槽1130分离,该沟槽1130被填充以形成n型接触1140。单片结构生长或设置在衬底1114上。每个像素包括p型接触1113、p-GaN半导体层1112、有源区1111、和n-GaN半导体层1110。波长转换器材料1117可以沉积在半导体层1110(或其他适用的层)上。钝化层1115可以形成在沟槽1130内,以将n型接触1140的至少一部分与半导体的一个或多个层分离。n型接触1140(或沟槽内的其他材料)可以延伸到转换器材料1117中,使得n型接触1140或其他材料在像素之间提供完全的或部分的光学隔离1120。
LED阵列中的各个LED(像素)可以是单独可寻址的,可以作为阵列中像素的组或子集的一部分而可寻址,或者可以是不可寻址的。因此,对于要求或受益于光分布的精细的强度、空间和时间控制的任何应用,发光像素阵列都是有用的。这些应用可以包括但不限于来自像素块或各个像素的所发射光的精确的特殊图案化。取决于应用,发射的光可以是光谱上截然不同的、随时间自适应的、和/或环境响应的。发光像素阵列可以以各种强度、空间、或时间图案提供预编程的光分布。发射的光可以至少部分地基于接收的传感器数据并且可以用于光学无线通信。相关联的电子器件和光学器件可以在像素、像素块、或器件级别上截然不同。
图5示出了具有设置在衬底530上的半导体二极管结构500(LED)和设置在LED上的磷光体层或结构510的LED阵列的示例。每个半导体二极管结构500是单独的LED或像素,通过反射器或侧壁520与其他像素分离。侧壁520可以将来自半导体二极管结构500的光向上反射到磷光体层510中,并且可以将由磷光体层510转换的光向上反射,使得其可以被发射出去以被观察者看到。侧壁520可以是DBR侧壁。反射器也可以设置在半导体二极管结构下方,以便防止反向散射的光通过吸收或错误定向的发射而在器件中损失。例如,衬底530可以是反射器或涂覆有反射器,其中反射器是DBR。也就是说,像素或LED阵列内的DBR反射器或侧壁不需要局限于半导体二极管结构500的左侧和右侧,而是可以取决于期望的输出设置在半导体二极管结构500的上方或下方。LED阵列中的DBR反射器可以与下面描述的反射器相似或相同。
发光像素阵列具有广泛的应用。发光像素阵列照明器可以包括灯具,该灯具可以基于选择性像素激活和强度控制而被编程为投影不同的照明图案。这种照明器可以使用非移动部件来传递来自单一照明器件的多个可控光束图案。通常,这通过调节1D或2D阵列中各个LED的亮度来完成。可选地,光学器件(无论是共享的还是单独的)可以将光引导到特定目标区域上。
发光像素阵列可以用来选择性地和自适应地照亮建筑或区域,以改进视觉显示或减少照明费用。另外,发光像素阵列可以用来投影用于装饰性运动或视频效果的媒体立面。与追踪传感器和/或相机结合,选择性照亮行人周围的区域可以是可能的。光谱上截然不同的像素可以用来调节照明的色温,以及支持特定波长的园艺光照。
街道照明是可以极大地受益于发光像素阵列的使用的重要应用。单一类型的发光阵列可以用来模拟各种街灯类型,从而允许例如通过适当地激活或停用选定像素来在类型I线性街灯和类型IV半圆形街灯之间切换。另外,可以通过根据环境条件或使用时间而调节光束强度或分布来降低街道照明费用。例如,当不存在行人时,可以减少光强度和分布区域。如果发光像素阵列中的像素在光谱上截然不同,则可以根据相应的白天、黄昏、或夜晚条件来调节光的色温。
发光阵列也十分适用于支持要求直接显示或投影显示的应用。例如,警告、紧急情况、或信息标识都可以使用发光阵列来显示或投影。这允许例如投影颜色改变的或闪烁的出口标识。如果发光阵列由大量像素构成,则可以呈现文字或数字信息。也可以提供方向箭头或类似指示符。
车辆前灯是一种要求大像素数量和高数据刷新速率的发光阵列应用。仅主动照亮道路的选定部分的汽车头灯可以用来减少与迎面而来的驾驶员的眩光或目眩相关联的问题。将红外相机用作传感器,发光像素阵列仅激活照亮道路所需的那些像素,同时停用可以使行人或迎面而来的车辆的驾驶员目眩的像素。另外,可以选择性地照亮道路外的行人、动物、或标识,以改进驾驶员的环境意识。如果发光像素阵列中的像素在光谱上截然不同,则可以根据相应的白天、黄昏、或夜晚条件来调节光的色温。一些像素可以用于光学无线的车辆对车辆通信。
通常,LED、LED阵列、pcLED、和pcLED阵列的以上应用受益于LED中的光生成和来自LED的光提取的改进的效率。这些应用通常也受益于对从有源区辐射光的方向和对从LED提取光的方向的较大控制。无论器件是否包括波长转换结构,这些益处通常都会获得(accrue)。
图6图示了具有附接的高可靠性分布式布拉格反射器的LED衬底侧壁600的一个实施例。如所图示,蓝宝石衬底602具有由交替的低和高折射率层形成的附接的DBR侧壁。也可以使用其他衬底,包括半导体、碳化硅、玻璃、或可以受益于DBR反射镜附接的其他电介质衬底。
图6还图示了第一低折射率层610,其具有附接到蓝宝石衬底602的高碳区。高碳区的存在是因为有机金属前驱体在制造中被使用。在一个实施例中,具有高碳区的低折射率层610是氧化铝(Al2O3),其使用三甲基铝作为前驱体产生。替代地,可以使用由有机金属前驱体形成的SiO2。具有低碳区620的第一低折射率层接触低折射率层610的高碳区。例如,低碳区620具有比高碳区更低的碳含量。在一个实施例中,具有低碳区620的低折射率层可以由卤化铝前驱体(诸如AlCl3)形成。这个具有低碳层620的低折射率层进而接触包括氧化钛(TiO2)的高折射率层612。具有低碳区622的第二低折射率层接触高折射率层612,随后是具有高碳区614的第二低折射率层(例如,另一氧化铝层),以及具有低碳层624的另一低折射率层。这种交替的低折射率层和高折射率层(例如,与TiO2交替的Al2O3或SiO2)的图案可以重复多次,其中通过使用中间的低折射率层和低碳层将高碳低折射率层与高折射率层分离来防止碳介导的降解。这通过相关联的碳水平图来说明,该碳水平图示出了各个所描述层中的相对碳量。
在一些实施例中,TiCl4(或其他钛卤化物)和H2O是用于TiO2层形成的前驱体。TiO2层内的AlCl3(或其他铝卤化物)和H2O可以用于形成TiO2层中结晶倾向降低的薄(1 nm)Al2O3。通常,得到的DBR是使用常规ALD工艺形成的高(TiO2)和低(Al2O3)折射率层的3-5 μm多层堆叠。ALD可以在180℃下操作,并且TiCl4、H2O(或臭氧)以及AlCl3、H2O和TMA、H2O的脉冲可以顺序地释放到腔室中,以一个接一个地生成单原子层。当ALD腔室被加热到150-200℃时,LED(包括衬底、半导体管芯、和磷光体板(platelet))可以通过带式载体保持就位。在这些温度下,TiO2将在没有AlCl3(或其他异质氧化物)的替代层的情况下结晶,以形成类似合金的结构,确保非晶膜。通过对沉积在TiO2层附近或旁边的层使用非碳前驱体来消除碳捕集。
上述交替层是重要的,因为完全用AlCl3生长的Al2O3层没有用三甲基铝生长的Al2O3的任何高碳区,其被观察到破裂和分层。也就是说,用AlCl3生长的连续Al2O3层始终是低碳的,其经受高应力的缺点。本发明的实施例将低碳区的高应力与氧化铝的高碳区进行平衡,同时将由氧化铝的高碳区造成的降解与低碳区的低至无降解进行平衡。
图7图示了高温工作寿命(HTOL)测试期间的改进的性能。如从图中清楚的是,由改进的低碳DBR前驱体形成的LED的故障率比具有由常规有机金属DBR前驱体形成的侧壁的LED的故障率低得多。
发光像素阵列(即可寻址的LED分段)可以特别受益于所描述的低碳ALD DBR侧壁涂层。如与大体积硅树脂粘合剂和TiO2纳米颗粒侧壁相比,ALD DBR侧壁改进了效率,大大降低了可以干扰精确的光投影的像素间串扰,并且可以非常薄(例如,小于10微米),从而允许在紧密封装的发光像素阵列中使用。
具有所描述的改进的DBR侧壁的发光像素阵列可以支持受益于低串扰、细粒度强度、改进的光分布的空间和时间控制的应用。这可以包括但不限于从像素块或各个像素发射的光的精确空间图案化。取决于应用,发射的光可以是光谱上截然不同的、随时间自适应的、和/或环境响应的。发光像素阵列可以以各种强度、空间或时间图案来提供预编程的光分布。发射的光可以至少部分基于接收的传感器数据,并且可以用于光学无线通信。相关联的光学器件可以在像素、像素块、或器件级别上截然不同。示例发光像素阵列可以包括具有高强度像素的共同控制的中心块的设备,该高强度像素具有相关联的共同光学器件,而边缘像素可以具有单独的光学器件。由具有改进的DBR侧壁的发光像素阵列支持的常见应用包括相机闪光灯、汽车头灯、建筑和区域光照、街道照明、和信息显示。
具有改进的DBR侧壁的发光像素阵列可以非常适合于移动设备的相机闪光灯应用。通常,来自高强度LED的强烈短暂闪光用于支持图像捕获。不幸地,对于常规的LED闪光灯,大部分的光浪费在照亮已经被很好地照明或者否则不需要被照亮的区域上。发光像素阵列的使用可以在确定的时间量内提供场景部分的受控光照。这可以允许相机闪光,例如,以仅照亮在滚动快门捕获期间成像的那些区域,提供使跨捕获图像的信噪比最小化、并使人或目标对象上或者跨人或目标对象的阴影最小化的均匀照明,和/或提供突出阴影的高对比度照明。如果发光像素阵列的像素在光谱上截然不同,则闪光灯照明的色温可以被动态调整以提供想要的色调或温暖度。
仅主动照亮道路选定部分的汽车头灯也由具有改进的DBR侧壁的发光像素阵列支持。使用红外相机作为传感器,发光像素阵列仅激活照亮道路所需要的那些像素,同时停用可以使行人或迎面而来的车辆的驾驶员目眩的像素。另外,可以选择性地照亮道路外的行人、动物、或标识,以改进驾驶员的环境意识。如果发光像素阵列中的像素在光谱上截然不同,则可以根据相应的白天、黄昏、或夜晚条件来调节光的色温。一些像素可以用于光学无线的车辆对车辆通信。
建筑和区域光照也可以受益于具有改进的DBR侧壁的发光像素阵列。发光像素阵列可以用于选择性地和自适应地照亮建筑或区域,以改进视觉显示或减少照明费用。另外,发光像素阵列可以用来投影用于装饰性运动或视频效果的媒体立面。与追踪传感器和/或相机结合,选择性照亮行人周围的区域可以是可能的。光谱上截然不同的像素可以用来调节照明的色温,以及支持特定波长的园艺光照。
街道照明是可以极大地受益于具有改进的DBR侧壁的发光像素阵列的使用的重要应用。单一类型的发光阵列可以用来模拟各种街灯类型,从而允许例如通过适当地激活或停用选定像素来在类型I线性街灯和类型IV半圆形街灯之间切换。另外,可以通过根据环境条件或使用时间而调节光束强度或分布来降低街道照明费用。例如,当不存在行人时,可以减少光强度和分布区域。如果发光像素阵列中的像素在光谱上截然不同,则可以根据相应的白天、黄昏、或夜晚条件来调节光的色温。
具有改进的DBR侧壁的发光阵列也十分适用于支持要求直接显示或投影显示的应用。例如,警告、紧急情况、或信息标识都可以使用发光阵列来显示或投影。这允许例如投影颜色改变的或闪烁的出口标识。如果具有改进的DBR侧壁的发光阵列由大量像素构成,则可以呈现文字或数字信息。也可以提供方向箭头或类似指示符。
已经详细描述了本发明,本领域技术人员将领会,给定本公开,可以对本发明进行修改而不脱离本文描述的发明构思的精神。因此,意图是本发明的范围不局限于图示和描述的特定实施例。

Claims (20)

1. 一种衬底上的DBR结构,包括:
高折射率层,包括氧化钛(TiO2);和
低折射率层,具有高碳区和接触所述高折射率层的至少一个低碳区。
2.根据权利要求1所述的DBR结构,其中所述高折射率层和所述低折射率层的多个层被堆叠。
3.根据权利要求1所述的DBR结构,其中所述高折射率层和所述低折射率层的多个层被堆叠至小于10微米的厚度。
4.根据权利要求1所述的DBR结构,其中所述高折射率层和所述低折射率层的相应层中的每一个具有小于0.2微米的厚度。
5.根据权利要求1所述的DBR结构,其中所述低折射率层还包括Al2O3和SiO2中的至少一种。
6.根据权利要求1所述的DBR结构,其中所述低折射率层的高碳区还包括由有机金属前驱体形成的Al2O3
7.根据权利要求1所述的DBR结构,其中所述低折射率层的高碳区还包括由三甲基铝形成的Al2O3
8.根据权利要求1所述的DBR结构,其中所述低折射率层的低碳区还包括由卤化物前驱体形成的Al2O3
9.根据权利要求1所述的DBR结构,其中所述低折射率层的所述低碳区还包括由AlCl3形成的Al2O3
10.根据权利要求1所述的DBR结构,其中所述衬底是蓝宝石。
11.根据权利要求1所述的DBR结构,其中所述高折射率层在所述低折射率层和第二低折射率层之间,在所述低折射率层的至少一个低碳区和所述第二低折射率层的第二低碳区之间,并且与所述第二低碳区直接接触。
12.根据权利要求1所述的DBR结构,其中所述至少一个低碳区包括在所述低折射率层的相对侧上的两个低碳区。
13.根据权利要求1所述的DBR结构,其中所述高碳区和所述低碳区两者都包括相同的化合物。
14.一种用于在衬底上形成DBR结构的ALD工艺,包括以下步骤:
沉积具有高碳区的第一低折射率层;
沉积具有低碳区的第一低折射率层,所述低碳区接触所述高碳区;
沉积包括氧化钛(TiO2)的高折射率层,所述高折射率层接触所述第一低折射率层的低碳区;
沉积具有低碳区的第二低折射率层,所述低碳区接触所述高折射率层;以及
沉积具有高碳区的第二低折射率层。
15.根据权利要求14所述的用于在衬底上形成DBR结构的ALD工艺,其中所述第一低折射率层和所述第二低折射率层还包括Al2O3
16.根据权利要求14所述的用于在衬底上形成DBR结构的ALD工艺,其中所述第一低折射率层和所述第二低折射率层的高碳区还包括由有机金属前驱体形成的Al2O3
17.根据权利要求14所述的用于在衬底上形成DBR结构的ALD工艺,其中所述第一低折射率层和所述第二低折射率层的高碳区还包括由三甲基铝形成的Al2O3
18.根据权利要求14所述的用于在衬底上形成DBR结构的ALD工艺,其中所述第一低折射率层和所述第二低折射率层的低碳区还包括由卤化物前驱体形成的Al2O3
19.根据权利要求14所述的用于在衬底上形成DBR结构的ALD工艺,其中所述第一低折射率层和所述第二低折射率层的低碳区还包括由AlCl3形成的Al2O3
20.根据权利要求14所述的用于在衬底上形成DBR结构的ALD工艺,其中所述高碳区和所述低碳区两者都包括相同的化合物。
CN202080060446.7A 2019-06-27 2020-06-26 具有降低的光降解的led dbr结构 Pending CN114270545A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/455,051 US10886703B1 (en) 2019-06-27 2019-06-27 LED DBR structure with reduced photodegradation
US16/455051 2019-06-27
PCT/US2020/039962 WO2020264403A1 (en) 2019-06-27 2020-06-26 Led dbr structure with reduced photodegradation

Publications (1)

Publication Number Publication Date
CN114270545A true CN114270545A (zh) 2022-04-01

Family

ID=71662365

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080060446.7A Pending CN114270545A (zh) 2019-06-27 2020-06-26 具有降低的光降解的led dbr结构

Country Status (7)

Country Link
US (2) US10886703B1 (zh)
EP (1) EP3990677A1 (zh)
JP (1) JP7164737B2 (zh)
KR (2) KR102563851B1 (zh)
CN (1) CN114270545A (zh)
TW (1) TWI753472B (zh)
WO (1) WO2020264403A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10886703B1 (en) 2019-06-27 2021-01-05 Lumileds Llc LED DBR structure with reduced photodegradation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080157181A1 (en) * 2006-12-28 2008-07-03 Hynix Semiconductor Inc. Non-volatile memory device and fabrication method thereof
US20130209780A1 (en) * 2010-08-25 2013-08-15 Rensselaer Polytechnic Institute Tunable nanoporous films on polymer substrates, and method for their manufacture
CN103597382A (zh) * 2011-05-17 2014-02-19 柯尼卡美能达株式会社 红外屏蔽膜、红外屏蔽膜的制造方法及红外屏蔽体
CN108292594A (zh) * 2015-10-30 2018-07-17 应用材料公司 用于多层图案化应用的低温单一前驱物arc硬掩模

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19523181A1 (de) * 1994-07-05 1996-01-11 Motorola Inc Verfahren zum P-Dotieren einer Licht emittierenden Vorrichtung
US7901870B1 (en) * 2004-05-12 2011-03-08 Cirrex Systems Llc Adjusting optical properties of optical thin films
JP4515949B2 (ja) * 2005-03-31 2010-08-04 株式会社東芝 面型光半導体素子
JP2007087994A (ja) * 2005-09-20 2007-04-05 Furukawa Electric Co Ltd:The 面発光半導体レーザ素子
CN102124405B (zh) * 2008-05-30 2015-08-26 欧帕鲁克斯有限公司 可调布拉格堆叠
CN104969365B (zh) 2013-02-07 2017-12-26 夏普株式会社 半导体发光元件及其制造方法
JP6237075B2 (ja) * 2013-10-02 2017-11-29 富士ゼロックス株式会社 面発光型半導体レーザ、面発光型半導体レーザ装置、光伝送装置および情報処理装置
JP6398323B2 (ja) 2014-05-25 2018-10-03 日亜化学工業株式会社 半導体発光素子の製造方法
WO2019027952A1 (en) 2017-08-03 2019-02-07 Lumileds Llc METHOD FOR MANUFACTURING A LIGHT EMITTING DEVICE
US10886703B1 (en) 2019-06-27 2021-01-05 Lumileds Llc LED DBR structure with reduced photodegradation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080157181A1 (en) * 2006-12-28 2008-07-03 Hynix Semiconductor Inc. Non-volatile memory device and fabrication method thereof
US20130209780A1 (en) * 2010-08-25 2013-08-15 Rensselaer Polytechnic Institute Tunable nanoporous films on polymer substrates, and method for their manufacture
CN103597382A (zh) * 2011-05-17 2014-02-19 柯尼卡美能达株式会社 红外屏蔽膜、红外屏蔽膜的制造方法及红外屏蔽体
CN108292594A (zh) * 2015-10-30 2018-07-17 应用材料公司 用于多层图案化应用的低温单一前驱物arc硬掩模

Also Published As

Publication number Publication date
KR102454392B1 (ko) 2022-10-14
JP2022540011A (ja) 2022-09-14
US10886703B1 (en) 2021-01-05
US11901702B2 (en) 2024-02-13
JP2023024424A (ja) 2023-02-16
JP7164737B2 (ja) 2022-11-01
US20200412097A1 (en) 2020-12-31
TW202114250A (zh) 2021-04-01
US20200412098A1 (en) 2020-12-31
EP3990677A1 (en) 2022-05-04
KR102563851B1 (ko) 2023-08-07
KR20220017532A (ko) 2022-02-11
KR20220140876A (ko) 2022-10-18
TWI753472B (zh) 2022-01-21
WO2020264403A1 (en) 2020-12-30

Similar Documents

Publication Publication Date Title
KR102522426B1 (ko) 광 강도 적응형 led 측벽들
KR102440858B1 (ko) 광 배리어들을 갖는 인광체
US11942571B2 (en) LED with active region disposed within an optical cavity defined by an embedded nanostructured layer and a reflector
US11901702B2 (en) LED DBR structure with reduced photodegradation
US11725802B2 (en) Phosphor with light barriers
JP7507828B2 (ja) 光分解を低減したledのdbr構造
US20230343908A1 (en) Primary optics array for a light-emitting array
JP2024516521A (ja) Ledアレイ及びディスプレイ用パターン反射グリッド

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination