CN114266776B - 一种应用复合裂纹位移场函数的数字图像相关方法 - Google Patents

一种应用复合裂纹位移场函数的数字图像相关方法 Download PDF

Info

Publication number
CN114266776B
CN114266776B CN202210202546.XA CN202210202546A CN114266776B CN 114266776 B CN114266776 B CN 114266776B CN 202210202546 A CN202210202546 A CN 202210202546A CN 114266776 B CN114266776 B CN 114266776B
Authority
CN
China
Prior art keywords
crack
displacement
displacement field
function
digital image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210202546.XA
Other languages
English (en)
Other versions
CN114266776A (zh
Inventor
熊克
宋祥帆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN202210202546.XA priority Critical patent/CN114266776B/zh
Publication of CN114266776A publication Critical patent/CN114266776A/zh
Application granted granted Critical
Publication of CN114266776B publication Critical patent/CN114266776B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种应用复合裂纹位移场函数的数字图像相关方法,该方法应用I、II型复合裂纹位移场函数作为数字图像相关方法中计算子区的位移表征函数;首先通过智能识别算法识别出变形图像中裂纹尖端的位置,并通过整像素匹配计算裂纹尖端在参考图像中的位置。然后应用I、II型复合裂纹位移场函数作为数字图像相关方法中计算子区的位移表征函数进行子区匹配从而迭代求得裂纹尖端终值及位移场函数的待定系数。根据裂纹尖端终值及位移场函数的待定系数可求得各子区中点的位移值,然后插值得到全场位移场。该复合裂纹位移场函数可以有效表征计算子区由裂纹导致的子区断裂情况下的位移场,从而保证数字图像相关方法在处理含裂纹图像时的计算精度。

Description

一种应用复合裂纹位移场函数的数字图像相关方法
技术领域
本发明涉及实验力学、非接触式全场位移测量、数字图像相关方法,具体涉及一种应用复合裂纹位移场函数的数字图像相关方法。
背景技术
在航空航天、建筑桥梁等诸多领域中,保证结构可靠性永远是第一要务。随着科学技术的发展,能够在结构发生不可逆损伤之前,对其施以控制修缮,成为诸多科学家的重要目标。而由实验力学提供的材料响应载荷表征的测量结果,对于完善设计,改进结构以及监测损伤都具有丰富的指导意义。位移与应变,作为实验力学重要参量,对于分析模型力学特性、验证基础假设及特征识别等都具有举足轻重的作用。面对日益复杂的测量需求,传统的位移应变测量方法就显得捉襟见肘。与此同时,有限处位移应变测量结果远不能胜任复杂模型的分析工作。并且针对各种测量条件的约束,能够实现全场应变及非接触式测量的新兴测量技术应运而生。
能够进行全场测量的不同方法,各有其准确性及适用性优势。而又能够同时满足非接触测量条件的数字图像相关法(Digital Image Correlation,DIC),由于其较低的实验成本及数据采集过程相对简单等优势已被广泛用于实验力学中,其对测量环境和隔振要求较低,普适性强,广泛应用于各种工程和学科领域,如航空航天、生物医疗等。
传统的数字图像相关法(DIC)中,子区的位移表征函数为一阶或二阶连续函数。而在断裂实验进行过程中,由于裂纹的产生,导致原本连续的参考子区会被裂纹切断,从而导致含裂纹区域的参考子区位移计算不准确甚至完全无法计算的情况。
发明内容
本发明针对现有技术中存在的问题,公开了一种应用复合裂纹位移场函数的数字图像相关方法,该方法应用I、II型复合裂纹位移场函数作为数字图像相关方法中计算子区的位移表征函数。本发明的方法能保证数字图像相关方法在处理含裂纹图像时的计算精度。
本发明是这样实现的:
一种应用复合裂纹位移场函数的数字图像相关方法,其特征在于,所述的方法为使用I、II型复合裂纹的位移场函数作为数字图像相关方法的子区位移表征函数,具体为:
步骤一,搭建数字图像相关测量系统,获取试件变形前的参考图像及变形后的带有裂纹的变形图像;
步骤二、使用裂纹尖端检测方法计算得到变形图像中裂纹尖端的初始位置(
Figure 589428DEST_PATH_IMAGE001
Figure 539192DEST_PATH_IMAGE002
);
步骤三、对该裂纹尖端初始位置点进行整像素匹配,计算其在参考图像上的位置(
Figure 709142DEST_PATH_IMAGE003
Figure 166668DEST_PATH_IMAGE004
);
步骤四、在参考图像上布置计算点,为每个计算点分配计算子区;
步骤五、以复合裂纹位移场函数为各子区内的位移表征函数,以(
Figure 276313DEST_PATH_IMAGE003
Figure 488989DEST_PATH_IMAGE005
)为裂纹尖端初值,使用数字图像相关法计算各子区内位移场函数的待定系数及裂纹尖端终值(
Figure 647700DEST_PATH_IMAGE006
Figure 643338DEST_PATH_IMAGE007
),并以此计算得到各计算点的位移值;
步骤六、由各计算点的位移值插值得到全场位移值。
进一步,所述的使用I、II型复合裂纹的位移场函数的表达式如下:
Figure 702429DEST_PATH_IMAGE008
(1)
其中,u为以裂纹尖端为中心沿裂纹方向的位移,v为以裂纹尖端为中心垂直于裂纹方向的位移,
Figure 584541DEST_PATH_IMAGE009
Figure 135608DEST_PATH_IMAGE010
Figure 764298DEST_PATH_IMAGE011
Figure 553263DEST_PATH_IMAGE012
为I型裂纹的待定系数,
Figure 904478DEST_PATH_IMAGE013
Figure 769273DEST_PATH_IMAGE014
Figure 841134DEST_PATH_IMAGE015
Figure 15763DEST_PATH_IMAGE016
为II型裂纹的待定系数,
Figure 773766DEST_PATH_IMAGE017
Figure 299425DEST_PATH_IMAGE018
表示待定的u方向和v方向的刚体平移,rθ为以裂纹尖端为原点的极坐标,m为待定系数的个数。
进一步,所述的位移函数能够有效描述单一I型裂纹、单一II型裂纹或I、II型复合裂纹的位移场。由使用者决定位移函数为单一I型裂纹、单一II型裂纹或I、II型复合裂纹,并决定各待定系数的个数,即m的数值,位移场函数中,通过决定m值的大小来权衡计算精度及计算速度,m值越大,计算精度越高,同时计算速度越慢。
进一步,所述的步骤二中裂纹尖端检测方法包括:基于图像处理的检测方法、基于机器学习的检测方法及基于深度卷积神经网络的检测方法。
进一步,所述的步骤三中裂纹尖端整像素匹配具体为:在变形图像上以裂纹尖端初始位置(
Figure 440557DEST_PATH_IMAGE001
Figure 233807DEST_PATH_IMAGE002
)为中点,分配变形子区,寻找参考图像上与该变形子区相关性最高的参考子区,该参考子区中点坐标即为(
Figure 67771DEST_PATH_IMAGE003
Figure 815147DEST_PATH_IMAGE019
)。
进一步,所述的步骤五中计算裂纹尖端终值及位移场函数待定系数的方法具体为:
以公式(1)作为参考图像各计算点子区内的位移表征函数,以(
Figure 589330DEST_PATH_IMAGE003
Figure 738552DEST_PATH_IMAGE019
)为裂纹尖端初值,使用数字图像相关法中的牛顿迭代法进行迭代求解与参考子区内灰度信息相关性匹配度最高的变形图像子区信息,从而计算得到公式(1)的待定系数
Figure 336892DEST_PATH_IMAGE020
Figure 397996DEST_PATH_IMAGE010
Figure 349771DEST_PATH_IMAGE013
Figure 979598DEST_PATH_IMAGE014
Figure 483261DEST_PATH_IMAGE021
Figure 470808DEST_PATH_IMAGE012
Figure 255968DEST_PATH_IMAGE015
Figure 379782DEST_PATH_IMAGE016
Figure 726450DEST_PATH_IMAGE017
Figure 935714DEST_PATH_IMAGE018
及裂纹尖端终值(
Figure 996336DEST_PATH_IMAGE006
Figure 568132DEST_PATH_IMAGE007
);以裂纹尖端终值为极坐标原点计算参考子区中点的极坐标,然后根据公式(1)求得该子区中点的位移值uv
本发明与现有技术的相比的有益效果在于:
本发明的方法首先通过智能识别算法识别出变形图像中裂纹尖端的位置,并通过整像素匹配计算裂纹尖端在参考图像中的位置。然后应用I、II型复合裂纹位移场函数作为数字图像相关方法中计算子区的位移表征函数进行子区匹配从而迭代求得裂纹尖端终值及位移场函数的待定系数。根据裂纹尖端终值及位移场函数的待定系数可求得子区中点的位移值。
本发明应用I、II型复合裂纹位移场函数作为数字图像相关方法中计算子区的位移表征函数,使用者可以根据实际情况决定位移场函数为单一I型裂纹、单一II型裂纹或I、II型复合裂纹。并决定各待定系数的个数,即m的数值,通过决定m值的大小来权衡计算精度及计算速度,m值越大,计算精度越高,同时计算速度越慢。该复合裂纹位移场函数可以有效表征计算子区由裂纹导致的子区断裂情况下的位移场,从而保证数字图像相关方法在处理含裂纹图像时的计算精度。
附图说明
图1为本发明一种应用复合裂纹位移场函数的数字图像相关方法的实施例中参考图像与变形图像及裂纹位置;
图2为本发明一种应用复合裂纹位移场函数的数字图像相关方法的实施例中真实位移场分布图;
图3为本发明一种应用复合裂纹位移场函数的数字图像相关方法的实施例中计算位移场分布图;
图4为本发明一种应用复合裂纹位移场函数的数字图像相关方法的实施例中计算位移场与真实位移场的误差分布图。
具体实施方式
为使本发明的目的、技术方案及效果更加清楚,明确,以下列举实施例对本发明进一步详细说明。应当指出此处所描述的具体实施仅用以解释本发明,并不用于限定本发明。
本发明的方法所述的方法为使用I、II型复合裂纹的位移场函数作为数字图像相关方法的子区位移表征函数,表达式如下:
Figure 732307DEST_PATH_IMAGE022
(1)
其中,u为以裂纹尖端为中心沿裂纹方向的位移,v为以裂纹尖端为中心垂直于裂纹方向的位移,
Figure 586125DEST_PATH_IMAGE020
Figure 948973DEST_PATH_IMAGE010
Figure 936127DEST_PATH_IMAGE011
Figure 313013DEST_PATH_IMAGE012
为I型裂纹的待定系数,
Figure 621504DEST_PATH_IMAGE013
Figure 411212DEST_PATH_IMAGE014
Figure 459064DEST_PATH_IMAGE015
Figure 787278DEST_PATH_IMAGE016
为II型裂纹的待定系数,
Figure 51906DEST_PATH_IMAGE017
Figure 255092DEST_PATH_IMAGE018
表示待定的u方向和v方向的刚体平移,rθ为以裂纹尖端为原点的极坐标。
所述的方法具体步骤为:
步骤一、搭建数字图像相关测量系统,获取试件变形前的参考图像及变形后的带有裂纹的变形图像;
步骤二、使用裂纹尖端检测方法计算得到变形图像中裂纹尖端的初始位置(
Figure 921565DEST_PATH_IMAGE001
Figure 686259DEST_PATH_IMAGE002
);
步骤三、对该裂纹尖端初始位置点进行整像素匹配,计算其在参考图像上的位置(
Figure 611752DEST_PATH_IMAGE003
Figure 182410DEST_PATH_IMAGE023
);
步骤四、在参考图像上布置计算点,为每个计算点分配计算子区;
步骤五、以公式(1)作为参考图像各计算点子区内的位移表征函数,以(
Figure 139609DEST_PATH_IMAGE003
Figure 199838DEST_PATH_IMAGE023
)为裂纹尖端初值,使用数字图像相关法中的牛顿迭代法进行迭代求解与参考子区内灰度信息相关性匹配度最高的变形图像子区信息,从而计算得到公式(1)的待定系数
Figure 314424DEST_PATH_IMAGE020
Figure 127922DEST_PATH_IMAGE010
Figure 503408DEST_PATH_IMAGE013
Figure 609904DEST_PATH_IMAGE014
Figure 975901DEST_PATH_IMAGE011
Figure 91625DEST_PATH_IMAGE012
Figure 852776DEST_PATH_IMAGE015
Figure 959535DEST_PATH_IMAGE016
Figure 314293DEST_PATH_IMAGE017
Figure 702549DEST_PATH_IMAGE018
及裂纹尖端终值(
Figure 551163DEST_PATH_IMAGE006
Figure 999462DEST_PATH_IMAGE007
);以裂纹尖端终值为极坐标原点计算参考子区中点的极坐标,然后根据公式(1)求得该子区中点的位移值uv
步骤六、由各计算点的位移值插值得到全场位移值。
以下列举具体的实施例进行叙述本发明的方法:
模拟散斑图像由计算机高斯散斑算法生成,像素为501×501,散斑数目为1500,生成参考图像;为了简便,设定I型裂纹位移场函数如下:
Figure 575937DEST_PATH_IMAGE024
(2)
其中裂纹尖端位置为(251,251),生成变形图像,如图1所示。通过上述公式(2)计算位移场,如图2所示,然后将计算结果与真实解进行对比。
具体实施步骤如下:
步骤一:通过图像处理的方法获得变形图像裂纹尖端初始位置(249,250);
步骤二:通过整像素匹配计算,裂纹尖端在参考图像中的位置为(250,250);
步骤三:在参考图像上以2个像素的间隔布置计算点,每个计算点的计算子区大小为181×181;
步骤四:假设子区内I型裂纹位移场函数为公式(2);
步骤五:对每个计算点进行位移迭代计算,并与真实位移值进行比较;
步骤六:插值得到全场位移场。
图3所示为计算得到的全场位移场。
图4所示为计算位移场与真实位移场的误差分布。
将计算位移场与真实位移场进行比较发现,u向位移场误差均值为-0.0013,方差为0.0112,v向位移场误差均值为-0.0086,方差为0.0367。可见本方法计算所得位移场误差较小,可有效解决传统数字图像相关法对于裂纹区域存在的位移计算不准确甚至计算缺失的问题。
最后应当说明的是,以上实施方案仅用以说明本发明的实现方式而非对其限制;人们应该理解,对该发明的实施过程进行修改或者部分算法过程进行同等替换,而不会脱离本发明技术方案的精神,其均应涵盖在本发明请求保护的技术方案范围内。

Claims (5)

1.一种应用复合裂纹位移场函数的数字图像相关方法,其特征在于,所述的方法为使用I、II型复合裂纹的位移场函数作为数字图像相关方法的子区位移表征函数,具体为:
步骤一,搭建数字图像相关测量系统,获取试件变形前的参考图像及变形后的带有裂纹的变形图像;
步骤二、使用裂纹尖端检测方法计算得到变形图像中裂纹尖端的初始位置(
Figure DEST_PATH_IMAGE002
Figure DEST_PATH_IMAGE004
);
步骤三、对该裂纹尖端初始位置点进行整像素匹配,计算其在参考图像上的位置(
Figure DEST_PATH_IMAGE006
Figure DEST_PATH_IMAGE008
);
步骤四、在参考图像上布置计算点,为每个计算点分配计算子区;
步骤五、以复合裂纹位移场函数为各子区内的位移表征函数,以(
Figure 499203DEST_PATH_IMAGE006
Figure DEST_PATH_IMAGE009
)为裂纹尖端初值,使用数字图像相关法计算各子区内位移场函数的待定系数及裂纹尖端终值(
Figure DEST_PATH_IMAGE011
Figure DEST_PATH_IMAGE013
),并以此计算得到各计算点的位移值;
步骤六、由各计算点的位移值插值得到全场位移值;
所述的使用I、II型复合裂纹的位移场函数的表达式如下:
Figure DEST_PATH_IMAGE015
(1)
其中,u为以裂纹尖端为中心沿裂纹方向的位移,v为以裂纹尖端为中心垂直于裂纹方向的位移,
Figure DEST_PATH_IMAGE017
Figure DEST_PATH_IMAGE019
Figure DEST_PATH_IMAGE021
Figure DEST_PATH_IMAGE023
为I型裂纹的待定系数,
Figure DEST_PATH_IMAGE025
Figure DEST_PATH_IMAGE027
Figure DEST_PATH_IMAGE029
Figure DEST_PATH_IMAGE031
为II型裂纹的待定系数,
Figure DEST_PATH_IMAGE033
Figure DEST_PATH_IMAGE035
表示待定的u方向和v方向的刚体平移,rθ为以裂纹尖端为原点的极坐标,m为待定系数的个数。
2.根据权利要求1所述的一种应用复合裂纹位移场函数的数字图像相关方法,其特征在于,所述的位移场函数能够有效描述单一I型裂纹、单一II型裂纹或I、II型复合裂纹的位移场。
3.根据权利要求1所述的一种应用复合裂纹位移场函数的数字图像相关方法,其特征在于,所述的步骤二中裂纹尖端检测方法包括:基于图像处理的检测方法、基于机器学习的检测方法及基于深度卷积神经网络的检测方法。
4.根据权利要求1所述的一种应用复合裂纹位移场函数的数字图像相关方法,其特征在于,所述的步骤三中裂纹尖端整像素匹配具体为:在变形图像上以裂纹尖端初始位置(
Figure DEST_PATH_IMAGE036
Figure 153694DEST_PATH_IMAGE004
)为中点,分配变形子区,寻找参考图像上与该变形子区相关性最高的参考子区,该参考子区中点坐标即为(
Figure 261327DEST_PATH_IMAGE006
Figure DEST_PATH_IMAGE037
)。
5.根据权利要求1所述的一种应用复合裂纹位移场函数的数字图像相关方法,其特征在于,所述的步骤五中计算裂纹尖端终值及位移场函数待定系数的方法具体为:
以公式(1)作为参考图像各计算点子区内的位移表征函数,以(
Figure 781170DEST_PATH_IMAGE006
Figure DEST_PATH_IMAGE038
)为裂纹尖端初值,使用数字图像相关法中的牛顿迭代法进行迭代求解与参考子区内灰度信息相关性匹配度最高的变形图像子区信息,从而计算得到公式(1)的待定系数
Figure 956062DEST_PATH_IMAGE017
Figure 840841DEST_PATH_IMAGE019
Figure DEST_PATH_IMAGE039
Figure 748622DEST_PATH_IMAGE027
Figure 9839DEST_PATH_IMAGE021
Figure 741034DEST_PATH_IMAGE023
Figure 796715DEST_PATH_IMAGE029
Figure 114826DEST_PATH_IMAGE031
Figure 914155DEST_PATH_IMAGE033
Figure 499857DEST_PATH_IMAGE035
及裂纹尖端终值(
Figure 992018DEST_PATH_IMAGE011
Figure 653550DEST_PATH_IMAGE013
);以裂纹尖端终值为极坐标原点计算参考子区中点的极坐标,然后根据公式(1)求得该子区中点的位移值uv
CN202210202546.XA 2022-03-03 2022-03-03 一种应用复合裂纹位移场函数的数字图像相关方法 Active CN114266776B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210202546.XA CN114266776B (zh) 2022-03-03 2022-03-03 一种应用复合裂纹位移场函数的数字图像相关方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210202546.XA CN114266776B (zh) 2022-03-03 2022-03-03 一种应用复合裂纹位移场函数的数字图像相关方法

Publications (2)

Publication Number Publication Date
CN114266776A CN114266776A (zh) 2022-04-01
CN114266776B true CN114266776B (zh) 2022-06-10

Family

ID=80833978

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210202546.XA Active CN114266776B (zh) 2022-03-03 2022-03-03 一种应用复合裂纹位移场函数的数字图像相关方法

Country Status (1)

Country Link
CN (1) CN114266776B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114897675B (zh) * 2022-07-14 2022-10-21 南京航空航天大学 一种数字图像相关中用于相关性加权的指数窗法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102305795A (zh) * 2011-07-29 2012-01-04 河海大学 一种混凝土表面微小裂缝的定位方法
CA2817458A1 (en) * 2012-06-07 2013-12-07 Dassault Systemes Simulia Corp. Hydraulic fracture simulation with an extended finite element method
CN104502198A (zh) * 2015-01-05 2015-04-08 大连理工大学 一种基于数字图像相关的裂纹j积分测量方法
CN107576432A (zh) * 2017-08-14 2018-01-12 中国矿业大学(北京) 一种动态裂纹尖端应力场量测方法及装置
CN108469436A (zh) * 2018-03-15 2018-08-31 中国航空工业集团公司沈阳飞机设计研究所 一种金属表面裂纹检测方法及检测系统
CN109272491A (zh) * 2018-08-23 2019-01-25 中国飞机强度研究所 试验环境下裂纹尖端的识别方法、装置及设备
CN109918712A (zh) * 2019-01-23 2019-06-21 昆明理工大学 一种基于p型有限元法和围线积分法求解复合型应力强度因子的计算方法
CN110057846A (zh) * 2019-04-11 2019-07-26 中国科学院地质与地球物理研究所 基于数字图像的岩心内部微裂纹识别方法、系统、装置
CN110188759A (zh) * 2019-06-21 2019-08-30 江苏开放大学(江苏城市职业学院) 一种在数字图像相关法中应变场子区动态选择方法
CN110532591A (zh) * 2019-07-12 2019-12-03 中南大学 基于dic-efg联合仿真分析裂纹尖端应变场的方法
WO2020041319A1 (en) * 2018-08-21 2020-02-27 University Of Kansas Fatigue crack detection in civil infrastructure
CN110992346A (zh) * 2019-09-17 2020-04-10 浙江工业大学 一种基于dip和dicm的疲劳裂纹长度在线检测方法
CN113029817A (zh) * 2021-01-14 2021-06-25 华南理工大学 一种界面裂纹的单侧j-积分方法
CN113192012A (zh) * 2021-04-15 2021-07-30 南京航空航天大学 基于改进遗传算法的组合式数字图像相关位移搜索方法
CN113506292A (zh) * 2021-07-30 2021-10-15 同济大学 一种基于位移场的结构物表面裂纹检测和提取方法
CN113538473A (zh) * 2021-07-08 2021-10-22 南京航空航天大学 数字图像相关中针对裂纹的随机网格及异形子区划分方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102305795A (zh) * 2011-07-29 2012-01-04 河海大学 一种混凝土表面微小裂缝的定位方法
CA2817458A1 (en) * 2012-06-07 2013-12-07 Dassault Systemes Simulia Corp. Hydraulic fracture simulation with an extended finite element method
CN104502198A (zh) * 2015-01-05 2015-04-08 大连理工大学 一种基于数字图像相关的裂纹j积分测量方法
CN107576432A (zh) * 2017-08-14 2018-01-12 中国矿业大学(北京) 一种动态裂纹尖端应力场量测方法及装置
CN108469436A (zh) * 2018-03-15 2018-08-31 中国航空工业集团公司沈阳飞机设计研究所 一种金属表面裂纹检测方法及检测系统
WO2020041319A1 (en) * 2018-08-21 2020-02-27 University Of Kansas Fatigue crack detection in civil infrastructure
CN109272491A (zh) * 2018-08-23 2019-01-25 中国飞机强度研究所 试验环境下裂纹尖端的识别方法、装置及设备
CN109918712A (zh) * 2019-01-23 2019-06-21 昆明理工大学 一种基于p型有限元法和围线积分法求解复合型应力强度因子的计算方法
CN110057846A (zh) * 2019-04-11 2019-07-26 中国科学院地质与地球物理研究所 基于数字图像的岩心内部微裂纹识别方法、系统、装置
CN110188759A (zh) * 2019-06-21 2019-08-30 江苏开放大学(江苏城市职业学院) 一种在数字图像相关法中应变场子区动态选择方法
CN110532591A (zh) * 2019-07-12 2019-12-03 中南大学 基于dic-efg联合仿真分析裂纹尖端应变场的方法
CN110992346A (zh) * 2019-09-17 2020-04-10 浙江工业大学 一种基于dip和dicm的疲劳裂纹长度在线检测方法
CN113029817A (zh) * 2021-01-14 2021-06-25 华南理工大学 一种界面裂纹的单侧j-积分方法
CN113192012A (zh) * 2021-04-15 2021-07-30 南京航空航天大学 基于改进遗传算法的组合式数字图像相关位移搜索方法
CN113538473A (zh) * 2021-07-08 2021-10-22 南京航空航天大学 数字图像相关中针对裂纹的随机网格及异形子区划分方法
CN113506292A (zh) * 2021-07-30 2021-10-15 同济大学 一种基于位移场的结构物表面裂纹检测和提取方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Deformation Fields Measurement of Crack Tip under High-Frequency Resonant Loading Using a Novel Hybrid Image Processing Method;Hongli Gao 等;《Shock and Vibration》;20180603;第1-16页 *
Quantifying crack tip displacement fields with DIC;J.R. Yates 等;《Engineering Fracture Mechanics 》;20100327;第2063-2076页 *
复合裂纹的应力强度因子有限元分析;徐慧 等;《中南大学学报(自然科学版)》;20070228;第38卷(第1期);第79-83页 *
扩展数字图像相关方法中裂尖位移函数的表征研究;王骥骁 等;《实验力学》;20150228;第30卷(第1期);第30-41页 *
数字图像相关中的裂纹变形测量方法;付白强 等;《西安交通大学学报》;20210528;第55卷(第10期);第174-183页 *
正交异性材料I + II + III混合型裂纹尖端应力分析;贾普荣;《力学研究》;20201207;第9卷(第4期);第123-134页 *
物体内部三维位移场分析的数字图像体相关法;张庆 等;《理论与方法》;20200430;第39卷(第4期);第47-51页 *

Also Published As

Publication number Publication date
CN114266776A (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
Wang et al. A screw axis identification method for serial robot calibration based on the POE model
CN111540001B (zh) 航空发动机涡轮叶片气膜孔轴线方向检测方法
Rahayem et al. Best ellipse and cylinder parameters estimation from laser profile scan sections
CN110378906B (zh) 一种基于弦切线距离的椭圆检测方法
CN114897675B (zh) 一种数字图像相关中用于相关性加权的指数窗法
CN109583377B (zh) 一种管路模型重建的控制方法、装置及上位机
Buch et al. Prediction of ICP pose uncertainties using Monte Carlo simulation with synthetic depth images
CN114266776B (zh) 一种应用复合裂纹位移场函数的数字图像相关方法
Li et al. Research on the calibration technology of an underwater camera based on equivalent focal length
US8109007B2 (en) Object profile sensing
CN111369607A (zh) 一种基于图片解析的预制构件拼装匹配方法
CN110595479B (zh) 一种基于icp算法的slam轨迹评估方法
Zhang et al. Concentric-circle-based camera calibration
JP2017033374A (ja) データ照合装置、設計データ修正装置、形状測定装置、データ照合方法、およびプログラム
CN104112277A (zh) 一种基于双路径Radon变换的测试曲线的拐点间距计算方法
Li et al. Normal strain measurement by machine vision
CN113532308B (zh) 数字图像相关中带初值的岭回归应变测量方法
CN115512343A (zh) 一种圆形指针式仪表校正和读数识别方法
JP2016161291A (ja) 歪み測定方法及び装置、並びにプログラム及び記録媒体
CN108375337B (zh) 一种机器人及其工艺设备相对位姿的测定方法及测定装置
CN113865487A (zh) 一种基于结构表面位移场的疲劳裂纹扩展实时监测方法
JP6872324B2 (ja) 計測システム、計測方法および計測プログラム
CN111951401A (zh) 一种可用于激光扫描的管道弯头的精密三维几何模型构建方法
CN117095161B (zh) 一种向量化编码的旋转目标检测方法及装置
Chen et al. Surface Matching Method for the Armed Inspection Robots

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant