CN114250496A - 一种力学性能稳定的复合金属材料 - Google Patents

一种力学性能稳定的复合金属材料 Download PDF

Info

Publication number
CN114250496A
CN114250496A CN202210001018.8A CN202210001018A CN114250496A CN 114250496 A CN114250496 A CN 114250496A CN 202210001018 A CN202210001018 A CN 202210001018A CN 114250496 A CN114250496 A CN 114250496A
Authority
CN
China
Prior art keywords
metal material
composite
fe3si
gradient
composite layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210001018.8A
Other languages
English (en)
Inventor
刘丽娟
马立勇
吴东昊
康凯
马晓欣
王新明
冯小东
闫小军
马海越
王占英
梁建明
王洁
马宏
侯满哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Architecture
Original Assignee
Hebei University of Architecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Architecture filed Critical Hebei University of Architecture
Priority to CN202210001018.8A priority Critical patent/CN114250496A/zh
Publication of CN114250496A publication Critical patent/CN114250496A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/38Pretreatment of metallic surfaces to be electroplated of refractory metals or nickel
    • C25D5/40Nickel; Chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/42Pretreatment of metallic surfaces to be electroplated of light metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

本发明涉及合金制备领域,具体涉及一种力学性能稳定的复合金属材料,所述金属材料的上表面设有镍合金化Fe3Si复合层,其余表面梯度纳米化,所述镍合金化Fe3Si复合层中内含有纳米Y2O3颗粒,所述铁镍合金占复合金属材料主体重量的25~30%。本发明通过引入纳米Y2O3颗粒可以细化Fe3Si的晶粒,并使得其组织均匀化,从而使得所得的镍合金化Fe3Si复合层具有优良的力学性能、耐蚀性、耐磨性和抗氧化性;通过金属材料表面的梯度纳米化处理,在其内部形成了包含梯度晶粒,梯度位错和梯度孪晶的梯度混合结构,不仅显著提高材料屈服强度,同时还使其保持良好的塑性和稳定的加工硬化,抑制了裂纹的产生。

Description

一种力学性能稳定的复合金属材料
技术领域
本发明涉及合金制备领域,具体涉及一种力学性能稳定的复合金属材料。
背景技术
现代科学技术对现代新型材料的强韧 性,导电、导热性,耐高温性,耐磨性等性能都提出了越来越高的要求。金属基复合材料(metal matrix composites)是以金属及其合金为基体,与一种或几种金属或非金属增强相人工结合成的复合材料。与传统的金属材料相比, 金属基复合材料具有较高的比强度与比刚度,而与高分子基材料相比,它又具有优良的导电性和耐热性,与陶瓷材料相比,它有具有较好的韧性和较高的抗冲击性能。这些优良的性能决定了它从诞生之日起就成了新材料家庭中的重要一员,应用领域逐步扩大。
发明内容
本发明的目的在于提供一种力学性能稳定的复合金属材料,其具有优良的良好的力学性能、延展性、耐蚀性、耐磨性和抗氧化性。
为实现上述目的,本发明采取的技术方案为:
一种力学性能稳定的复合金属材料,包括金属材料,所述金属材料的上表面设有镍合金化Fe3Si复合层,其余表面梯度纳米化,所述镍合金化Fe3Si复合层中内含有纳米Y2O3颗粒,所述铁镍合金占复合金属材料主体重量的25~30%。
进一步地,所述镍合金化Fe3Si复合层的厚度为6~8μm,内添加SiC颗粒。
进一步地,所述纳米Y2O3颗粒的加入量占镍合金化Fe3Si复合层重量的0.3%~0.6%。
进一步地,利用高能喷丸技术或采用表面机械滚压技术对金属材料进行表面梯度纳米化处理。
进一步地,制备时,将完成表面梯度纳米化处理的金属材料进行表面机械整平、除油预处理,以得到表面光滑、平整、有金属光泽及无油污、无锈蚀物附着、无明显氧化层的洁净表面,再进行电化学共沉积制备得到设定厚度的复合镀层,复合镀层的镀液组成为:NiSO4·6H2O 250~350g/L,NiCl2·6H2O 30~50g/L,H3BO3 30~40g/L,十二烷基硫酸钠0.1~0.2g/L,SiC颗粒5~20g/L,纳米Y2O3颗粒0.3%~0.6%;控制pH 3.8~5.4,搅拌器转速300~600r/min,阴极电流密度1~5A/cm2,镀覆温度30~50℃,覆膜结束后,将电镀好的金属材料包埋在熔盐内,采用熔盐渗制制备镍合金化Fe3Si复合层。
本发明具有以下有益效果:
通过引入纳米Y2O3颗粒可以细化Fe3Si的晶粒,并使得其组织均匀化,从而使得所得的镍合金化Fe3Si复合层具有优良的力学性能、耐蚀性、耐磨性和抗氧化性;通过金属材料表面的梯度纳米化处理,在其内部形成了包含梯度晶粒,梯度位错和梯度孪晶的梯度混合结构,不仅显著提高材料屈服强度,同时还使其保持良好的塑性和稳定的加工硬化,抑制了裂纹的产生,基于此,获得了一种具有优良的良好的力学性能、延展性、耐蚀性、耐磨性和抗氧化性的复合金属材料。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1
一种力学性能稳定的复合金属材料,包括AZ31B镁合金,所述AZ31B镁合金的上表面设有镍合金化Fe3Si复合层,其余表面利用高能喷丸技术进行梯度纳米化处理,所述镍合金化Fe3Si复合层中内含有纳米Y2O3颗粒,所述铁镍合金占复合金属材料主体重量的25~30%。所述镍合金化Fe3Si复合层的厚度为6~8μm,制备时,先对金属材料进行表面机械整平、除油预处理,以得到表面光滑、平整、有金属光泽及无油污、无锈蚀物附着、无明显氧化层的洁净表面,再进行电化学共沉积制备得到设定厚度的复合镀层,复合镀层的镀液组成为:NiSO4·6H2O 250~350g/L,NiCl2·6H2O 30~50g/L,H3BO3 30~40g/L,十二烷基硫酸钠0.1~0.2g/L,SiC颗粒5~20g/L,纳米Y2O3颗粒0.3%~0.6%;控制pH 3.8~5.4,搅拌器转速300~600r/min,阴极电流密度1~5A/cm2,镀覆温度30~50℃,覆膜结束后,将电镀好的金属材料包埋在熔盐内,采用熔盐渗制制备镍合金化Fe3Si复合层。
实施例2
一种力学性能稳定的复合金属材料,包括GH4169合金,所述GH4169合金的上表面设有镍合金化Fe3Si复合层,其余表面利用高能喷丸技术进行梯度纳米化处理,所述镍合金化Fe3Si复合层中内含有纳米Y2O3颗粒,所述铁镍合金占复合金属材料主体重量的25~30%。所述镍合金化Fe3Si复合层的厚度为6~8μm,制备时,先对金属材料进行表面机械整平、除油预处理,以得到表面光滑、平整、有金属光泽及无油污、无锈蚀物附着、无明显氧化层的洁净表面,再进行电化学共沉积制备得到设定厚度的复合镀层,复合镀层的镀液组成为:NiSO4·6H2O 250~350g/L,NiCl2·6H2O 30~50g/L,H3BO3 30~40g/L,十二烷基硫酸钠0.1~0.2g/L,SiC颗粒5~20g/L,纳米Y2O3颗粒0.3%~0.6%;控制pH 3.8~5.4,搅拌器转速300~600r/min,阴极电流密度1~5A/cm2,镀覆温度30~50℃,覆膜结束后,将电镀好的金属材料包埋在熔盐内,采用熔盐渗制制备镍合金化Fe3Si复合层。。
实施例3
一种力学性能稳定的复合金属材料,包括2Cr13不锈钢,所述2Cr13不锈钢的上表面设有镍合金化Fe3Si复合层,其余表面采用表面机械滚压处理进行梯度纳米化处理,所述镍合金化Fe3Si复合层中内含有纳米Y2O3颗粒,所述铁镍合金占复合金属材料主体重量的25~30%。所述镍合金化Fe3Si复合层的厚度为6~8μm,制备时,先对金属材料进行表面机械整平、除油预处理,以得到表面光滑、平整、有金属光泽及无油污、无锈蚀物附着、无明显氧化层的洁净表面,再进行电化学共沉积制备得到设定厚度的复合镀层,复合镀层的镀液组成为:NiSO4·6H2O 250~350g/L,NiCl2·6H2O 30~50g/L,H3BO3 30~40g/L,十二烷基硫酸钠0.1~0.2g/L,SiC颗粒5~20g/L,纳米Y2O3颗粒0.3%~0.6%;控制pH 3.8~5.4,搅拌器转速300~600r/min,阴极电流密度1~5A/cm2,镀覆温度30~50℃,覆膜结束后,将电镀好的金属材料包埋在熔盐内,采用熔盐渗制制备镍合金化Fe3Si复合层。
经检测方法,实施例1-实施例3所得的力学性能稳定的复合金属材料的力学性能、延展性、耐蚀性、耐磨性和抗氧化性均较原始金属材料有显著的提升(P<0.01)。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (5)

1.一种力学性能稳定的复合金属材料,包括金属材料,其特征在于:所述金属材料的上表面设有镍合金化Fe3Si复合层,其余表面梯度纳米化,所述镍合金化Fe3Si复合层中内含有纳米Y2O3颗粒,所述铁镍合金占复合金属材料主体重量的25~30%。
2.如权利要求1所述的一种力学性能稳定的复合金属材料,其特征在于:所述镍合金化Fe3Si复合层的厚度为6~8μm,内添加SiC颗粒。
3.如权利要求1所述的一种力学性能稳定的复合金属材料,其特征在于:所述纳米Y2O3颗粒的加入量占镍合金化Fe3Si复合层重量的0.3%~0.6%。
4.如权利要求1所述的一种力学性能稳定的复合金属材料,其特征在于:利用高能喷丸技术或采用表面机械滚压技术对金属材料进行表面梯度纳米化处理。
5.如权利要求1所述的一种力学性能稳定的复合金属材料,其特征在于:制备时,将完成表面梯度纳米化处理的金属材料进行表面机械整平、除油预处理,以得到表面光滑、平整、有金属光泽及无油污、无锈蚀物附着、无明显氧化层的洁净表面,再进行电化学共沉积制备得到设定厚度的复合镀层,复合镀层的镀液组成为:NiSO4·6H2O 250~350g/L,NiCl2·6H2O 30~50g/L,H3BO3 30~40g/L,十二烷基硫酸钠0.1~0.2g/L,SiC颗粒5~20g/L,纳米Y2O3颗粒0.3%~0.6%;控制pH 3.8~5.4,搅拌器转速300~600r/min,阴极电流密度1~5A/cm2,镀覆温度30~50℃,覆膜结束后,将电镀好的金属材料包埋在熔盐内,采用熔盐渗制制备镍合金化Fe3Si复合层。
CN202210001018.8A 2022-01-04 2022-01-04 一种力学性能稳定的复合金属材料 Pending CN114250496A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210001018.8A CN114250496A (zh) 2022-01-04 2022-01-04 一种力学性能稳定的复合金属材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210001018.8A CN114250496A (zh) 2022-01-04 2022-01-04 一种力学性能稳定的复合金属材料

Publications (1)

Publication Number Publication Date
CN114250496A true CN114250496A (zh) 2022-03-29

Family

ID=80796128

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210001018.8A Pending CN114250496A (zh) 2022-01-04 2022-01-04 一种力学性能稳定的复合金属材料

Country Status (1)

Country Link
CN (1) CN114250496A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116622256A (zh) * 2023-05-28 2023-08-22 河北建筑工程学院 一种力学性能稳定的复合金属材料

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103305671A (zh) * 2013-05-17 2013-09-18 西安交通大学 一种对金属表面进行梯度纳米化的方法
CN110408966A (zh) * 2019-09-04 2019-11-05 西安建筑科技大学 一种扩散合成镍合金化Fe3Si复合层增强钢材表面综合性能的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103305671A (zh) * 2013-05-17 2013-09-18 西安交通大学 一种对金属表面进行梯度纳米化的方法
CN110408966A (zh) * 2019-09-04 2019-11-05 西安建筑科技大学 一种扩散合成镍合金化Fe3Si复合层增强钢材表面综合性能的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116622256A (zh) * 2023-05-28 2023-08-22 河北建筑工程学院 一种力学性能稳定的复合金属材料

Similar Documents

Publication Publication Date Title
Fini et al. Improvement of wear and corrosion resistance of AZ91 magnesium alloy by applying Ni–SiC nanocomposite coating via pulse electrodeposition
CN109030148B (zh) 一种铁基合金粉末ebsd检测试样的制备方法
CN109161941B (zh) 一种烧结钕铁硼磁体铜复合石墨烯镀层打底以提高耐蚀性的方法及产品
Popoola et al. Surface characterization, mechanical properties and corrosion behaviour of ternary based Zn–ZnO–SiO2composite coating of mild steel
Hashemi et al. Effect of SiC nanoparticles on microstructure and wear behavior of Cu-Ni-W nanocrystalline coating
CN102773434A (zh) 一种纳米复合电镀层连铸结晶器铜板及其制备工艺
CN110310795B (zh) 一种防腐钕铁硼磁体及其制备方法
Rezagholizadeh et al. Electroless Ni-P/Ni-BB 4 C duplex composite coatings for improving the corrosion and tribological behavior of Ck45 steel
CN1500916A (zh) 连铸结晶器铜板梯度复合镀层及其制备方法
CN102352522A (zh) Ni-Co-B合金代硬铬镀层的电沉积制备方法
CN103614751A (zh) 一种连铸结晶器铜板镍锰合金电镀层及其制备工艺
Fan et al. Effect of jet electrodeposition conditions on microstructure and mechanical properties of Cu–Al 2 O 3 composite coatings
CN114250496A (zh) 一种力学性能稳定的复合金属材料
CN102373494A (zh) 一种超硬材料合金复合镀的方法
Zhang et al. Fabrication of an oxidation-resistant β-NiAl coating on γ-TiAl
Nagayama et al. Properties of electrodeposited invar Fe–Ni alloy/SiC composite film
CN114672802A (zh) 一种纳米Si改性的WC/MoFeCrTiW高熵合金复合熔覆层的制备方法
CN108823619B (zh) 一种在闭孔泡沫铝表面沉积Ni-Mo-SiC-TiN复合镀层的方法
CN104131204A (zh) 一种镁合金、镁合金复合材料及其制备方法
CN108998794A (zh) 一种Re-Si共改性铝化物涂层及其制备方法
US4892627A (en) Method of nickel-tungsten-silicon carbide composite plating
CN104264150B (zh) 一种耐磨性和疲劳性能较好的TiN涂层模具
CN110408966B (zh) 一种扩散合成镍合金化Fe3Si复合层增强钢材表面综合性能的方法
Hu et al. Preparation of spherical WC–W2C composite powder via noble metal-free catalytic electroless nickel plating for selective laser melting
CN210030919U (zh) 压铸模具的表面涂层及压铸模具

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220329