CN114250236B - Dek48基因在调控玉米籽粒发育中的应用 - Google Patents

Dek48基因在调控玉米籽粒发育中的应用 Download PDF

Info

Publication number
CN114250236B
CN114250236B CN202111663976.3A CN202111663976A CN114250236B CN 114250236 B CN114250236 B CN 114250236B CN 202111663976 A CN202111663976 A CN 202111663976A CN 114250236 B CN114250236 B CN 114250236B
Authority
CN
China
Prior art keywords
dek48
gene
ala
arg
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111663976.3A
Other languages
English (en)
Other versions
CN114250236A (zh
Inventor
胡小娇
韩璐璐
王红武
刘小刚
李坤
黄长玲
张伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Crop Sciences of Chinese Academy of Agricultural Sciences
Original Assignee
Institute of Crop Sciences of Chinese Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Crop Sciences of Chinese Academy of Agricultural Sciences filed Critical Institute of Crop Sciences of Chinese Academy of Agricultural Sciences
Priority to CN202111663976.3A priority Critical patent/CN114250236B/zh
Publication of CN114250236A publication Critical patent/CN114250236A/zh
Application granted granted Critical
Publication of CN114250236B publication Critical patent/CN114250236B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/8267Seed dormancy, germination or sprouting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Physiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了DEK48基因在调控玉米籽粒发育中的应用,属于基因工程技术领域。本发明公开的DEK48基因在调控玉米籽粒发育中的应用,完成了DEK48基因的克隆,并利用基因编辑和等位测验方法验证了该基因的功能,研究结果为该基因在玉米产量和品质改良中的应用奠定了基础。

Description

DEK48基因在调控玉米籽粒发育中的应用
技术领域
本发明涉及基因工程技术领域,更具体的说是涉及DEK48基因在调控玉米籽粒发育中的应用。
背景技术
玉米(Zea mays L.)是世界第一大粮食作物,总产量超过10亿吨,占全球粮食总产量的40%,在保障世界粮食安全中具有重要地位。籽粒是玉米主要的营养储存器官,含有70-75%的淀粉,10%左右的蛋白质,4-5%的脂肪,2%左右的多种维生素。籽粒的正常发育决定了其营养品质和经济价值。玉米的种子由胚、胚乳和表皮三部分组成。胚位于种子中央,占种子总重量的20-30%。胚乳占种子的70-80%,又可分为淀粉胚乳、胚包围层、基部转移层和糊粉层。
籽粒突变体是研究玉米种子发育的重要材料。不同类型的玉米籽粒突变体,如小籽粒(smallkernel,smk)、胚缺陷(embryo defective/specific,emb)、胚乳缺陷(defective kernel,dek)等突变类型被广泛应用于籽粒发育调控基因的克隆和功能解析研究。例如通过对emb类胚特异发育突变体的研究发现,质体蛋白对种子胚胎早期发育至关重要,质体蛋白翻译的缺陷可能激发负调控信号关闭胚胎早期发育过程。玉米突变体emb8516表现为籽粒胚败育,克隆结果表明在编码质体核糖体蛋白的ZmPRPL35-1基因中插入了一个Mu转座子,该基因的突变引起了胚细胞的合成代谢异常从而导致胚败育。突变体lem1在质体核糖体蛋白基因PRPS9的编码区插入了一个Ac转座子,进而引起胚早期败育。对smk和dek类型的突变体进行研究发现PPR(pentatricopetide repeat)蛋白家族作为反式作用因子,广泛参与了叶绿体和线粒体的RNA编辑,对开花植物种子的基部转移层细胞分化以及胚和胚乳的早期发育具有重要作用。例如Smk1编码一个E型PPR蛋白,该蛋白参与线粒体NAD7-279位点的编辑,smk1突变体胚与胚乳发育迟滞,种子变小。Dek2编码P亚家族的PPR蛋白,该蛋白功能的丧失导致线粒体复合体I的亚基nad1的第1个内含子剪接效率降低;Dek10编码E亚家族的PPR蛋白,基因突变后导致线粒体复合体I的亚基nad3和复合体IV的亚基cox2功能丧失;Dek35编码P亚家族的PPR蛋白,基因突变后线粒体复合体I的亚基nad4第1个内含子剪接效率降低。这些PPR蛋白的突变造成线粒体功能受损,能量代谢受阻,严重影响胚和胚乳的发育。以上研究结果表明,胚与胚乳的发育是非常复杂的生物学过程,对玉米籽粒形态建成具有重大影响。进一步发掘影响籽粒发育的关键基因,对全面揭示玉米籽粒发育的分子调控机理具有重要意义。
前期研究中发现一个EMS诱变产生的籽粒缺陷突变体dek48。该突变体与野生型相比籽粒皱缩扁小,胚和胚乳均表现出严重发育缺陷(图1)。不同遗传背景下dek48突变籽粒重量显著降低,百粒重仅为野生型籽粒的10%~17%。dek48突变籽粒中淀粉和蛋白含量较野生型显著减少。此外,突变籽粒淀粉粒结构也发生改变,较野生型小且疏松多孔。遗传分析表明dek48性状受隐性单基因控制,利用图位克隆策略将DEK48基因定位在3号染色体的130kb区段内。
因此,提供DEK48基因在调控玉米籽粒发育中的应用是本领域技术人员亟需解决的问题。
发明内容
有鉴于此,本发明提供了DEK48基因在调控玉米籽粒发育中的应用。
为了实现上述目的,本发明采用如下技术方案:
DEK48基因在调控玉米籽粒发育中的应用,所述DEK48基因的CDS序列如SEQ IDNO.2所示。
进一步,所述DEK48基因编码产物的氨基酸序列如SEQ ID NO.3所示。
进一步,所述DEK48基因的克隆引物序列如SEQ ID NO.4和SEQ ID NO.5所示。
进一步,利用基因编辑和等位测验方法验证DEK48基因的功能。
所述基因编辑验证为利用CRISPR-Cas9重组质粒DEK48-sgRNA1-sgRNA2进行验证,所述重组质粒DEK48-sgRNA1-sgRNA2的核苷酸序列含DEK48基因的PAM和gRNA碱基序列,可针对该基因进行编辑表达。
进一步,利用DEK48基因编辑转化阳性事件的检测引物进行验证;所述检测引物的核苷酸序列如SEQ ID NO.20和SEQ ID NO.21所示。
经由上述的技术方案可知,与现有技术相比,本发明公开提供了DEK48基因在调控玉米籽粒发育中的应用,完成了DEK48基因的克隆,并利用基因编辑和等位测验方法验证了该基因的功能,研究结果为该基因在玉米产量和品质改良中的应用奠定了基础。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1附图为dek48突变体与野生型(玉米自交系郑58)籽粒表型比较;
其中,A:杂合基因型(+/dek48)自交果穗,箭头所指的籽粒为dek48突变籽粒;B:野生型籽粒纵切面(M4-WT);C:dek48籽粒纵切面(M4-dek48);
图2附图为本发明DEK48基因的克隆;
其中,A:DEK48基因结构,dek48突变体在第二个外显子上发生“G”到“A”的突变;B:DEK48编码蛋白结构,dek48突变蛋白的164位氨基酸由Gly变为Asp;C:突变位点分析,dek48突变位点处测序为“A”,其他自交系测序为“G”;
图3附图为本发明不同物种间DEK48蛋白氨基酸序列比对;
DEK48蛋白的HXXXDG结构域在不同物种间非常保守,dek48突变体蛋白的HXXXDG保守结构域突变为HXXXDD;
图4附图为本发明不同物种DEK48蛋白进化树分析;
Zea mays:玉米;Oryza sativaJaponica:水稻;Aegilops tauschii:山羊草;Brachypodium distachyon:二穗短柄草;Musa acuminata:野芭蕉;Setaria italica:谷子;Sorghum bicolor:高粱;Arabidopsis thaliana:拟南芥;Triticum aestivum:小麦;Hordeum vulgare:大麦;其中,玉米DEK48与高粱进化关系较近;
图5附图为本发明DEK48基因在玉米自交系郑58苗期、拔节期、开花期和授粉后不同组织中的表达水平;
图6附图为本发明DEK48蛋白的亚细胞定位;
其中,第一排为DEK48的亚细胞定位,第二排为GFP对照;图片从左到右分别为绿色荧光、明场、叶绿体自发荧光和多通道叠加;
图7附图为本发明DEK48基因编辑位点变异及转基因表型;
其中,A图为两个独立的DEK48编辑事件及其序列突变形式;B图为两个编辑事件T1代自交果穗的籽粒突变和分离表现;
图8附图为本发明dek48突变体与基因编辑T2代的等位测验;
从左到右依次为DEK48杂合自交果穗、编辑事件694-43T2代自交果穗、DEK48杂合植株与696-43杂合植株杂交产生的F1果穗,标尺=3cm。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
dek48突变体参见“玉米籽粒突变体dek48的表型鉴定与基因定位,石慧敏,作物学报,2020,46(9):1359-1367”。
实施例1 DEK48基因的克隆
DEK48基因精细定位于玉米3号染色体130kb区间内,利用Gramene(http://www.gramene.org/)网站检索到此区间内共有6个蛋白编码基因。包括WRKY家族转录因子(Zm00001d039532)、半胱氨酸氧化酶(Zm00001d039533)、F-box家族蛋白(Zm00001d039534)、乙酰转移酶(Zm00001d039535)、突触融合蛋白(Zm00001d039536)和ALWAYS EARLY蛋白3(Zm00001d039537)。对6个候选基因的外显子进行测序分析,结果显示,Zm00001d039535基因的第二个外显子的第65个碱基在dek48突变体中由G突变为A,导致原位点的甘氨酸突变为天冬氨酸(图2A)。对5个玉米自交系(Zheng58、Chang7-2、Zong31、Q319、CL11)包含该突变位点的区段进行测序,发现这些玉米自交系在该位点均为G(图2C),进一步表明该SNP的突变可能是造成dek48籽粒发育缺陷表型的原因。在Gramene数据库对DEK48基因结构和功能注释结果显示,DEK48全长2854bp(SEQ ID NO.1),编码乙酰转移酶(图2B),属于BAHD家族,包含HXXXDG和DYGFG两个保守区域。在基因的5’和3’端设计引物对cDNA全长进行扩增,结果表明DEK48基因CDS全长1254bp(SEQ ID NO.2),有两个外显子。DEK48基因编码氨基酸序列如SEQ ID NO.3所示。
DEK48基因组序列如下:
ATGGCGGGGTTCAAGGTGACGCGGATCTCGGAGGGCCCCGTGAAGCCGGCGTCGGCGACGCCCGAGGAGACGCTGCCGCTGGCTTGGGTGGACCGGTACCCGACGCACCGTGGCCTGGTGGAGTCGATGCACATCTTCCGGTCGGGCGCGGGCGAGGCCCCGGCCGTGATCCGGGCGGCGCTGGCCAAGGCGCTGGCCTTCTTCTACCCGCTGGCGGGCCGCATCGTGGAGGGGGAGCAGCCGGGGCGCCCCGCCATCCGCTGCACCGCCGACGGCGTCTACTTCGCGGAGGCCGAGGCGGACTGCAGCCTGGAGGACGTGCGCTTCCTGGAGCGGCCCCTGCTGCTGCCCAAGGAGGACCTCGTGCCTTACCCCGGCGACGACCGCTGGCCCGTCGAGCCGCACAACACCATCATGATGATGCAGGTATCTTAGACCACACCACACCTCGCCTCACCTCATCCCGTCAGTCAATTCCGCAGCGAGCTTTGTTTGGACCATACGACCCGCCGACGGCCGACGAGCTCAGCTCAGCGCGCGCGCTTTGTTTGGAGAGGGATCCGTTGTTCGTCGGGCCAGATCCGGGCACGCGCGCGCGGTAGATCTGGGGAGCTGCAGCCTGGCGAGGGGTCAAAAGCCCAGGGTCAGAGAAGGCGCGCTCACGGCCACCTAGGGAGGTTGACCGTGTCGGTTAATCAGGATGGCAAGTGGGACCAACGCTGCCAGATTCCCGCCGTCGCATAATCACGCACATCGTGCTTCCATAGTACTGTTTTTTTTTTATTATTTTCTTCTTGCATTTGAATCGAAAAAAATAATGCCTAAAACATAGTTTTAGTTTCCGAAATAAAATAGTGAGACAAAATCCTAGAAACCAAACGGTCAGGTAAAAAGCAGGGAGGGACTACCGGACAGGCAGCGAGAACGATTAATGGGTTAACGGCTACTAGTAGTACTAGCAGCGGCTGTAGGGAGATTCCCTCGACGCCGCGGTGGCGGTGGGAGCGGATGGCCACCGTACAGTACTGAATGCGGGCGGTGAGGCTGATCCGCGCCGATCTGGATATGCGTGAGCGTCCGTGCTCGCGTCCGTGCTCCGGCAGACGAGCCCAGGTTGGTCGTCTGACACGCATGGCGTCTGAGGTCAGCAGTGGAGAACTTGCGGCCAATTCTCAATTCCGCCGACAGAAGCCGCTACGTCACACTCCAGCGTGACCTTGCGTCGACTATCCAACGTGACCTTGGGTGGTGGGTGGGTGGGTAGGGTGGGCGGCTGGTAGGTAGGTCCGCGCTGGCGTAGACGGCTGCCGCGAACTCGGTGCCCGAAAGCGGTGCCAGCGCCACGATGTGAACCCCGGACAAAGAAGCGGGGAGAAGAGGCGTGCTGAACTGGGCTTGCTCTGTCCACGACGCTCCAATTTGCCATTTGGTAGTAGTACATGTTGGTAGTGGTCATCTTGCCGTATATATTGCCCTGCCCTTATAAAGGCACGACGAACTGTACCCGTGGTCATCTTGCCATGTCCTAGTTTTCAATATATTTATGACAGTAGTAGATGCTGGTAGTGGTCATCTTGCCATACACCCATATTTAGCCACAAAATTGTACCCGTGGTGTTGGTGCCGAGTGCCGACCGGGCATGACCAGTAGCTGACCGGTTGTTGTCGTTGTCGTTGCCGGTAGTTTACTCGATCGTACGTGGATGTTGCCTTTGCGATCAGGGTTCAGGGATCAGCCATGGCTTTAGCTTCTTTTCCTGCTTTCGTCCACGGCCCACCGACATCTTTGCGGGGGGTAGTTGGACAAGAGCCGTGTCAGTATAGATCACAACTTTCGCAACTACTGCACCTTTCATACTGCTGCCAGTGGTTGCCACCGACTGCACACCCTTTCCTTTCTTCACGGTTGCGTGCGACTGATTTGCCACCGAGAGACGATTAATTAAGACGCACGCTTCGGATCTGAACAAAATAAACCTGTGTAGAAAGAAAGAAAAAAAAAATAACGTCAATTGCATGCTCTCAGATCACCAAGTTCACCTGCGGCGGCTTCGTGATGGGCCTGCGGTTCAACCACGCGTCGGCGGACGGCATGGGCGCGGCGCAGTTCATCAACGCGGTGGGGGACATGGCGCGGGGGCTGGCGGAGCCGAGGGTGCTGCCCGTGTGGCACCGGGAGAAGTTCCCGGACCCGAGCATCAAGCCAGGCCCGCTCCCGGAGCTGCCCGTGCTGGCGCTGGACTACGTCGTGCTCGACTTCCCCACGGCCTACATCGACGGGCTCAAGCGGGAGTACAAGGCGCACAGCGGCAGGTTCTGCTCCGGCTTCGACGTGCTCACGGCCAAGCTCTGGCAGTGCCGCACCCGGGCGCTGGCCCTGGACCCGGCCGCCGAGGTCAAGCTCTGCTTCTTCGCCAGCGTCCGCCACCTGCTCAAGCTCGACCGGGGGTACTACGGCAACTCCATCTTCCCCGTCAAGATGTCCGCGCCGGCCGACAAGGTGCTGGCCTCCTCGCTCGTGGAGGTGGTCGACATCATCCGGGAGGCCAAGGACAGGATGGCCGTCGAGTTCTCCCGCTTCGCTGGGGAGGAGACGGACCAGGACCCGTTCCAGATGACCTTCAACTACGAGTCCATCTACGTCTCCGACTGGAGCAAGCTCGGCTTCTCCGAGGTCGACTACGGCTTCGGCCCGCCCATCTTCGCCGGCCCGCTCGTCAACAACGACTTCATCGCCTCCGTCGTCTTCCTCAAGGCGCCGCTCCCGCTCGACGGCACCAGGATGCTCGCCAGCTGCGTCACCAAGGAACACTCCGAGGAGTTCGCCCGTGGCATGAAGGAAGACCTGCCCTGA;SEQ ID NO.1。
DEK48 CDS序列如下:
ATGGCGGGGTTCAAGGTGACGCGGATCTCGGAGGGCCCCGTGAAGCCGGCGTCGGCGACGCCCGAGGAGACGCTGCCGCTGGCTTGGGTGGACCGGTACCCGACGCACCGTGGCCTGGTGGAGTCGATGCACATCTTCCGGTCGGGCGCGGGCGAGGCCCCGGCCGTGATCCGGGCGGCGCTGGCCAAGGCGCTGGCCTTCTTCTACCCGCTGGCGGGCCGCATCGTGGAGGGGGAGCAGCCGGGGCGCCCCGCCATCCGCTGCACCGCCGACGGCGTCTACTTCGCGGAGGCCGAGGCGGACTGCAGCCTGGAGGACGTGCGCTTCCTGGAGCGGCCCCTGCTGCTGCCCAAGGAGGACCTCGTGCCTTACCCCGGCGACGACCGCTGGCCCGTCGAGCCGCACAACACCATCATGATGATGCAGATCACCAAGTTCACCTGCGGCGGCTTCGTGATGGGCCTGCGGTTCAACCACGCGTCGGCGGACGGCATGGGCGCGGCGCAGTTCATCAACGCGGTGGGGGACATGGCGCGGGGGCTGGCGGAGCCGAGGGTGCTGCCCGTGTGGCACCGGGAGAAGTTCCCGGACCCGAGCATCAAGCCAGGCCCGCTCCCGGAGCTGCCCGTGCTGGCGCTGGACTACGTCGTGCTCGACTTCCCCACGGCCTACATCGACGGGCTCAAGCGGGAGTACAAGGCGCACAGCGGCAGGTTCTGCTCCGGCTTCGACGTGCTCACGGCCAAGCTCTGGCAGTGCCGCACCCGGGCGCTGGCCCTGGACCCGGCCGCCGAGGTCAAGCTCTGCTTCTTCGCCAGCGTCCGCCACCTGCTCAAGCTCGACCGGGGGTACTACGGCAACTCCATCTTCCCCGTCAAGATGTCCGCGCCGGCCGACAAGGTGCTGGCCTCCTCGCTCGTGGAGGTGGTCGACATCATCCGGGAGGCCAAGGACAGGATGGCCGTCGAGTTCTCCCGCTTCGCTGGGGAGGAGACGGACCAGGACCCGTTCCAGATGACCTTCAACTACGAGTCCATCTACGTCTCCGACTGGAGCAAGCTCGGCTTCTCCGAGGTCGACTACGGCTTCGGCCCGCCCATCTTCGCCGGCCCGCTCGTCAACAACGACTTCATCGCCTCCGTCGTCTTCCTCAAGGCGCCGCTCCCGCTCGACGGCACCAGGATGCTCGCCAGCTGCGTCACCAAGGA ACACTCCGAGGAGTTCGCCCGTGGCATGAAGGAAGACCTGCCCTGA;SEQ ID NO.2。
DEK48基因编码氨基酸序列如下:
MAGFKVTRISEGPVKPASATPEETLPLAWVDRYPTHRGLVESMHIFRSGAGEAPAVIRAALAKALAFFYPLAGRIVEGEQPGRPAIRCTADGVYFAEAEADCSLEDVRFLERPLLLPKEDLVPYPGDDRWPVEPHNTIMMMQITKFTCGGFVMGLRFNHASADGMGAAQFINAVGDMARGLAEPRVLPVWHREKFPDPSIKPGPLPELPVLALDYVVLDFPTAYIDGLKREYKAHSGRFCSGFDVLTAKLWQCRTRALALDPAAEVKLCFFASVRHLLKLDRGYYGNSIFPVKMSAPADKVLASSLVEVVDIIREAKDRMAVEFSRFAGEETDQDPFQMTFNYESIYVSDWSKLGFSEVDYGFGPPIFAGPLVNNDFIASVVFLKAPLPLDGTRMLASCVTKEHSEEFARGMKEDLP;SEQ ID NO.3。
基因扩增引物序列如下:
DEK48-F:5’-ATGGCGGGGTTCAAGGTGAC-3’;SEQ ID NO.4;
DEK48-R:5’-GGGCAGGTCTTCCTTCATGCC-3’;SEQ ID NO.5。
对不同物种的DEK48蛋白序列做多序列比对并构建进化树,结果见图3和图4。图3结果表明,不同物种间DEK48蛋白序列均有两个保守域HXXXDG和DYGFG,dek48突变蛋白的保守区域由HASADG突变为HASADD,可能影响了蛋白功能。图4结果表明,DEK48蛋白序列在水稻(OryzasativaJaponica)、谷子(Setaria italica)、高粱(Sorghum bicolor)等单子叶植物中均有高度同源序列,而在拟南芥(Arabidopsis thaliana)这种双子叶植物中同源性最低。
实施例2 DEK48基因的组织特异性表达分析
(1)DEK48基因的组织取样、RNA提取和反转录
在北京昌平试验基地种植野生型自交系郑58,在苗期、拔节期、抽雄期和授粉后,分别用液氮取根、叶、茎、雄穗、雌穗、花丝,以及授粉后5、8、11、14、17、20、24、28、31和34天的籽粒等组织,保存于-80℃冰箱。
利用植物总RNA提取试剂盒(天根生化科技(北京)有限公司,Cat#DP441)提取RNA。具体步骤如下:(1)将100mg玉米叶片、茎或籽粒等组织在液氮中迅速研磨成粉末,加入500μL的SL,涡旋震荡混匀,(玉米籽粒RNA提取用裂解液HL)。(2)12000g离心2min,将上清液转移至过滤柱CS上,12000g离心2min,吸取上清液置RNase-Free离心管内。(3)缓慢加入0.4倍上清体积的无水乙醇,混匀后转入吸附柱CR3中,12000g离心1min,弃废液。(4)加入350μL去蛋白液RW1,12000g离心1min,弃废液,加入80μL的DNase I工作液,室温放置15min。(5)加入350μL去蛋白液RW1,12000g离心1min,弃废液。(6)加入500μL漂洗液RW,12000g离心1min,弃废液,重复一次。(7)12000g离心2min,将吸附柱CR3置于新RNase-Free离心管内,滴加30-50μL RNase-Free ddH2O,室温放置2min,12000g离心1min,-80℃保存。
使用cDNA第一链合成试剂盒(天根生化科技(北京)有限公司,Cat#KP116-2)反转录成cDNA。在冰上进行操作,具体步骤如下:(1)在离心管内加入4μL的5×FastKing-RTSuperMix,加入2μg的总RNA,用RNase-Free ddH2O补足到20μL。(2)置于PCR仪上,42℃反应15min,95℃反应3min。-20℃保存。
(2)DEK48基因表达的荧光定量分析
设计DEK48荧光定量引物,具体引物序列如下:
DEK48qPCR-F:5’-GAAGGAAGACCTGCCCTGAA-3’;SEQ ID NO.6;
DEK48qPCR-R:5’-CAACAGCATCAACGAAACAGAAG-3’;SEQ ID NO.7。
使用TBPremix Ex TaqTM(Tli RNaseH Plus)试剂盒(宝日医生物技术(北京)有限公司,Cat#RR820A)进行Real-Time PCR。具体操作如下:
Quantitative Real-time PCR扩增体系:cDNA模板2μL,TB Green Premix Ex Taq(Tli RNaseH Plus)10μL,引物DEK48qPCR-F和DEK48qPCR-R(10μM)各0.4μL,RNase-freeddH2O 7.2μL。
Quantitative Real-time PCR反应程序为:95℃预变性30s;95℃变性5s,60℃退火和延伸30s,共40个循环;添加熔解曲线分析(Melting/Dissociation Curve Stage)。使用Bio-Rad的CFX96荧光定量仪运行以上程序。
用实时荧光定量PCR检测各组织的表达量,结果见图5。图5结果表明,DEK48在各个组织中均有表达,为组成型表达基因,在苗期根、成熟期根、拔节期第12节茎、雄穗和授粉后5天的籽粒中表达量较高。在不同时期的籽粒中,DEK48在授粉后第5天的籽粒中表达量最高,在授粉后第8天的籽粒的表达量则明显降低,随着籽粒成熟,DEK48表达量呈现降低趋势。
实施例3 DEK48蛋白的亚细胞定位
DEK48蛋白的亚细胞定位载体构建:
提取基础载体PN580质粒(包含GFP序列,购于BioVectorNTCC典型培养物保藏中心),用Sma I酶将其进行酶切。酶切完成后扩增DEK48的CDS区(去终止密码子)序列,将CDS连接到PN580载体上。CDS序列由引物对DEK48-F,DEK48-R进行扩增,产物为1251bp。PCR程序设置为95℃预变性3min;95℃变性30s,60℃退火45s,72℃延伸45s,35个循环;72℃延伸5min,12℃保存。将扩增得到的带有1251bp DEK48片段与经Sam I酶切线性化质粒PN580载体通过基于同源臂infusion连接方式进行同源重组连接,形成环状质粒载体PN580-DEK48-GFP。
构建DEK48蛋白的亚细胞定位载体(PN580-DEK48-GFP),在玉米原生质体瞬时表达,结果见图6;结果发现DEK48蛋白在细胞膜和细胞质中均有表达,说明DEK48在细胞膜和细胞质中发挥功能。
实施例4基于CRISPR/Cas9定点编辑的DEK48基因功能验证
1)CRISPR/Cas9基因编辑载体的构建
CRISPR/Cas9载体为CPB载体(包含ZmUbi启动子和Cas9蛋白),由中国农业科学院作物科学研究所谢传晓实验室惠赠,参见“RNA-guided Cas9 as an in vivo desired-target mutator inmaize,Plant Biotechnology Journal(2017)15,pp.1566-1576”。
(1)突变靶点选择
在DEK48基因保守结构序列上选取2个靶点,构建双靶点sgRNA和Cas9蛋白的表达盒,并将其插入双元表达载体CPB,完成CRISPR/Cas9敲除载体构建。两个靶向DEK48的sgRNA分别为sgRNA1和sgRNA2。
其中sgRNA1靶点的核苷酸序列为:
5’-AAGCTCGACCGGGGGTACTA-3’,SEQ ID NO.8;靶向于DEK48基因SEQ ID NO.2的第835-854位;
sgRNA2靶点的核苷酸序列为:
5’-AGGAACACTCCGAGGAGTTC-3’,SEQ ID NO.9;靶向于DEK48基因SEQ ID NO.2的第1205-1224位。
(2)目的片段(双靶点sgRNA和Cas9蛋白的表达盒)的获得与纯化
扩增目标片段序列
目标片段U6-2启动子由site1-U6-2-F(site2-U6-2-F)、site1-U6-2-R(site2-U6-2-R)引物分别进行扩增,引物序列如下:
site1-U6-2-F:5’-CGGGTCACGCTGCACTGCACAAGCTAATTGGCCCTTACAAAATAGCTAG-3’;SEQ ID NO.10;
site1-U6-2-R:5’-AAGCTCGACCGGGGGTACTAGGAGCGGTGGTCGCAGCTGAAC-3’;SEQ IDNO.11;
site2-U6-2-F:5’-GAACTCCTCGGAGTGTTCCTGGAGCGGTGGTCGCAGCTGAAC-3’;SEQ IDNO.12;
site2-U6-2-R:5’-CCGCCAAAAGGGGTGAAGCCGGAGCGGTGGTCGCAGCTGAACTTA-3’;SEQID NO.13;
扩增体系为:CPB载体2μL,引物site1-U6-2-F(site2-U6-2-F)和site1-U6-2-R(site2-U6-2-R)各1μL、2×HieffPCRMaster Mix(上海翊圣生物科技有限公司,Cat#10136es03)10μL,ddH2O 6μL。扩增程序为95℃预变性3min;95℃变性30s,56℃退火30s,68℃延伸10s,35个循环;68℃延伸5min,12℃保存。PCR产物用1.5%的琼脂糖凝胶电泳检测,利用凝胶试剂盒进行回收。
目标片段sgRNA scanfold片段由site1-sgRNA-F(site2-sgRNA-F)、site1-sgRNA-R(site2-sgRNA-R)引物分别进行扩增,引物序列如下:
site1-sgRNA-F:5’-TAGTACCCCCGGTCGAGCTTGTTTTAGAGCTAGAAATAGC-3’;SEQ IDNO.14;
site1-sgRNA-R:5’-GTAAAACGACGGCCAGTGCCAAGCTTAAAAAAAGCACCGACTCGGTGCCAC-3’;SEQ ID NO.15;
site2-sgRNA-F:5’-AGGAACACTCCGAGGAGTTCGTTTTAGAGCTAGAAATAGC-3’;SEQ IDNO.16;
site2-sgRNA-R:5’-GTAAAACGACGGCCAGTGCCAAGCTTAAAAAAAGCACCGACTCGGTGCCAC-3’;SEQ ID NO.17;
扩增体系为:CPB载体2μL,引物site1-sgRNA-F(site2-sgRNA-F)和site1-sgRNA-R(site2-sgRNA-R)各1μL、2×HieffPCR Master Mix(上海翊圣生物科技有限公司,Cat#10136es03)10μL,ddH2O 6μL。扩增程序为95℃预变性3min;95℃变性30s,58℃退火20s,68℃延伸20s,35个循环;68℃延伸5min,12℃保存。PCR产物用1%琼脂糖凝胶电泳检测后,使用M5 Gel Extraction Kit试剂盒(北京聚合美生物科技有限公司,MF029-01)进行对U6-2启动子和sgRNA scanfold片段进行胶回收。
将PCR扩增得到的U6-2启动子和sgRNA scanfold片段中间利用重叠引物的方式引入20bp的sgRNA(SEQ ID NO.8和SEQ ID NO.9),通过重叠PCR最终得到U6-2::gRNA1::sgRNAscaffold重叠片段和U6-2::gRNA2::sgRNA scaffold重叠片段。反应体系如下:U6-2启动子和sgRNA scanfold片段的胶回收产物各2μL,引物site1-U6-2-F(site2-U6-2-F)、site1-sgRNA-R(site2-sgRNA-R)各1μL,2×HieffPCR MasterMix(上海翊圣生物科技有限公司,Cat#10136es03)10μL和ddH2O 6μL。PCR程序如下:94℃预变性2min;94℃变性15s,58℃退火20s,68℃延伸2min,35个循环;68℃延伸7min,12℃保存。
反应完成后,对目的片段进行胶回收,送华大基因进行测序。
载体酶切和连接
基础CPB酶切载体的制备和回收:利用HindIII对CPB载体进行消化,其反应体系共50μL:5μL CPB载体DNA(200ng/μL)、5μL 10×Buffer、1μLHindIII内切酶、39μLddH2O。反应程序:37℃金属浴1h,反应完成后1%的琼脂糖凝胶电泳,对目的片段进行胶回收。
使用HieffPlus One Step Cloning Kit试剂盒(上海翊圣生物科技有限公司,Cat#10911es20)利用定向克隆方法连接酶切后的线性载体(即上述CPB酶切载体)和靶点片段(即上述重叠PCR产物)。反应体系是10μL的2×Hieff/>Enzyme Premix、50ng的酶切线性载体、200ng的目的片段(即U6-2::gRNA1::sgRNA scaffold),用ddH2O补足至20μL。具体步骤如下:1)混匀后短暂离心,置于50℃金属浴中反应20min;2)在冰上解冻克隆感受态细胞(DH 5αChemically Competent Cell,Cat#11802ES);3)取10μL重组载体产物,加入到100μL感受态细胞中,轻弹管壁数下混匀,冰浴30min;4)42℃热激90s,冰浴孵育2min;加入900μL LB液体培养基,37℃孵育10min;5)37℃,200rpm,摇菌45min;5000rpm离心3min,弃掉900μL上清;用剩余培养基将菌体重悬,用无菌涂布棒在含有硫酸卡纳霉素抗性的平板上轻轻涂匀;6)待菌液被吸收,将平板倒置,于37℃过夜培养;7)用无菌的枪头将单个菌落挑至PCR板孔内作为PCR模板,进行菌落PCR,所用PCR引物为:5’-CATTCGCCATTCAGGCTGC-3’;SEQ ID NO.18;和5’-AACTGTAGAGTCCTGTTGTC-3’;SEQ ID NO.19;8)用1%琼脂糖凝胶电泳检测,选取含有938bp条带的阳性克隆进行测序。
上述测序正确的克隆摇菌培养,提取质粒并进行HindIII酶切,重复上述定向克隆步骤将U6-2::gRNA2::sgRNA scaffold连接到酶切后的线性载体上,并转化感受态细胞,反应体系和方法同上。利用菌落PCR检测引物扩增(SEQ ID NO.18和SEQ ID NO.19),选取含有1440bp条带的阳性克隆进行测序。
测序结果表明,重组载体阳性克隆含有双靶点U6-2::gRNA1::sgRNA::U6-2::gRNA2::sgRNA和Cas9蛋白的表达盒。将阳性单克隆菌摇菌培养,然后从培养菌液中提取质粒,即得到CRISPR-Cas9重组质粒DEK48-sgRNA1-sgRNA2。
DEK48蛋白有两个结构域,包括HXXXDG和DYGFG,在DYGFG结构域选择两个靶点,通过Infusion法连接到CPB载体通过农杆菌侵染受体B104幼胚,用潮霉素抗性筛选,获得10个稳定转化事件,其中有3个自交事件,其余都为测交事件。设计靶点检测引物5’-GACTACGTCGTGCTCGACTTCC-3’;SEQ ID NO.20;和5’-GTCACCATTCATCATCTCCCTG-3’;SEQ IDNO.21;通过扩增靶点发现,编辑事件696-2在靶点1处(即CDS第832至845位核苷酸)缺失14bp(SEQ ID NO.22),导致蛋白功能缺失(SEQ ID NO.23)。编辑事件696-43在靶点1处(即CDS第838位核苷酸)缺失1个碱基(SEQ ID NO.24),导致蛋白功能缺失(SEQ ID NO.25)。两个阳性事件自交产生的T2代有类似dek48的籽粒突变表型,且野生型与突变体籽粒分离比符合3:1(图7)。
696-2基因编辑事件DEK48基因的CDS序列如下:
ATGGCGGGGTTCAAGGTGACGCGGATCTCGGAGGGCCCCGTGAAGCCGGCGTCGGCGACGCCCGAGGAGACGCTGCCGCTGGCTTGGGTGGACCGGTACCCGACGCACCGTGGCCTGGTGGAGTCGATGCACATCTTCCGGTCGGGCGCGGGCGAGGCCCCGGCCGTGATCCGGGCGGCGCTGGCCAAGGCGCTGGCCTTCTTCTACCCGCTGGCGGGCCGCATCGTGGAGGGGGAGCAGCCGGGGCGCCCCGCCATCCGCTGCACCGCCGACGGCGTCTACTTCGCGGAGGCCGAGGCGGACTGCAGCCTGGAGGACGTGCGCTTCCTGGAGCGGCCCCTGCTGCTGCCCAAGGAGGACCTCGTGCCTTACCCCGGCGACGACCGCTGGCCCGTCGAGCCGCACAACACCATCATGATGATGCAGATCACCAAGTTCACCTGCGGCGGCTTCGTGATGGGCCTGCGGTTCAACCACGCGTCGGCGGACGGCATGGGCGCGGCGCAGTTCATCAACGCGGTGGGGGACATGGCGCGGGGGCTGGCGGAGCCGAGGGTGCTGCCCGTGTGGCACCGGGAGAAGTTCCCGGACCCGAGCATCAAGCCAGGCCCGCTCCCGGAGCTGCCCGTGCTGGCGCTGGACTACGTCGTGCTCGACTTCCCCACGGCCTACATCGACGGGCTCAAGCGGGAGTACAAGGCGCACAGCGGCAGGTTCTGCTCCGGCTTCGACGTGCTCACGGCCAAGCTCTGGCAGTGCCGCACCCGGGCGCTGGCCCTGGACCCGGCCGCCGAGGTCAAGCTCTGCTTCTTCGCCAGCGTCCGCCACCTGGGGGTACTACGGCAACTCCATCTTCCCCGTCAAGATGTCCGCGCCGGCCGACAAGGTGCTGGCCTCCTCGCTCGTGGAGGTGGTCGACATCATCCGGGAGGCCAAGGACAGGATGGCCGTCGAGTTCTCCCGCTTCGCTGGGGAGGAGACGGACCAGGACCCGTTCCAGATGACCTTCAACTACGAGTCCATCTACGTCTCCGACTGGAGCAAGCTCGGCTTCTCCGAGGTCGACTACGGCTTCGGCCCGCCCATCTTCGCCGGCCCGCTCGTCAACAACGACTTCATCGCCTCCGTCGTCTTCCTCAAGGCGCCGCTCCCGCTCGACGGCACCAGGATGCTCGCCAGCTGCGTCACCAAGGAACACTCCGAGGAGTTCGCCCGTGGCATGAAGGAAGACCTGCCCTGA;SEQ ID NO.22。
696-2基因编辑事件DEK48蛋白的氨基酸序列如下:
MAGFKVTRISEGPVKPASATPEETLPLAWVDRYPTHRGLVESMHIFRSGAGEAPAVIRAALAKALAFFYPLAGRIVEGEQPGRPAIRCTADGVYFAEAEADCSLEDVRFLERPLLLPKEDLVPYPGDDRWPVEPHNTIMMMQITKFTCGGFVMGLRFNHASADGMGAAQFINAVGDMARGLAEPRVLPVWHREKFPDPSIKPGPLPELPVLALDYVVLDFPTAYIDGLKREYKAHSGRFCSGFDVLTAKLWQCRTRALALDPAAEVKLCFFASVRHLGVLRQLHLPRQDVRAGRQGAGLLARGGGRHHPGGQGQDGRRVLPLRWGGDGPGPVPDDLQLRVHLRLRLEQARLLRGRLRLRPAHLRRPARQQRLHRLRRLPQGAAPARRHQDARQLRHQGTLRGVRPWHEGRPAL;SEQ ID NO.23。
696-43基因编辑事件DEK48基因的CDS序列如下:
ATGGCGGGGTTCAAGGTGACGCGGATCTCGGAGGGCCCCGTGAAGCCGGCGTCGGCGACGCCCGAGGAGACGCTGCCGCTGGCTTGGGTGGACCGGTACCCGACGCACCGTGGCCTGGTGGAGTCGATGCACATCTTCCGGTCGGGCGCGGGCGAGGCCCCGGCCGTGATCCGGGCGGCGCTGGCCAAGGCGCTGGCCTTCTTCTACCCGCTGGCGGGCCGCATCGTGGAGGGGGAGCAGCCGGGGCGCCCCGCCATCCGCTGCACCGCCGACGGCGTCTACTTCGCGGAGGCCGAGGCGGACTGCAGCCTGGAGGACGTGCGCTTCCTGGAGCGGCCCCTGCTGCTGCCCAAGGAGGACCTCGTGCCTTACCCCGGCGACGACCGCTGGCCCGTCGAGCCGCACAACACCATCATGATGATGCAGATCACCAAGTTCACCTGCGGCGGCTTCGTGATGGGCCTGCGGTTCAACCACGCGTCGGCGGACGGCATGGGCGCGGCGCAGTTCATCAACGCGGTGGGGGACATGGCGCGGGGGCTGGCGGAGCCGAGGGTGCTGCCCGTGTGGCACCGGGAGAAGTTCCCGGACCCGAGCATCAAGCCAGGCCCGCTCCCGGAGCTGCCCGTGCTGGCGCTGGACTACGTCGTGCTCGACTTCCCCACGGCCTACATCGACGGGCTCAAGCGGGAGTACAAGGCGCACAGCGGCAGGTTCTGCTCCGGCTTCGACGTGCTCACGGCCAAGCTCTGGCAGTGCCGCACCCGGGCGCTGGCCCTGGACCCGGCCGCCGAGGTCAAGCTCTGCTTCTTCGCCAGCGTCCGCCACCTGCTCAAGTCGACCGGGGGTACTACGGCAACTCCATCTTCCCCGTCAAGATGTCCGCGCCGGCCGACAAGGTGCTGGCCTCCTCGCTCGTGGAGGTGGTCGACATCATCCGGGAGGCCAAGGACAGGATGGCCGTCGAGTTCTCCCGCTTCGCTGGGGAGGAGACGGACCAGGACCCGTTCCAGATGACCTTCAACTACGAGTCCATCTACGTCTCCGACTGGAGCAAGCTCGGCTTCTCCGAGGTCGACTACGGCTTCGGCCCGCCCATCTTCGCCGGCCCGCTCGTCAACAACGACTTCATCGCCTCCGTCGTCTTCCTCAAGGCGCCGCTCCCGCTCGACGGCACCAGGATGCTCGCCAGCTGCGTCACCAAGGAACACTCCGAGGAGTTCGCCCGTGGCATGAAGGAAGACCTGCCCTGA;SEQ ID NO.24。
696-43基因编辑事件DEK48蛋白的氨基酸序列如下:
MAGFKVTRISEGPVKPASATPEETLPLAWVDRYPTHRGLVESMHIFRSGAGEAPAVIRAALAKALAFFYPLAGRIVEGEQPGRPAIRCTADGVYFAEAEADCSLEDVRFLERPLLLPKEDLVPYPGDDRWPVEPHNTIMMMQITKFTCGGFVMGLRFNHASADGMGAAQFINAVGDMARGLAEPRVLPVWHREKFPDPSIKPGPLPELPVLALDYVVLDFPTAYIDGLKREYKAHSGRFCSGFDVLTAKLWQCRTRALALDPAAEVKLCFFASVRHLLKSTGGTTATPSSPSRCPRRPTRCWPPRSWRWSTSSGRPRTGWPSSSPASLGRRRTRTRSR;SEQ ID NO.25。
实施例5等位测验验证DEK48基因功能
为进一步验证DEK48基因功能,将杂合型(+/dek48)分别与696-2(T2代)和696-43(T2代)这两个不同靶点编辑类型的杂合型编辑植株杂交,杂交果穗上出现了与dek48表型相似的发育缺陷型的籽粒突变体(图8),且野生型籽粒与突变体籽粒的分离比符合3:1(χ2<3.84),表明DEK48基因是调控籽粒发育的关键基因。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
序列表
<110> 中国农业科学院作物科学研究所
<120> DEK48基因在调控玉米籽粒发育中的应用
<160> 25
<170> SIPOSequenceListing 1.0
<210> 1
<211> 2854
<212> DNA
<213> Artificial Sequence
<400> 1
atggcggggt tcaaggtgac gcggatctcg gagggccccg tgaagccggc gtcggcgacg 60
cccgaggaga cgctgccgct ggcttgggtg gaccggtacc cgacgcaccg tggcctggtg 120
gagtcgatgc acatcttccg gtcgggcgcg ggcgaggccc cggccgtgat ccgggcggcg 180
ctggccaagg cgctggcctt cttctacccg ctggcgggcc gcatcgtgga gggggagcag 240
ccggggcgcc ccgccatccg ctgcaccgcc gacggcgtct acttcgcgga ggccgaggcg 300
gactgcagcc tggaggacgt gcgcttcctg gagcggcccc tgctgctgcc caaggaggac 360
ctcgtgcctt accccggcga cgaccgctgg cccgtcgagc cgcacaacac catcatgatg 420
atgcaggtat cttagaccac accacacctc gcctcacctc atcccgtcag tcaattccgc 480
agcgagcttt gtttggacca tacgacccgc cgacggccga cgagctcagc tcagcgcgcg 540
cgctttgttt ggagagggat ccgttgttcg tcgggccaga tccgggcacg cgcgcgcggt 600
agatctgggg agctgcagcc tggcgagggg tcaaaagccc agggtcagag aaggcgcgct 660
cacggccacc tagggaggtt gaccgtgtcg gttaatcagg atggcaagtg ggaccaacgc 720
tgccagattc ccgccgtcgc ataatcacgc acatcgtgct tccatagtac tgtttttttt 780
ttattatttt cttcttgcat ttgaatcgaa aaaaataatg cctaaaacat agttttagtt 840
tccgaaataa aatagtgaga caaaatccta gaaaccaaac ggtcaggtaa aaagcaggga 900
gggactaccg gacaggcagc gagaacgatt aatgggttaa cggctactag tagtactagc 960
agcggctgta gggagattcc ctcgacgccg cggtggcggt gggagcggat ggccaccgta 1020
cagtactgaa tgcgggcggt gaggctgatc cgcgccgatc tggatatgcg tgagcgtccg 1080
tgctcgcgtc cgtgctccgg cagacgagcc caggttggtc gtctgacacg catggcgtct 1140
gaggtcagca gtggagaact tgcggccaat tctcaattcc gccgacagaa gccgctacgt 1200
cacactccag cgtgaccttg cgtcgactat ccaacgtgac cttgggtggt gggtgggtgg 1260
gtagggtggg cggctggtag gtaggtccgc gctggcgtag acggctgccg cgaactcggt 1320
gcccgaaagc ggtgccagcg ccacgatgtg aaccccggac aaagaagcgg ggagaagagg 1380
cgtgctgaac tgggcttgct ctgtccacga cgctccaatt tgccatttgg tagtagtaca 1440
tgttggtagt ggtcatcttg ccgtatatat tgccctgccc ttataaaggc acgacgaact 1500
gtacccgtgg tcatcttgcc atgtcctagt tttcaatata tttatgacag tagtagatgc 1560
tggtagtggt catcttgcca tacacccata tttagccaca aaattgtacc cgtggtgttg 1620
gtgccgagtg ccgaccgggc atgaccagta gctgaccggt tgttgtcgtt gtcgttgccg 1680
gtagtttact cgatcgtacg tggatgttgc ctttgcgatc agggttcagg gatcagccat 1740
ggctttagct tcttttcctg ctttcgtcca cggcccaccg acatctttgc ggggggtagt 1800
tggacaagag ccgtgtcagt atagatcaca actttcgcaa ctactgcacc tttcatactg 1860
ctgccagtgg ttgccaccga ctgcacaccc tttcctttct tcacggttgc gtgcgactga 1920
tttgccaccg agagacgatt aattaagacg cacgcttcgg atctgaacaa aataaacctg 1980
tgtagaaaga aagaaaaaaa aaataacgtc aattgcatgc tctcagatca ccaagttcac 2040
ctgcggcggc ttcgtgatgg gcctgcggtt caaccacgcg tcggcggacg gcatgggcgc 2100
ggcgcagttc atcaacgcgg tgggggacat ggcgcggggg ctggcggagc cgagggtgct 2160
gcccgtgtgg caccgggaga agttcccgga cccgagcatc aagccaggcc cgctcccgga 2220
gctgcccgtg ctggcgctgg actacgtcgt gctcgacttc cccacggcct acatcgacgg 2280
gctcaagcgg gagtacaagg cgcacagcgg caggttctgc tccggcttcg acgtgctcac 2340
ggccaagctc tggcagtgcc gcacccgggc gctggccctg gacccggccg ccgaggtcaa 2400
gctctgcttc ttcgccagcg tccgccacct gctcaagctc gaccgggggt actacggcaa 2460
ctccatcttc cccgtcaaga tgtccgcgcc ggccgacaag gtgctggcct cctcgctcgt 2520
ggaggtggtc gacatcatcc gggaggccaa ggacaggatg gccgtcgagt tctcccgctt 2580
cgctggggag gagacggacc aggacccgtt ccagatgacc ttcaactacg agtccatcta 2640
cgtctccgac tggagcaagc tcggcttctc cgaggtcgac tacggcttcg gcccgcccat 2700
cttcgccggc ccgctcgtca acaacgactt catcgcctcc gtcgtcttcc tcaaggcgcc 2760
gctcccgctc gacggcacca ggatgctcgc cagctgcgtc accaaggaac actccgagga 2820
gttcgcccgt ggcatgaagg aagacctgcc ctga 2854
<210> 2
<211> 1254
<212> DNA
<213> Artificial Sequence
<400> 2
atggcggggt tcaaggtgac gcggatctcg gagggccccg tgaagccggc gtcggcgacg 60
cccgaggaga cgctgccgct ggcttgggtg gaccggtacc cgacgcaccg tggcctggtg 120
gagtcgatgc acatcttccg gtcgggcgcg ggcgaggccc cggccgtgat ccgggcggcg 180
ctggccaagg cgctggcctt cttctacccg ctggcgggcc gcatcgtgga gggggagcag 240
ccggggcgcc ccgccatccg ctgcaccgcc gacggcgtct acttcgcgga ggccgaggcg 300
gactgcagcc tggaggacgt gcgcttcctg gagcggcccc tgctgctgcc caaggaggac 360
ctcgtgcctt accccggcga cgaccgctgg cccgtcgagc cgcacaacac catcatgatg 420
atgcagatca ccaagttcac ctgcggcggc ttcgtgatgg gcctgcggtt caaccacgcg 480
tcggcggacg gcatgggcgc ggcgcagttc atcaacgcgg tgggggacat ggcgcggggg 540
ctggcggagc cgagggtgct gcccgtgtgg caccgggaga agttcccgga cccgagcatc 600
aagccaggcc cgctcccgga gctgcccgtg ctggcgctgg actacgtcgt gctcgacttc 660
cccacggcct acatcgacgg gctcaagcgg gagtacaagg cgcacagcgg caggttctgc 720
tccggcttcg acgtgctcac ggccaagctc tggcagtgcc gcacccgggc gctggccctg 780
gacccggccg ccgaggtcaa gctctgcttc ttcgccagcg tccgccacct gctcaagctc 840
gaccgggggt actacggcaa ctccatcttc cccgtcaaga tgtccgcgcc ggccgacaag 900
gtgctggcct cctcgctcgt ggaggtggtc gacatcatcc gggaggccaa ggacaggatg 960
gccgtcgagt tctcccgctt cgctggggag gagacggacc aggacccgtt ccagatgacc 1020
ttcaactacg agtccatcta cgtctccgac tggagcaagc tcggcttctc cgaggtcgac 1080
tacggcttcg gcccgcccat cttcgccggc ccgctcgtca acaacgactt catcgcctcc 1140
gtcgtcttcc tcaaggcgcc gctcccgctc gacggcacca ggatgctcgc cagctgcgtc 1200
accaaggaac actccgagga gttcgcccgt ggcatgaagg aagacctgcc ctga 1254
<210> 3
<211> 417
<212> PRT
<213> Artificial Sequence
<400> 3
Met Ala Gly Phe Lys Val Thr Arg Ile Ser Glu Gly Pro Val Lys Pro
1 5 10 15
Ala Ser Ala Thr Pro Glu Glu Thr Leu Pro Leu Ala Trp Val Asp Arg
20 25 30
Tyr Pro Thr His Arg Gly Leu Val Glu Ser Met His Ile Phe Arg Ser
35 40 45
Gly Ala Gly Glu Ala Pro Ala Val Ile Arg Ala Ala Leu Ala Lys Ala
50 55 60
Leu Ala Phe Phe Tyr Pro Leu Ala Gly Arg Ile Val Glu Gly Glu Gln
65 70 75 80
Pro Gly Arg Pro Ala Ile Arg Cys Thr Ala Asp Gly Val Tyr Phe Ala
85 90 95
Glu Ala Glu Ala Asp Cys Ser Leu Glu Asp Val Arg Phe Leu Glu Arg
100 105 110
Pro Leu Leu Leu Pro Lys Glu Asp Leu Val Pro Tyr Pro Gly Asp Asp
115 120 125
Arg Trp Pro Val Glu Pro His Asn Thr Ile Met Met Met Gln Ile Thr
130 135 140
Lys Phe Thr Cys Gly Gly Phe Val Met Gly Leu Arg Phe Asn His Ala
145 150 155 160
Ser Ala Asp Gly Met Gly Ala Ala Gln Phe Ile Asn Ala Val Gly Asp
165 170 175
Met Ala Arg Gly Leu Ala Glu Pro Arg Val Leu Pro Val Trp His Arg
180 185 190
Glu Lys Phe Pro Asp Pro Ser Ile Lys Pro Gly Pro Leu Pro Glu Leu
195 200 205
Pro Val Leu Ala Leu Asp Tyr Val Val Leu Asp Phe Pro Thr Ala Tyr
210 215 220
Ile Asp Gly Leu Lys Arg Glu Tyr Lys Ala His Ser Gly Arg Phe Cys
225 230 235 240
Ser Gly Phe Asp Val Leu Thr Ala Lys Leu Trp Gln Cys Arg Thr Arg
245 250 255
Ala Leu Ala Leu Asp Pro Ala Ala Glu Val Lys Leu Cys Phe Phe Ala
260 265 270
Ser Val Arg His Leu Leu Lys Leu Asp Arg Gly Tyr Tyr Gly Asn Ser
275 280 285
Ile Phe Pro Val Lys Met Ser Ala Pro Ala Asp Lys Val Leu Ala Ser
290 295 300
Ser Leu Val Glu Val Val Asp Ile Ile Arg Glu Ala Lys Asp Arg Met
305 310 315 320
Ala Val Glu Phe Ser Arg Phe Ala Gly Glu Glu Thr Asp Gln Asp Pro
325 330 335
Phe Gln Met Thr Phe Asn Tyr Glu Ser Ile Tyr Val Ser Asp Trp Ser
340 345 350
Lys Leu Gly Phe Ser Glu Val Asp Tyr Gly Phe Gly Pro Pro Ile Phe
355 360 365
Ala Gly Pro Leu Val Asn Asn Asp Phe Ile Ala Ser Val Val Phe Leu
370 375 380
Lys Ala Pro Leu Pro Leu Asp Gly Thr Arg Met Leu Ala Ser Cys Val
385 390 395 400
Thr Lys Glu His Ser Glu Glu Phe Ala Arg Gly Met Lys Glu Asp Leu
405 410 415
Pro
<210> 4
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 4
atggcggggt tcaaggtgac 20
<210> 5
<211> 21
<212> DNA
<213> Artificial Sequence
<400> 5
gggcaggtct tccttcatgc c 21
<210> 6
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 6
gaaggaagac ctgccctgaa 20
<210> 7
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 7
caacagcatc aacgaaacag aag 23
<210> 8
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 8
aagctcgacc gggggtacta 20
<210> 9
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 9
aggaacactc cgaggagttc 20
<210> 10
<211> 49
<212> DNA
<213> Artificial Sequence
<400> 10
cgggtcacgc tgcactgcac aagctaattg gcccttacaa aatagctag 49
<210> 11
<211> 42
<212> DNA
<213> Artificial Sequence
<400> 11
aagctcgacc gggggtacta ggagcggtgg tcgcagctga ac 42
<210> 12
<211> 42
<212> DNA
<213> Artificial Sequence
<400> 12
gaactcctcg gagtgttcct ggagcggtgg tcgcagctga ac 42
<210> 13
<211> 45
<212> DNA
<213> Artificial Sequence
<400> 13
ccgccaaaag gggtgaagcc ggagcggtgg tcgcagctga actta 45
<210> 14
<211> 40
<212> DNA
<213> Artificial Sequence
<400> 14
tagtaccccc ggtcgagctt gttttagagc tagaaatagc 40
<210> 15
<211> 51
<212> DNA
<213> Artificial Sequence
<400> 15
gtaaaacgac ggccagtgcc aagcttaaaa aaagcaccga ctcggtgcca c 51
<210> 16
<211> 40
<212> DNA
<213> Artificial Sequence
<400> 16
aggaacactc cgaggagttc gttttagagc tagaaatagc 40
<210> 17
<211> 51
<212> DNA
<213> Artificial Sequence
<400> 17
gtaaaacgac ggccagtgcc aagcttaaaa aaagcaccga ctcggtgcca c 51
<210> 18
<211> 19
<212> DNA
<213> Artificial Sequence
<400> 18
cattcgccat tcaggctgc 19
<210> 19
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 19
aactgtagag tcctgttgtc 20
<210> 20
<211> 22
<212> DNA
<213> Artificial Sequence
<400> 20
gactacgtcg tgctcgactt cc 22
<210> 21
<211> 22
<212> DNA
<213> Artificial Sequence
<400> 21
gtcaccattc atcatctccc tg 22
<210> 22
<211> 1240
<212> DNA
<213> Artificial Sequence
<400> 22
atggcggggt tcaaggtgac gcggatctcg gagggccccg tgaagccggc gtcggcgacg 60
cccgaggaga cgctgccgct ggcttgggtg gaccggtacc cgacgcaccg tggcctggtg 120
gagtcgatgc acatcttccg gtcgggcgcg ggcgaggccc cggccgtgat ccgggcggcg 180
ctggccaagg cgctggcctt cttctacccg ctggcgggcc gcatcgtgga gggggagcag 240
ccggggcgcc ccgccatccg ctgcaccgcc gacggcgtct acttcgcgga ggccgaggcg 300
gactgcagcc tggaggacgt gcgcttcctg gagcggcccc tgctgctgcc caaggaggac 360
ctcgtgcctt accccggcga cgaccgctgg cccgtcgagc cgcacaacac catcatgatg 420
atgcagatca ccaagttcac ctgcggcggc ttcgtgatgg gcctgcggtt caaccacgcg 480
tcggcggacg gcatgggcgc ggcgcagttc atcaacgcgg tgggggacat ggcgcggggg 540
ctggcggagc cgagggtgct gcccgtgtgg caccgggaga agttcccgga cccgagcatc 600
aagccaggcc cgctcccgga gctgcccgtg ctggcgctgg actacgtcgt gctcgacttc 660
cccacggcct acatcgacgg gctcaagcgg gagtacaagg cgcacagcgg caggttctgc 720
tccggcttcg acgtgctcac ggccaagctc tggcagtgcc gcacccgggc gctggccctg 780
gacccggccg ccgaggtcaa gctctgcttc ttcgccagcg tccgccacct gggggtacta 840
cggcaactcc atcttccccg tcaagatgtc cgcgccggcc gacaaggtgc tggcctcctc 900
gctcgtggag gtggtcgaca tcatccggga ggccaaggac aggatggccg tcgagttctc 960
ccgcttcgct ggggaggaga cggaccagga cccgttccag atgaccttca actacgagtc 1020
catctacgtc tccgactgga gcaagctcgg cttctccgag gtcgactacg gcttcggccc 1080
gcccatcttc gccggcccgc tcgtcaacaa cgacttcatc gcctccgtcg tcttcctcaa 1140
ggcgccgctc ccgctcgacg gcaccaggat gctcgccagc tgcgtcacca aggaacactc 1200
cgaggagttc gcccgtggca tgaaggaaga cctgccctga 1240
<210> 23
<211> 413
<212> PRT
<213> Artificial Sequence
<400> 23
Met Ala Gly Phe Lys Val Thr Arg Ile Ser Glu Gly Pro Val Lys Pro
1 5 10 15
Ala Ser Ala Thr Pro Glu Glu Thr Leu Pro Leu Ala Trp Val Asp Arg
20 25 30
Tyr Pro Thr His Arg Gly Leu Val Glu Ser Met His Ile Phe Arg Ser
35 40 45
Gly Ala Gly Glu Ala Pro Ala Val Ile Arg Ala Ala Leu Ala Lys Ala
50 55 60
Leu Ala Phe Phe Tyr Pro Leu Ala Gly Arg Ile Val Glu Gly Glu Gln
65 70 75 80
Pro Gly Arg Pro Ala Ile Arg Cys Thr Ala Asp Gly Val Tyr Phe Ala
85 90 95
Glu Ala Glu Ala Asp Cys Ser Leu Glu Asp Val Arg Phe Leu Glu Arg
100 105 110
Pro Leu Leu Leu Pro Lys Glu Asp Leu Val Pro Tyr Pro Gly Asp Asp
115 120 125
Arg Trp Pro Val Glu Pro His Asn Thr Ile Met Met Met Gln Ile Thr
130 135 140
Lys Phe Thr Cys Gly Gly Phe Val Met Gly Leu Arg Phe Asn His Ala
145 150 155 160
Ser Ala Asp Gly Met Gly Ala Ala Gln Phe Ile Asn Ala Val Gly Asp
165 170 175
Met Ala Arg Gly Leu Ala Glu Pro Arg Val Leu Pro Val Trp His Arg
180 185 190
Glu Lys Phe Pro Asp Pro Ser Ile Lys Pro Gly Pro Leu Pro Glu Leu
195 200 205
Pro Val Leu Ala Leu Asp Tyr Val Val Leu Asp Phe Pro Thr Ala Tyr
210 215 220
Ile Asp Gly Leu Lys Arg Glu Tyr Lys Ala His Ser Gly Arg Phe Cys
225 230 235 240
Ser Gly Phe Asp Val Leu Thr Ala Lys Leu Trp Gln Cys Arg Thr Arg
245 250 255
Ala Leu Ala Leu Asp Pro Ala Ala Glu Val Lys Leu Cys Phe Phe Ala
260 265 270
Ser Val Arg His Leu Gly Val Leu Arg Gln Leu His Leu Pro Arg Gln
275 280 285
Asp Val Arg Ala Gly Arg Gln Gly Ala Gly Leu Leu Ala Arg Gly Gly
290 295 300
Gly Arg His His Pro Gly Gly Gln Gly Gln Asp Gly Arg Arg Val Leu
305 310 315 320
Pro Leu Arg Trp Gly Gly Asp Gly Pro Gly Pro Val Pro Asp Asp Leu
325 330 335
Gln Leu Arg Val His Leu Arg Leu Arg Leu Glu Gln Ala Arg Leu Leu
340 345 350
Arg Gly Arg Leu Arg Leu Arg Pro Ala His Leu Arg Arg Pro Ala Arg
355 360 365
Gln Gln Arg Leu His Arg Leu Arg Arg Leu Pro Gln Gly Ala Ala Pro
370 375 380
Ala Arg Arg His Gln Asp Ala Arg Gln Leu Arg His Gln Gly Thr Leu
385 390 395 400
Arg Gly Val Arg Pro Trp His Glu Gly Arg Pro Ala Leu
405 410
<210> 24
<211> 1253
<212> DNA
<213> Artificial Sequence
<400> 24
atggcggggt tcaaggtgac gcggatctcg gagggccccg tgaagccggc gtcggcgacg 60
cccgaggaga cgctgccgct ggcttgggtg gaccggtacc cgacgcaccg tggcctggtg 120
gagtcgatgc acatcttccg gtcgggcgcg ggcgaggccc cggccgtgat ccgggcggcg 180
ctggccaagg cgctggcctt cttctacccg ctggcgggcc gcatcgtgga gggggagcag 240
ccggggcgcc ccgccatccg ctgcaccgcc gacggcgtct acttcgcgga ggccgaggcg 300
gactgcagcc tggaggacgt gcgcttcctg gagcggcccc tgctgctgcc caaggaggac 360
ctcgtgcctt accccggcga cgaccgctgg cccgtcgagc cgcacaacac catcatgatg 420
atgcagatca ccaagttcac ctgcggcggc ttcgtgatgg gcctgcggtt caaccacgcg 480
tcggcggacg gcatgggcgc ggcgcagttc atcaacgcgg tgggggacat ggcgcggggg 540
ctggcggagc cgagggtgct gcccgtgtgg caccgggaga agttcccgga cccgagcatc 600
aagccaggcc cgctcccgga gctgcccgtg ctggcgctgg actacgtcgt gctcgacttc 660
cccacggcct acatcgacgg gctcaagcgg gagtacaagg cgcacagcgg caggttctgc 720
tccggcttcg acgtgctcac ggccaagctc tggcagtgcc gcacccgggc gctggccctg 780
gacccggccg ccgaggtcaa gctctgcttc ttcgccagcg tccgccacct gctcaagtcg 840
accgggggta ctacggcaac tccatcttcc ccgtcaagat gtccgcgccg gccgacaagg 900
tgctggcctc ctcgctcgtg gaggtggtcg acatcatccg ggaggccaag gacaggatgg 960
ccgtcgagtt ctcccgcttc gctggggagg agacggacca ggacccgttc cagatgacct 1020
tcaactacga gtccatctac gtctccgact ggagcaagct cggcttctcc gaggtcgact 1080
acggcttcgg cccgcccatc ttcgccggcc cgctcgtcaa caacgacttc atcgcctccg 1140
tcgtcttcct caaggcgccg ctcccgctcg acggcaccag gatgctcgcc agctgcgtca 1200
ccaaggaaca ctccgaggag ttcgcccgtg gcatgaagga agacctgccc tga 1253
<210> 25
<211> 338
<212> PRT
<213> Artificial Sequence
<400> 25
Met Ala Gly Phe Lys Val Thr Arg Ile Ser Glu Gly Pro Val Lys Pro
1 5 10 15
Ala Ser Ala Thr Pro Glu Glu Thr Leu Pro Leu Ala Trp Val Asp Arg
20 25 30
Tyr Pro Thr His Arg Gly Leu Val Glu Ser Met His Ile Phe Arg Ser
35 40 45
Gly Ala Gly Glu Ala Pro Ala Val Ile Arg Ala Ala Leu Ala Lys Ala
50 55 60
Leu Ala Phe Phe Tyr Pro Leu Ala Gly Arg Ile Val Glu Gly Glu Gln
65 70 75 80
Pro Gly Arg Pro Ala Ile Arg Cys Thr Ala Asp Gly Val Tyr Phe Ala
85 90 95
Glu Ala Glu Ala Asp Cys Ser Leu Glu Asp Val Arg Phe Leu Glu Arg
100 105 110
Pro Leu Leu Leu Pro Lys Glu Asp Leu Val Pro Tyr Pro Gly Asp Asp
115 120 125
Arg Trp Pro Val Glu Pro His Asn Thr Ile Met Met Met Gln Ile Thr
130 135 140
Lys Phe Thr Cys Gly Gly Phe Val Met Gly Leu Arg Phe Asn His Ala
145 150 155 160
Ser Ala Asp Gly Met Gly Ala Ala Gln Phe Ile Asn Ala Val Gly Asp
165 170 175
Met Ala Arg Gly Leu Ala Glu Pro Arg Val Leu Pro Val Trp His Arg
180 185 190
Glu Lys Phe Pro Asp Pro Ser Ile Lys Pro Gly Pro Leu Pro Glu Leu
195 200 205
Pro Val Leu Ala Leu Asp Tyr Val Val Leu Asp Phe Pro Thr Ala Tyr
210 215 220
Ile Asp Gly Leu Lys Arg Glu Tyr Lys Ala His Ser Gly Arg Phe Cys
225 230 235 240
Ser Gly Phe Asp Val Leu Thr Ala Lys Leu Trp Gln Cys Arg Thr Arg
245 250 255
Ala Leu Ala Leu Asp Pro Ala Ala Glu Val Lys Leu Cys Phe Phe Ala
260 265 270
Ser Val Arg His Leu Leu Lys Ser Thr Gly Gly Thr Thr Ala Thr Pro
275 280 285
Ser Ser Pro Ser Arg Cys Pro Arg Arg Pro Thr Arg Cys Trp Pro Pro
290 295 300
Arg Ser Trp Arg Trp Ser Thr Ser Ser Gly Arg Pro Arg Thr Gly Trp
305 310 315 320
Pro Ser Ser Ser Pro Ala Ser Leu Gly Arg Arg Arg Thr Arg Thr Arg
325 330 335
Ser Arg

Claims (6)

1.DEK48基因在调控玉米籽粒发育中的应用,其特征在于,所述DEK48基因的CDS序列如SEQ ID NO.2所示。
2.根据权利要求1所述的DEK48基因在调控玉米籽粒发育中的应用,其特征在于,所述DEK48基因编码产物的氨基酸序列如SEQ ID NO.3所示。
3.根据权利要求1所述的DEK48基因在调控玉米籽粒发育中的应用,其特征在于,所述DEK48基因的克隆引物序列如SEQ ID NO.4和SEQ ID NO.5所示。
4.根据权利要求1所述的DEK48基因在调控玉米籽粒发育中的应用,其特征在于,利用基因编辑和等位测验方法验证DEK48基因的功能。
5.根据权利要求4所述的DEK48基因在调控玉米籽粒发育中的应用,其特征在于,所述基因编辑验证为利用CRISPR-Cas9重组质粒DEK48-sgRNA1-sgRNA2进行验证。
6.根据权利要求4所述的DEK48基因在调控玉米籽粒发育中的应用,其特征在于,利用DEK48基因编辑转化阳性事件的检测引物进行验证;所述检测引物的核苷酸序列如SEQ IDNO.20和SEQ ID NO.21所示。
CN202111663976.3A 2021-12-31 2021-12-31 Dek48基因在调控玉米籽粒发育中的应用 Active CN114250236B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111663976.3A CN114250236B (zh) 2021-12-31 2021-12-31 Dek48基因在调控玉米籽粒发育中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111663976.3A CN114250236B (zh) 2021-12-31 2021-12-31 Dek48基因在调控玉米籽粒发育中的应用

Publications (2)

Publication Number Publication Date
CN114250236A CN114250236A (zh) 2022-03-29
CN114250236B true CN114250236B (zh) 2023-07-21

Family

ID=80796021

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111663976.3A Active CN114250236B (zh) 2021-12-31 2021-12-31 Dek48基因在调控玉米籽粒发育中的应用

Country Status (1)

Country Link
CN (1) CN114250236B (zh)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR122021014175B1 (pt) * 2008-08-18 2022-09-20 Evogene Ltd. Método para aumentar a eficiência de uso do nitrogênio, eficiência de uso de fertilizantes, produção, taxa de crescimento, vigor, biomassa, teor de óleo e/ou tolerância ao estresse de deficiência de nitrogênio de uma planta

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Acyl transferase 9 [Zea mays];无;NCBI Reference Sequence: NP_001149908.2;全文 *
Association mapping for root system architecture traits under two nitrogen conditions in germplasm enhancement of maize doubled haploid lines;Langlang Ma;Chunyan Qing;Ursula Frei;Yaou Shen;Thomas Lübberstedt;;The Crop Journal;第8卷(第02期);213-226 *
Role of HXXXD-motif/BAHD acyltransferases in the biosynthesis of extracellular lipids;Isabel Molina 等;Plant Cell Rep;第34卷(第4期);587-601 *
Zea mays uncharacterized LOC100283536 (LOC100283536), mRNA;无;NCBI Reference Sequence: NM_001156436.2;全文 *
玉米籽粒突变体dek48的表型鉴定与基因定位;石慧敏;蒋成功;王红武;马庆;李坤;刘志芳;吴宇锦;李树强;胡小娇;黄长玲;;作物学报;第46卷(第09期);1359-1367 *

Also Published As

Publication number Publication date
CN114250236A (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2022000835A1 (zh) 花生开花习性基因AhFH1及其等位变异的克隆与应用
CN108822194B (zh) 一个植物淀粉合成相关蛋白OsFLO10及其编码基因与应用
US20230242931A1 (en) Compositions and methods for improving crop yields through trait stacking
WO2022142472A1 (zh) miRNA 408在调控作物镉积累中的应用
CN108642065B (zh) 一种水稻胚乳粉质相关基因OsSecY2及其编码蛋白质和应用
CN111778265A (zh) 玉米赤霉素氧化酶的突变基因、突变体、表达载体和应用
CN114829600A (zh) 植物mad7核酸酶及其扩大的pam识别能力
CN113832179B (zh) ZmELF3.1蛋白及其功能缺失突变体在调控作物雄穗分支数中的应用
CN114540369A (zh) OsBEE1基因在提高水稻产量中的应用
US11702670B2 (en) Compositions and methods for improving crop yields through trait stacking
KR102516522B1 (ko) 반수체 식물을 유도하는 pPLAⅡη 유전자 및 이의 용도
CN114250236B (zh) Dek48基因在调控玉米籽粒发育中的应用
CN113817033B (zh) ZmELF3.1蛋白及其功能缺失突变体在调控作物气生根数目或层数的应用
CA3131193A1 (en) Methods and compositions for generating dominant short stature alleles using genome editing
CN113774068B (zh) 一种水稻胚乳粉质相关基因OsPDC-E1-α1及其编码蛋白质和应用
US20220307042A1 (en) Compositions and methods for improving crop yields through trait stacking
CN116064580A (zh) 小麦蓝粒基因及其应用
CN114164291B (zh) 水稻粒长基因gl10等位基因的应用
US20220298527A1 (en) Compositions and methods for improving crop yields through trait stacking
CN113817750B (zh) 一种水稻胚乳粉质相关基因OsDAAT1及其编码蛋白质和应用
US20240167046A1 (en) Inducible mosaicism
CN116855511A (zh) 一种水稻胚乳粉质相关基因OsTML及其编码蛋白质和应用
CN114958866A (zh) 调控大豆分枝数的基因及其用途
CN115724936A (zh) 一种甘蔗乙烯响应转录因子ShERF3及其应用
CN117051009A (zh) 一种水稻胚乳粉质相关基因OsFLO26及其编码蛋白质和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant