CN114247864A - 高强高导热复合制动鼓砂型壳体、壳体模具及外壳产品 - Google Patents
高强高导热复合制动鼓砂型壳体、壳体模具及外壳产品 Download PDFInfo
- Publication number
- CN114247864A CN114247864A CN202210190116.0A CN202210190116A CN114247864A CN 114247864 A CN114247864 A CN 114247864A CN 202210190116 A CN202210190116 A CN 202210190116A CN 114247864 A CN114247864 A CN 114247864A
- Authority
- CN
- China
- Prior art keywords
- shell
- sand
- sand mold
- mold
- mould
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D13/00—Centrifugal casting; Casting by using centrifugal force
- B22D13/10—Accessories for centrifugal casting apparatus, e.g. moulds, linings therefor, means for feeding molten metal, cleansing moulds, removing castings
- B22D13/101—Moulds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C7/00—Patterns; Manufacture thereof so far as not provided for in other classes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C1/00—Refining of pig-iron; Cast iron
- C21C1/08—Manufacture of cast-iron
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C1/00—Refining of pig-iron; Cast iron
- C21C1/10—Making spheroidal graphite cast-iron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/08—Making cast-iron alloys
- C22C33/10—Making cast-iron alloys including procedures for adding magnesium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C37/00—Cast-iron alloys
- C22C37/04—Cast-iron alloys containing spheroidal graphite
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C37/00—Cast-iron alloys
- C22C37/10—Cast-iron alloys containing aluminium or silicon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D65/00—Parts or details
- F16D65/02—Braking members; Mounting thereof
- F16D65/10—Drums for externally- or internally-engaging brakes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Braking Arrangements (AREA)
Abstract
本发明属于汽车配件技术领域,具体涉及一种高强高导热复合制动鼓砂型壳体、壳体模具及复合制动鼓外壳产品,砂型壳体包括砂型外壳、砂型内壳和砂型底壳,将砂型内壳与砂型底壳相配合形成第一装配体后,再将砂型外壳套设在第一装配体的外侧,构成复合制动鼓外壳产品的成形腔体。本发明的壳体模具,包括砂型外壳模具、砂型内壳模具和砂型底壳模具。本发明的高强高导热复合制动鼓外壳采用高强度球墨铸铁或蠕墨铸铁铸造而成,取代了钢板旋压工艺,不仅降低了外壳的生产成本,而且外壳的整体结构强度、散热条件和变形量都优于钢制外壳,制动鼓台架试验寿命是普通灰铁制动鼓的8‑15倍,是钢制双金属制动鼓的3‑8倍。
Description
技术领域
本发明属于汽车配件技术领域,具体涉及一种高强高导热复合制动鼓砂型壳体、壳体模具及复合制动鼓外壳产品,尤其涉及一种采用球墨铸铁或蠕墨铸铁利用壳型覆膜砂铸造工艺生产的高强高导热复合制动鼓外壳产品。
背景技术
随着对制动鼓产品的不断研发与改进,现已研发出行业颠覆性的产品——双金属复合一体式制动鼓,双金属复合一体式制动鼓是将制动鼓内衬熔炼铁水采用离心铸造的方式浇注到制动鼓外壳的内表面上浇注而成,由于目前双金属复合一体式制动鼓的外壳常采用钢板旋压工艺而成,但随着钢材价格的不断攀升,双金属制动鼓外壳的生产成本也持续增加,造成生产成本过高,无法负担的困境。
发明内容
鉴于此,本发明的目的在于,提供一种高强高导热复合制动鼓外壳产品,旨在解决现有复合制动鼓外壳生产成本过高的缺陷。
同时,本发明的另一目的在于提供一种高强高导热复合制动鼓砂型壳体,旨在通过此砂型壳体利用壳型覆膜砂铸造工艺生产出球墨铸铁或蠕墨铸铁的复合制动鼓外壳产品。
本发明的再一目的在于提供一种高强高导热复合制动鼓砂型壳体模具,旨在利用此模具生产出满足浇注要求的高强高导热复合制动鼓砂型壳体。
为了达到上述发明目的,采取以下的技术方案:
本发明提供的高强高导热复合制动鼓砂型壳体,包括砂型外壳、砂型内壳和砂型底壳,其中:所述砂型外壳的结构根据其复合制动鼓外壳的外部轮廓等比例结构设计后,具有一中空的砂型外壳法兰面部,同时在其砂型外壳法兰面部的中空位置处设置砂型外壳浇注通道;
所述砂型内壳的结构根据其复合制动鼓外壳的内部轮廓等比例结构设计后,具有一中空的砂型内壳法兰面部,同时在其砂型内壳法兰面部的中空位置处设置砂型内壳浇注通道;
所述砂型底壳整体呈圆环状,并具有自上而下依次相接的第一定位台阶部和第二定位台阶部,且所述第二定位台阶部的圆环半径大于所述第一定位台阶部的圆环半径,以其在第一定位台阶部和第二定位台阶部的连接位置处形成一回旋部;
在此基础上,将所述砂型内壳与所述第一定位台阶部相配合形成第一装配体后,再将所述砂型外壳套设在其所述第一装配体的外侧,并通过所述第二定位台阶部与砂型底壳相组合后构成复合制动鼓外壳产品的成形腔体。
进一步的,所述砂型外壳浇注通道包括位于中心位置的砂型外壳主浇道和三叉状均匀分布的砂型外壳横浇道,所述砂型外壳横浇道沿浇注液体流动方向包含有:第一凹陷部、第一突出部和第一倾斜部,所述第一凹陷部、第一突出部和第一倾斜部依次过渡连接后呈阶梯状形状,同时,在所述任意两个砂型外壳横浇道的交叉位置处还设置有用于将砂型外壳和砂型内壳组装时保持定位的第一定位孔,此外,在每个所述第一倾斜部与所述砂型外壳法兰面部相接触的位置处均设有第一应力突起部,且该第一应力突起部位于其砂型外壳法兰面部的内表面上。
更进一步的,所述砂型内壳浇注通道包括位于中心位置的砂型内壳主浇道和三叉状均匀分布的砂型内壳横浇道,所述砂型内壳横浇道沿浇注液体流动方向包含有:依次过渡连接的第一连接部和第一衔接部,且所述第一衔接部与所述砂型内壳法兰面部相接的一端高于所述第一衔接部与所述第一连接部相接的一端,以形成一倾斜斜面;此外,在所述任意两个砂型内壳横浇道的交叉位置处还设置有用于将砂型外壳和砂型内壳组装时保持定位的第一定位柱。
再进一步的,所述砂型内壳的内表面上均匀分布有若干个沿砂型内壳顶端面向底部延伸的第一加强筋,同时还在所述砂型内壳法兰面部的内表面上设置有若干个均匀分布的第二加强筋,此外,在所述砂型内壳的内部还设置有三叉状均匀分布的从砂型内壳主浇道的中心位置向砂型内壳内部延伸至砂型内壳内表面的第三加强筋,与此同时,还在其三叉状均匀分布的砂型内壳横浇道的内表面上设置有与对应所述第三加强筋相互垂直的第四加强筋。
本发明基于上述涉及的高强高导热复合制动鼓砂型壳体,还提供了一种高强高导热复合制动鼓砂型壳体模具。此模具包括:砂型外壳模具、砂型内壳模具和砂型底壳模具,其中:
所述砂型外壳模具包括砂型外壳凸模和砂型外壳凹模,所述砂型外壳凸模、砂型外壳凹模的结构根据砂型外壳的结构进行整体设计,并同时根据砂型外壳具有的砂型外壳浇注通道对应设计砂型外壳凸模上的砂型外壳浇注通道凸模和砂型外壳凹模上的砂型外壳浇注通道凹模;
所述砂型内壳模具包括砂型内壳凸模和砂型内壳凹模,所述砂型内壳凸模、砂型内壳凹模的结构根据砂型内壳的结构进行整体设计,并同时根据砂型内壳具有的砂型内壳浇注通道对应设计砂型内壳凸模上的砂型内壳浇注通道凸模和砂型内壳凹模上的砂型内壳浇注通道凹模;
所述砂型底壳模具包括砂型底壳凸模和砂型底壳凹模,所述砂型底壳凸模、砂型底壳凹模根据圆环状的砂型底壳并结合其具有的第一定位台阶部和第二定位台阶部的结构进行整体设计,除此之外,在所述砂型底壳凹模中还设有用于成形砂型底壳回旋部的组合式圆形芯铁,所述组合式圆形芯铁置于砂型底壳凹模中,并置于该砂型底壳凹模中用于成形第一定位台阶部的第一定位凹模与用于成形第二定位台阶部的第二定位凹模的连接区域内,与此同时,所述砂型底壳凸模上还配合有在成形过程中将组合式芯铁压紧的限位柱。
进一步的,所述组合式圆形芯铁是由四个半圆形的芯铁单元组成,且在每个芯铁单元上还设有椭圆形凹槽,用于成型后利用工具勾住椭圆形凹槽将芯铁单元取出,以形成砂型底壳上的回旋部。
更进一步的,所述砂型外壳浇注通道凸模包括中心位置的砂型外壳主浇道凸模和三叉状均匀分布的呈阶梯式的砂型外壳横浇道凸模,并在每个砂型外壳横浇道凸模的边缘处设置第一应力凹槽,所述砂型内壳浇注通道凹模包括中心位置的砂型内壳主浇道凹模和三叉状均匀分布的砂型内壳横浇道凹模,并将每个砂型内壳横浇道凹模的边缘设置成斜面应力槽结构。
再进一步的,所述砂型外壳模具、砂型内壳模具以及砂型底壳模具上还分别均匀设有用于射砂的射砂孔和射砂通道,用于成形过程中排气的排气道以及成形过程中用于加热覆膜砂的加热棒。
同时,本发明基于上述涉及的高强高导热复合制动鼓砂型壳体,还提供了一种高强高导热复合制动鼓外壳的制作工艺,此工艺包括以下步骤:
按QT450及以上牌号或RuT350及以上牌号进行熔炼铁水,熔炼时控制炉内铁水化学成分,以重量百分比计:C 3.5-3.9%;Si 1.0-1.5%;Mn≤0.8%;S≤0.03%;铁水熔炼后,在铁水包底部添加重量百分比为1-1.5%硅铁稀土镁球化剂和重量百分比为0.8-1.3%硅铁孕育剂进行球化处理,球化处理温度保持在1560-1650℃;
将已制造好的砂型壳体组装好放在砂箱底部,砂型外壳进液口放置纤维过滤网后插入浇口杯,在浇口杯上方放遮盖,避免加砂时铁砂掉入浇口杯内;然后开始向砂箱内均匀充填粒度为Φ3-Φ8mm的铁砂,同时启动震动平台进行震实,铁砂充填厚度要高于组装好砂壳上平面100-500mm,以免出现漂壳、涨箱现象;
将球化处理好的铁水自浇口杯浇入型腔,浇注温度控制在1420-1480℃,浇注速度为15-25秒/型,整包浇注时间≤15分钟;浇注结束后保温10-30分钟即可开箱获得所需的高强高导热复合制动鼓外壳铸件。
本发明基于上述的高强高导热复合制动鼓外壳的制作工艺,还提供了一种高强高导热复合制动鼓外壳产品,该产品采用了球墨铸铁或蠕墨铸铁浇注而成。
本发明的有益效果:
本发明的高强高导热复合制动鼓外壳采用高强度球墨铸铁或蠕墨铸铁铸造而成,取代了钢板旋压工艺,不仅降低了外壳的生产成本,而且外壳的整体结构强度、散热条件和变形量都优于钢制外壳,制动鼓台架试验寿命是普通灰铁制动鼓的8-15倍,是钢制双金属制动鼓的3-8倍;
本发明的高强高导热复合制动鼓外壳的底部(也称之为口部)具有回旋部,既增加了制动鼓底部的结构强度,又有利于离心铸造时内衬铁水的充型;
本发明的高强高导热复合制动鼓砂型壳体中,砂型外壳具有的第一应力突起部和砂型内壳横浇道形成的倾斜斜面,通过两者的配合的目的是为了浇注完成后,便于将留在制动鼓外壳上的浇注系统顺利拆除且不影响制动鼓外壳法兰面的尺寸和精度;
本发明的砂型内壳中设置了多种类型的加强筋,目的是为了在浇注过程中,保证砂型内壳的稳定性,进而保证制动鼓外壳产品内表面的稳定性;
本发明的高强高导热复合制动鼓外壳由于具有回旋部,因此,在砂型壳体模具的设计中,增加了组合式芯铁,主要的目的是为了成形外壳中的回旋部,并且考虑到在模具射砂的过程中,为了限制射砂压力将组合式芯铁吹跑,特在砂型底壳凸模中增加了用于压紧芯铁的限位柱,当射砂过程结束后,组合式芯铁跟砂型底壳是一同取出的,然后利用工具勾住芯铁单元上的椭圆形凹槽,将芯铁单元取出,则构成了砂型底壳中的回旋部。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明高强高导热复合制动鼓外壳的结构示意图;
图2为本发明高强高导热复合制动鼓砂型壳体组装过程示意图;
图3为带有射砂柱结构的砂型外壳的外部三维结构图;
图4为图3中所示结构的内部三维结构图;
图5为砂型内壳的外部三维结构图;
图6为砂型内壳便于显示横浇道具有倾斜斜面的视图
图7为图5所示结构的内部三维结构图;
图8为带有射砂柱的砂型底壳正面显示的三维结构图;
图9为带有射砂柱的砂型底壳背面显示的三维结构图;
图10为砂型外壳凸模的三维结构图;
图11为砂型外壳凹模的三维结构图;
图12为砂型内壳凹模的三维结构图;
图13为砂型内壳凸模的三维结构图;
图14为砂型底壳凹模的三维结构图;
图15为砂型底壳凹模去掉芯铁单元后的三维结构图;
图16为组合式芯铁单元的三维结构图;
图17为砂型底壳凸模的三维结构图;
图18为砂型底壳凸模、凹模与组合式芯铁的组合过程示意图;
图19为复合制动鼓外壳成形腔体的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制;术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性,此外,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
目前双金属制动鼓的外壳常采用钢板旋压而成,且随着钢材价格不断攀升,制作双金属制动鼓外壳的成本也随之增加。针对此种情况,本申请的发明人在研发工艺上再次突破,最终开发出使用壳型覆膜砂铸造工艺来制作球墨铸铁或蠕墨铸铁外壳,在研发过程中,还同时设计了外壳产品的砂型壳体,以及砂型壳体的成形模具;此外,如图1所示,由于本申请的外壳产品1在底部(也称之为口部)带有回旋部2,这里的回旋部具体指的是外壳的底部向外壳内部延伸一段距离而形成,由于具有回旋部,这样既加强了制动鼓底部的结构强度,又有利于离心铸造时复合制动鼓中内壳铁水的充型。因此,在设计砂型壳体以及砂型壳体模具中还需针对回旋部进行独特的设计。
那么,本发明的设计过程应该是:首先根据带有回旋部的产品外壳进行覆膜砂砂型整体的设计,然后再针对此砂型进行整体模具的设计。
沿着本申请的设计过程,下面详细介绍本发明的实施方式。
首先介绍的是:覆膜砂砂型壳体400整体的设计,如图2所示,也就是本发明中的高强高导热复合制动鼓砂型壳体的设计。此砂型壳体400的设计主要包括对砂型外壳100的设计、砂型内壳200的设计以及砂型底壳300的设计。
其中:如图3-4所示,所述砂型外壳100的结构根据其复合制动鼓外壳1的外部轮廓等比例结构设计后,具有一中空的砂型外壳法兰面部101和一中空的砂型外壳制动面部102,同时在其砂型外壳法兰面部101的中空位置处设置砂型外壳浇注通道103。
如图5-7所示,所述砂型内壳200的结构根据其复合制动鼓外壳1的内部轮廓等比例结构设计后,具有一中空的砂型内壳法兰面部201和一中空的砂型内壳制动面部202,同时在其砂型内壳法兰面部201的中空位置处设置砂型内壳浇注通道203。
如图8-9所示,所述砂型底壳300整体呈圆环状,并具有自上而下依次相接的第一定位台阶部301和第二定位台阶部302,且所述第二定位台阶部302的圆环半径大于所述第一定位台阶部301的圆环半径,以其在第一定位台阶部301和第二定位台阶部302的连接位置处形成一回旋部2。这里的回旋部实际就是一个在所述连接位置处形成的深凹槽。
在此基础上,将所述砂型内壳200与所述第一定位台阶部301相配合形成第一装配体后,再将所述砂型外壳100套设在其所述第一装配体的外侧,并通过所述第二定位台阶部302与砂型底壳300相组合后构成复合制动鼓外壳产品的成形腔体,成形腔体的示意图如图19所示。
在上述图19所示的示意图中,砂型外壳的法兰面部和砂型内壳的法兰面部组合后构成外壳产品的法兰面,砂型外壳的制动面部和砂型内壳的制动面部构成了外壳产品的制动面,砂型底壳与砂型外壳、砂型内壳配合后形成带有回旋部的外壳产品的底部。
砂型外壳浇注通道103与砂型内壳的浇注通道203组合后构成外壳产品1的浇注系统。该浇注系统最后要从外壳产品上去除,如何将此浇注系统合理的去除而不影响外壳产品的形状和精度,这也是在设计过程中重点考虑的问题之一。
在本实施例中,如图3-7所示,为了便于砂型外壳浇注通道103与砂型内壳的浇注通道203的组合以及便于熔融铁水的充型,将砂型外壳浇注通道103具体设计成为:位于中心位置的砂型外壳主浇道104和三叉状均匀分布的砂型外壳横浇道105;将砂型内壳浇注通道203具体设计成为:位于中心位置的砂型内壳主浇道204和三叉状均匀分布的砂型内壳横浇道205,砂型内、外壳主浇道相配合定位,砂型内、外壳横浇道相配合定位。其中,三叉状均匀分布的砂型外壳横浇道105置于中空的砂型外壳法兰面部101内,三叉状均匀分布的砂型内壳横浇道205置于中空的砂型内壳法兰面部201内。
作为本实施例的一种方式:将砂型外壳横浇道105沿浇注液体流动方向设计成:第一凹陷部106、第一突出部107和第一倾斜部108,所述第一凹陷部106、第一突出部107和第一倾斜部108依次过渡连接后呈阶梯状形状,同时,在所述任意两个砂型外壳横浇道105的交叉位置处还设置有用于将砂型外壳和砂型内壳组装时保持定位的第一定位孔109,此外,在每个所述第一倾斜部108与所述砂型外壳法兰面部101相接触的位置处均设有第一应力突起部110,且该第一应力突起部110位于其砂型外壳法兰面部101的内表面上。
同时,将所述砂型内壳横浇道205沿浇注液体流动方向设计成:依次过渡连接的第一连接部206和第一衔接部207,且所述第一衔接部207与所述砂型内壳法兰面部201相接的一端高于所述第一衔接部207与所述第一连接部206相接的一端,以形成一倾斜斜面;此外,在所述任意两个砂型内壳横浇道205的交叉位置处还设置有用于将砂型外壳和砂型内壳组装时保持定位的第一定位柱208。
利用第一定位柱208与第一定位孔109保证砂型内、外壳的定位组合,利用阶梯状的横浇道设计,可快速完成铁水的充型;利用砂型外壳横浇道末端的第一倾斜部以及砂型内壳横浇道末端的倾斜斜面可导致外壳产品浇注系统与法兰面的接触面积最小,如图19所示,在此基础上,并且通过第一应力突起部可在外壳产品的外表面上形成应力凹槽,在应力凹槽与接触面积小的前提下,外壳产品的浇注系统将很容易去除,而不影响法兰面的尺寸精度。
如图7所示,在本发明中,为了保证浇注过程中砂壳的稳定性,本申请主要在砂型内壳200的内表面进行了优化设计,具体表现为:在砂型内壳200的内表面上均匀分布有若干个沿砂型内壳顶端面向底部延伸的第一加强筋209,同时还在所述砂型内壳法兰面部201的内表面上还设置有若干个均匀分布的第二加强筋210,此外,在所述砂型内壳200的内部还设置有三叉状均匀分布的从砂型内壳主浇道的中心位置向砂型内壳内部延伸至砂型内壳内表面的第三加强筋211,与此同时,还在其三叉状均匀分布的砂型内壳横浇道的内表面上还设置有与对应所述第三加强筋211相互垂直的第四加强筋212。
本发明外壳产品的法兰面和外壳产品的制动面与传统的复合制动鼓具有的法兰面和制动面的形状和结构基本相似。
然后,本发明在基于覆膜砂砂型壳体400的基础上,针对此砂型壳体进行砂型壳体的模具设计,也就是本发明中的一种高强高导热复合制动鼓砂型壳体模具的设计。此模具设计包括:砂型外壳的模具设计、砂型内壳的模具设计和砂型底壳的模具设计。
其中,如图10-11所示,砂型外壳的模具设计包括砂型外壳凸模500和砂型外壳凹模501的结构设计,所述砂型外壳凸模500、砂型外壳凹模501的结构根据砂型外壳100的结构进行整体设计,并同时根据砂型外壳100具有的砂型外壳浇注通道103对应设计砂型外壳凸模500上的砂型外壳浇注通道凸模502和砂型外壳凹模501上的砂型外壳浇注通道凹模503。与此同时,在砂型外壳凸模500、砂型外壳凹模501上还设计了均匀分布的用于射砂的射砂孔504和射砂通道和用于成形过程中排气的排气道505以及成形过程中用于加热覆膜砂的加热棒。
如图12-13所示,砂型内壳的模具设计包括砂型内壳凸模600和砂型内壳凹模601的结构设计,所述砂型内壳凸模600、砂型内壳凹模601的结构根据砂型内壳200的结构进行整体设计,并同时根据砂型内壳200具有的砂型内壳浇注通道203对应设计砂型内壳凸模600上的砂型内壳浇注通道凸模602和砂型内壳凹模601上的砂型内壳浇注通道凹模603。与此同时,在砂型内壳凸模600、砂型内壳凹模601上还设计了均匀分布的用于射砂的射砂孔604和射砂通道605和用于成形过程中排气的排气道606以及成形过程中用于加热覆膜砂的加热棒。砂型内壳200内部具有的第一加强筋209实际为覆膜砂经过射砂通道605固化而成的。
如图14-18所示,砂型底壳的模具设计包括砂型底壳凸模700和砂型底壳凹模701的结构设计,所述砂型底壳凸模700、砂型底壳凹模701根据圆环状的砂型底壳300并结合其具有的第一定位台阶部301和第二定位台阶部302的结构进行整体设计,除此之外,在所述砂型底壳凹模701中还设有用于成形砂型底壳回旋部的组合式圆形芯铁702,所述组合式圆形芯铁702置于砂型底壳凹模中,并置于该砂型底壳凹模701中用于成形第一定位台阶部301的第一定位凹模703与用于成形第二定位台阶部302的第二定位凹模704的连接区域内。需要说明的是:组合式圆形芯铁702在射砂完成后,是随着砂型底壳一同取出的,而且组合式圆形芯铁702是由四个半圆形的芯铁单元705组成,且在每个芯铁单元上还设有椭圆形凹槽706,用于成型后利用工具勾住椭圆形凹槽将芯铁单元取出,以形成砂型底壳上的回旋部2。
如图15与图17所示,由于组合式芯铁702是活动设置于砂型底壳凹模701中,因此,为了在射砂过程中,避免因射砂压力的存在将组合式芯铁702吹跑,才在砂型底壳凸模700上安装有将组合式芯铁压紧的限位柱707,且限位柱的数量为4个,每个限位柱707对应压紧下方的芯铁单705元。由于在模具上存在限位柱,那么在砂型底壳上将出现4个与限位柱匹配的圆孔,因此在射砂后,需要用覆膜砂将这4个圆孔封堵住。
此外,在砂型底壳凸模700、砂型底壳凹模701上还设计了均匀分布的用于射砂的射砂孔708和射砂通道709和用于成形过程中排气的排气道以及成形过程中用于加热覆膜砂的加热棒。
另外,在本实施例中,为了能够制作出在形状与结构上完全一致的砂型壳体,如图10-13所示,本发明在砂型外壳浇注通道凸模502以及砂型内壳浇注通道凹模603上都相应作了与砂型外壳的主、横浇道、砂型内壳的主、横浇道匹配的设计。具体结构为:砂型外壳浇注通道凸模502包括中心位置的砂型外壳主浇道凸模506和三叉状均匀分布的呈阶梯式的砂型外壳横浇道凸模507,并在每个砂型外壳横浇道凸模507的边缘处设置第一应力凹槽508,所述砂型内壳浇注通道凹模603包括中心位置的砂型内壳主浇道凹模607和三叉状均匀分布的砂型内壳横浇道凹模608,并将每个砂型内壳横浇道凹模608的边缘设置成斜面应力槽结构609。
最后,本发明基于上述获取的高强高导热复合制动鼓砂型壳体,还提供了一种高强高导热复合制动鼓外壳的制作工艺,此工艺包括以下步骤:
按QT450及以上牌号或RuT350及以上牌号进行熔炼铁水,熔炼时控制炉内铁水化学成分,以重量百分比计:C 3.5-3.9%;Si 1.0-1.5%;Mn≤0.8%;S≤0.03%;铁水熔炼后,在铁水包底部添加重量百分比为1-1.5%硅铁稀土镁球化剂和重量百分比为0.8-1.3%硅铁孕育剂进行球化处理,球化处理温度保持在1560-1650℃;
将已制造好的砂型壳体组装好放在砂箱底部,砂型外壳进液口放置纤维过滤网后插入浇口杯,在浇口杯上方放遮盖,避免加砂时铁砂掉入浇口杯内;然后开始向砂箱内均匀充填粒度为Φ3-Φ8mm的铁砂,同时启动震动平台进行震实,铁砂充填厚度要高于组装好砂壳上平面100-500mm,以免出现漂壳、涨箱现象;
将球化处理好的铁水自浇口杯浇入型腔,浇注温度控制在1420-1480℃,浇注速度为15-25秒/型,整包浇注时间≤15分钟;浇注结束后保温10-30分钟即可开箱获得所需的高强高导热复合制动鼓外壳铸件。
本发明基于上述的高强高导热复合制动鼓外壳的制作工艺,最终获得了一种高强高导热复合制动鼓外壳产品,该产品采用了球墨铸铁或蠕墨铸铁浇注而成。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (10)
1.高强高导热复合制动鼓砂型壳体,其特征在于:包括砂型外壳、砂型内壳和砂型底壳,其中:
所述砂型外壳的结构根据其复合制动鼓外壳的外部轮廓等比例结构设计后,具有一中空的砂型外壳法兰面部,同时在其砂型外壳法兰面部的中空位置处设置砂型外壳浇注通道;
所述砂型内壳的结构根据其复合制动鼓外壳的内部轮廓等比例结构设计后,具有一中空的砂型内壳法兰面部,同时在其砂型内壳法兰面部的中空位置处设置砂型内壳浇注通道;
所述砂型底壳整体呈圆环状,并具有自上而下依次相接的第一定位台阶部和第二定位台阶部,且所述第二定位台阶部的圆环半径大于所述第一定位台阶部的圆环半径,以其在第一定位台阶部和第二定位台阶部的连接位置处形成一回旋部;
在此基础上,将所述砂型内壳与所述第一定位台阶部相配合形成第一装配体后,再将所述砂型外壳套设在其所述第一装配体的外侧,并通过所述第二定位台阶部与砂型底壳相组合后构成复合制动鼓外壳产品的成形腔体。
2.根据权利要求1所述的高强高导热复合制动鼓砂型壳体,其特征在于,所述砂型外壳浇注通道包括位于中心位置的砂型外壳主浇道和三叉状均匀分布的砂型外壳横浇道,所述砂型外壳横浇道沿浇注液体流动方向包含有:第一凹陷部、第一突出部和第一倾斜部,所述第一凹陷部、第一突出部和第一倾斜部依次过渡连接后呈阶梯状形状,同时,在所述任意两个砂型外壳横浇道的交叉位置处还设置有用于将砂型外壳和砂型内壳组装时保持定位的第一定位孔,此外,在每个所述第一倾斜部与所述砂型外壳法兰面部相接触的位置处均设有第一应力突起部,且该第一应力突起部位于其砂型外壳法兰面部的内表面上。
3.根据权利要求2所述的高强高导热复合制动鼓砂型壳体,其特征在于,所述砂型内壳浇注通道包括位于中心位置的砂型内壳主浇道和三叉状均匀分布的砂型内壳横浇道,所述砂型内壳横浇道沿浇注液体流动方向包含有:依次过渡连接的第一连接部和第一衔接部,且所述第一衔接部与所述砂型内壳法兰面部相接的一端高于所述第一衔接部与所述第一连接部相接的一端,以形成一倾斜斜面;此外,在所述任意两个砂型内壳横浇道的交叉位置处还设置有用于将砂型外壳和砂型内壳组装时保持定位的第一定位柱。
4.根据权利要求3所述的高强高导热复合制动鼓砂型壳体,其特征在于,所述砂型内壳的内表面上均匀分布有若干个沿砂型内壳顶端面向底部延伸的第一加强筋,同时还在所述砂型内壳法兰面部的内表面上还设置有若干个均匀分布的第二加强筋,此外,在所述砂型内壳的内部还设置有三叉状均匀分布的从砂型内壳主浇道的中心位置向砂型内壳内部延伸至砂型内壳内表面的第三加强筋,与此同时,还在其三叉状均匀分布的砂型内壳横浇道的内表面上还设置有与对应所述第三加强筋相互垂直的第四加强筋。
5.高强高导热复合制动鼓砂型壳体模具,是用于铸造上述权利要求1-4任意一项所述的高强高导热复合制动鼓砂型壳体,其特征在于,包括:砂型外壳模具、砂型内壳模具和砂型底壳模具,其中:
所述砂型外壳模具包括砂型外壳凸模和砂型外壳凹模,所述砂型外壳凸模、砂型外壳凹模的结构根据砂型外壳的结构进行整体设计,并同时根据砂型外壳具有的砂型外壳浇注通道对应设计砂型外壳凸模上的砂型外壳浇注通道凸模和砂型外壳凹模上的砂型外壳浇注通道凹模;
所述砂型内壳模具包括砂型内壳凸模和砂型内壳凹模,所述砂型内壳凸模、砂型内壳凹模的结构根据砂型内壳的结构进行整体设计,并同时根据砂型内壳具有的砂型内壳浇注通道对应设计砂型内壳凸模上的砂型内壳浇注通道凸模和砂型内壳凹模上的砂型内壳浇注通道凹模;
所述砂型底壳模具包括砂型底壳凸模和砂型底壳凹模,所述砂型底壳凸模、砂型底壳凹模根据圆环状的砂型底壳并结合其具有的第一定位台阶部和第二定位台阶部的结构进行整体设计,除此之外,在所述砂型底壳凹模中还设有用于成形砂型底壳回旋部的组合式圆形芯铁,所述组合式圆形芯铁置于砂型底壳凹模中,并置于该砂型底壳凹模中用于成形第一定位台阶部的第一定位凹模与用于成形第二定位台阶部的第二定位凹模的连接区域内,与此同时,所述砂型底壳凸模上还配合有在成形过程中将组合式芯铁压紧的限位柱。
6.根据权利要求5所述的高强高导热复合制动鼓砂型壳体模具,其特征在于:所述组合式圆形芯铁是由四个半圆形的芯铁单元组成,且在每个芯铁单元上还设有椭圆形凹槽,用于成型后利用工具勾住椭圆形凹槽将芯铁单元取出,以形成砂型底壳上的回旋部。
7.根据权利要求6所述的高强高导热复合制动鼓砂型壳体模具,其特征在于:所述砂型外壳浇注通道凸模包括中心位置的砂型外壳主浇道凸模和三叉状均匀分布的呈阶梯式的砂型外壳横浇道凸模,并在每个砂型外壳横浇道凸模的边缘处设置第一应力凹槽,所述砂型内壳浇注通道凹模包括中心位置的砂型内壳主浇道凹模和三叉状均匀分布的砂型内壳横浇道凹模,并将每个砂型内壳横浇道凹模的边缘设置成斜面应力槽结构。
8.根据权利要求7所述的高强高导热复合制动鼓砂型壳体模具,其特征在于:所述砂型外壳模具、砂型内壳模具以及砂型底壳模具上还分别均匀设有用于射砂的射砂孔和射砂通道,用于成形过程中排气的排气道以及成形过程中用于加热覆膜砂的加热棒。
9.高强高导热复合制动鼓外壳的制作工艺,是利用权利要求1-4任意一项所述的高强高导热复合制动鼓砂型壳体铸造而成,其特征在于,包括以下步骤:
按QT450及以上牌号或RuT350及以上牌号进行熔炼铁水,熔炼时控制炉内铁水化学成分,以重量百分比计:C 3.5-3.9%;Si 1.0-1.5%;Mn≤0.8%;S≤0.03%;铁水熔炼后,在铁水包底部添加重量百分比为1-1.5%硅铁稀土镁球化剂和重量百分比为0.8-1.3%硅铁孕育剂进行球化处理,球化处理温度保持在1560-1650℃;
将已制造好的砂型壳体组装好放在砂箱底部,砂型外壳进液口放置纤维过滤网后插入浇口杯,在浇口杯上方放遮盖,避免加砂时铁砂掉入浇口杯内;然后开始向砂箱内均匀充填粒度为Φ3-Φ8mm的铁砂,同时启动震动平台进行震实,铁砂充填厚度要高于组装好砂壳上平面100-500mm,以免出现漂壳、涨箱现象;
将球化处理好的铁水自浇口杯浇入型腔,浇注温度控制在1420-1480℃,浇注速度为15-25秒/型,整包浇注时间≤15分钟;浇注结束后保温10-30分钟即可开箱获得所需的高强高导热复合制动鼓外壳铸件。
10.高强高导热复合制动鼓外壳,是采用权利要求9所述的制作工艺铸造而成。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210190116.0A CN114247864B (zh) | 2022-03-01 | 2022-03-01 | 高强高导热复合制动鼓砂型壳体、壳体模具及外壳产品 |
US17/749,724 US11608867B1 (en) | 2021-12-26 | 2022-05-20 | High-strength and high-thermal conductivity new material composite brake drum and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210190116.0A CN114247864B (zh) | 2022-03-01 | 2022-03-01 | 高强高导热复合制动鼓砂型壳体、壳体模具及外壳产品 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114247864A true CN114247864A (zh) | 2022-03-29 |
CN114247864B CN114247864B (zh) | 2022-05-20 |
Family
ID=80800166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210190116.0A Active CN114247864B (zh) | 2021-12-26 | 2022-03-01 | 高强高导热复合制动鼓砂型壳体、壳体模具及外壳产品 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114247864B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115805293A (zh) * | 2023-02-02 | 2023-03-17 | 莱州伟辰汽车配件有限公司 | 一种刹车毂铸造装置 |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB318276A (en) * | 1928-05-31 | 1929-09-02 | Wilho Arvo Kosken | Improvements in motion picture machine |
GB791625A (en) * | 1955-02-15 | 1958-03-05 | Welding Ind Ltd | Improvements in apparatus for moulding concrete and like blocks |
WO1999028641A2 (de) * | 1997-11-29 | 1999-06-10 | Actech Gmbh Advanced Casting Technologies Giessereitechnologie | Bainitisch gehärtete bremsscheibe |
US6109334A (en) * | 1997-07-15 | 2000-08-29 | North American Royalties, Inc. | Method of static casting composite brake drum |
CN101992267A (zh) * | 2009-08-27 | 2011-03-30 | 陕西汽车集团有限责任公司 | 汽车制动鼓改进的铸造砂型构造 |
CN202291247U (zh) * | 2011-09-09 | 2012-07-04 | 北京星航机电设备厂 | 一种钛合金回转框类零件真空铸造石墨型 |
CN105855466A (zh) * | 2016-06-02 | 2016-08-17 | 龙岩盛丰机械制造有限公司 | 一种制动鼓一型六件v法铸造工艺方法及铸造装置 |
CN207315916U (zh) * | 2017-10-12 | 2018-05-04 | 河北艾斯特瑞亚科技有限责任公司 | 一种油浸双盘式压盘制动器 |
US20180154691A1 (en) * | 2016-12-05 | 2018-06-07 | Hendrickson Usa, L.L.C. | Hub for heavy-duty vehicle |
CN210280581U (zh) * | 2019-07-16 | 2020-04-10 | 山西灵石亨泰荣和金属压铸件有限公司 | 一种制动鼓浇注模具 |
JP2020062654A (ja) * | 2018-10-16 | 2020-04-23 | 株式会社神戸製鋼所 | 構造体の製造方法、及び構造体 |
CN111120546A (zh) * | 2020-01-18 | 2020-05-08 | 山东浩信昌盛汽车零部件智能制造有限公司 | 一种双金属复合制动鼓及其制造方法 |
CN210531473U (zh) * | 2019-06-14 | 2020-05-15 | 张文武 | 一种新型制动系统 |
CN111503185A (zh) * | 2020-05-18 | 2020-08-07 | 保定立中东安轻合金部件制造有限公司 | 一种铝铁复合刹车盘及其制造方法 |
CN113198982A (zh) * | 2021-03-17 | 2021-08-03 | 宁波拓铁机械有限公司 | 飞轮铸件的铸造方法 |
CN214465709U (zh) * | 2020-11-27 | 2021-10-22 | 浙江夏厦精密制造股份有限公司 | 一种电动大巴智能刹车系统 |
CN215199544U (zh) * | 2021-06-04 | 2021-12-17 | 山西汤荣机械制造股份有限公司 | 一种壳型铸造制动鼓浇注系统 |
CN114012034A (zh) * | 2021-10-28 | 2022-02-08 | 扬州峰明光电新材料有限公司 | 薄壁回转体铝合金铸件的无箱浇注制造方法 |
CN114029474A (zh) * | 2021-11-22 | 2022-02-11 | 山西汤荣机械制造股份有限公司 | 球墨铸铁-灰铸铁复合制动鼓及其制备方法 |
-
2022
- 2022-03-01 CN CN202210190116.0A patent/CN114247864B/zh active Active
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB318276A (en) * | 1928-05-31 | 1929-09-02 | Wilho Arvo Kosken | Improvements in motion picture machine |
GB791625A (en) * | 1955-02-15 | 1958-03-05 | Welding Ind Ltd | Improvements in apparatus for moulding concrete and like blocks |
US6109334A (en) * | 1997-07-15 | 2000-08-29 | North American Royalties, Inc. | Method of static casting composite brake drum |
WO1999028641A2 (de) * | 1997-11-29 | 1999-06-10 | Actech Gmbh Advanced Casting Technologies Giessereitechnologie | Bainitisch gehärtete bremsscheibe |
CN101992267A (zh) * | 2009-08-27 | 2011-03-30 | 陕西汽车集团有限责任公司 | 汽车制动鼓改进的铸造砂型构造 |
CN202291247U (zh) * | 2011-09-09 | 2012-07-04 | 北京星航机电设备厂 | 一种钛合金回转框类零件真空铸造石墨型 |
CN105855466A (zh) * | 2016-06-02 | 2016-08-17 | 龙岩盛丰机械制造有限公司 | 一种制动鼓一型六件v法铸造工艺方法及铸造装置 |
US20180154691A1 (en) * | 2016-12-05 | 2018-06-07 | Hendrickson Usa, L.L.C. | Hub for heavy-duty vehicle |
CN207315916U (zh) * | 2017-10-12 | 2018-05-04 | 河北艾斯特瑞亚科技有限责任公司 | 一种油浸双盘式压盘制动器 |
JP2020062654A (ja) * | 2018-10-16 | 2020-04-23 | 株式会社神戸製鋼所 | 構造体の製造方法、及び構造体 |
CN210531473U (zh) * | 2019-06-14 | 2020-05-15 | 张文武 | 一种新型制动系统 |
CN210280581U (zh) * | 2019-07-16 | 2020-04-10 | 山西灵石亨泰荣和金属压铸件有限公司 | 一种制动鼓浇注模具 |
CN111120546A (zh) * | 2020-01-18 | 2020-05-08 | 山东浩信昌盛汽车零部件智能制造有限公司 | 一种双金属复合制动鼓及其制造方法 |
CN111503185A (zh) * | 2020-05-18 | 2020-08-07 | 保定立中东安轻合金部件制造有限公司 | 一种铝铁复合刹车盘及其制造方法 |
CN214465709U (zh) * | 2020-11-27 | 2021-10-22 | 浙江夏厦精密制造股份有限公司 | 一种电动大巴智能刹车系统 |
CN113198982A (zh) * | 2021-03-17 | 2021-08-03 | 宁波拓铁机械有限公司 | 飞轮铸件的铸造方法 |
CN215199544U (zh) * | 2021-06-04 | 2021-12-17 | 山西汤荣机械制造股份有限公司 | 一种壳型铸造制动鼓浇注系统 |
CN114012034A (zh) * | 2021-10-28 | 2022-02-08 | 扬州峰明光电新材料有限公司 | 薄壁回转体铝合金铸件的无箱浇注制造方法 |
CN114029474A (zh) * | 2021-11-22 | 2022-02-11 | 山西汤荣机械制造股份有限公司 | 球墨铸铁-灰铸铁复合制动鼓及其制备方法 |
Non-Patent Citations (2)
Title |
---|
刘天平等: "载重汽车轮毂铸造成形工艺论述", 《铸造设备与工艺》 * |
商崇元等: "一种高强度蠕墨铸铁制动鼓的开发", 《中国铸造装备与技术》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115805293A (zh) * | 2023-02-02 | 2023-03-17 | 莱州伟辰汽车配件有限公司 | 一种刹车毂铸造装置 |
Also Published As
Publication number | Publication date |
---|---|
CN114247864B (zh) | 2022-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114247864B (zh) | 高强高导热复合制动鼓砂型壳体、壳体模具及外壳产品 | |
KR101805853B1 (ko) | 피더의 기능적인 연결을 구비한 주물, 특히 실린더 블록과 실린더 헤드를 제조하기 위한 주조 방법 및 주형 | |
CN107321919B (zh) | 一种基于新型油泵体壳型的铸造方法 | |
KR100605490B1 (ko) | 주조용 금형 | |
CN109261896A (zh) | 一种牧草收集机械用弧形针的浇注砂型以及浇注方法 | |
CN110238347A (zh) | 一种消失模铸造凸轮轴用浇注系统 | |
AU674119B2 (en) | Steering wheel core metal unit | |
CN112605340A (zh) | 一种球墨铸铁整体式低地板轻轨齿轮箱及其铸造方法 | |
CN106955975B (zh) | 大型铝镁合金减振装置浇铸系统 | |
CN101693286A (zh) | 一种新型的管件浇注装置及其浇注方法 | |
CN111531131B (zh) | 片式阀的铸造砂芯以及片式阀的铸造工艺 | |
CN202427900U (zh) | 铸钢设有拉筋的收割机u形万向接头 | |
CN114082899A (zh) | 一种片式多路阀铸造工艺 | |
CN102886495A (zh) | 一种通用于铁型覆砂铸造生产的组合铁型 | |
CN105689652B (zh) | 一种双层刹车盘成型装置 | |
CN209424486U (zh) | 一种牧草收集机械用弧形针的浇注砂型 | |
CN202861326U (zh) | 一种通用于铁型覆砂铸造生产的组合铁型 | |
CN212121592U (zh) | 一种空调压缩机轴承铸件的铸造模具 | |
CN207154692U (zh) | 一种制造进气道套管铸件左半体的砂型模具 | |
CN107363221A (zh) | 一种行星架的铸造工艺 | |
CN106735067B (zh) | 汽车滤清器壳体压铸模 | |
CN110625062A (zh) | 一种采用壳型铸造铰耳的铸造工艺 | |
JPS603960A (ja) | 冷却水路を内蔵した鋳物の製造法 | |
JP2820860B2 (ja) | タイヤ成形用金型及びその製造法 | |
CN110216240A (zh) | 一种石油防喷器双闸板壳体制造工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |