CN114231918A - 一种大尺寸平面金属靶材的制备方法 - Google Patents

一种大尺寸平面金属靶材的制备方法 Download PDF

Info

Publication number
CN114231918A
CN114231918A CN202111654726.3A CN202111654726A CN114231918A CN 114231918 A CN114231918 A CN 114231918A CN 202111654726 A CN202111654726 A CN 202111654726A CN 114231918 A CN114231918 A CN 114231918A
Authority
CN
China
Prior art keywords
target
purity
blank
size
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111654726.3A
Other languages
English (en)
Inventor
李晖云
崔宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan Hyper Tech Co ltd
Original Assignee
Dongguan Hyper Tech Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan Hyper Tech Co ltd filed Critical Dongguan Hyper Tech Co ltd
Priority to CN202111654726.3A priority Critical patent/CN114231918A/zh
Publication of CN114231918A publication Critical patent/CN114231918A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • C22C5/08Alloys based on silver with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/14Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of noble metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • C23C24/045Impact or kinetic deposition of particles by trembling using impacting inert media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供了一种大尺寸平面金属靶材的制备方法,包括以下步骤:先将高纯靶材金属用雾化法制成粉末,再采用超音速冷气动力喷涂法,以高纯氩气或高纯氦气作为气动介质,将高纯靶材成分的金属粉喷涂沉积到衬底板上,待涂层沉积到一定厚度后,对坯靶行真空退火以消除冷喷涂过程产生的应力;随后对靶坯进行3‑9道次冷轧压延加工,获得设定厚度的板材;将板材校平、机加工至合格尺寸,再按照常规工艺绑定背板,即可制成不同规格的平面靶材。本发明工艺制备的靶材,微观结构致密、无孔隙,晶粒尺寸均匀,晶粒尺寸小于10μm,较好地解决了大尺寸平面靶生产中如何实现靶材中晶粒细小,晶粒尺寸均匀这一工艺控制难题。

Description

一种大尺寸平面金属靶材的制备方法
技术领域
本发明属于溅射靶材技术领域,具体涉及一种多规格大尺寸高纯平面靶材的制备方法。
背景技术
溅射是微电子工业中制备薄膜材料的主要技术之一,它利用离子源产生的离子,在真空中经过加速聚集形成高速度能的离子束流,轰击固体表面,使其表面的原子离开固体并沉积在基底表面,被轰击的固体即为溅射靶材。高纯金属靶材是制备导电薄膜的主要材料之一,主要应用于集成电路、平板显示、太阳能电池、记录媒体、智能玻璃等领域。
溅射靶材的未来发展趋势是:高纯金属、大尺寸、高溅射率、晶粒晶向精确控制。在靶材被高能离子束轰击而发生溅射的过程中,由于晶界在溅射过程中更容易受到攻击,晶粒尺寸越小,晶界越多,成膜速度就越快。靶材中的晶粒大小以及晶粒尺寸的均匀性会直接影响成膜的均一性。大型基板镀膜对靶材的微观结构提出更高要求。制造靶材时,需要严密把控靶材的加工工艺,使晶粒尽量细小,尽量使晶界增多,以降低镀膜后膜层的厚度偏差。但随着靶材尺寸增加,靶材内部晶粒晶向的控制难度呈指数级增加。靶材金属纯度越高,实现靶材内部细晶化及晶粒尺寸均匀的难度就越大。传统金属平面靶材的制造工艺,通常是先铸造成高纯金属锭,然后采用不同的压力加工方法,进行反复的大变形量的冷热塑性变形、热处理工艺加以控制。然而对于大尺寸的胚锭而言,大变形量的塑性加工也很难避免出现靶材边缘与内部晶粒尺寸差异较大的现象,难以达到靶材的质量标准。
我国在大尺寸溅射靶材的制造技术上,距离日本等先进国家,还有相当大的差距,大尺寸高纯金属靶材严重依赖进口。如日本三菱公司生产的有机EL显示器用超大尺寸银靶,尺寸达到1800mm×2300mm,靶材内的结晶平均粒径可以控制在100μm以下,且靶材面内及厚度方向的结晶粒径波动控制在20%以内。而其他厂家采用传统工艺制造的超大尺寸平面银靶,晶粒尺寸只能做到400μm以下,故而三菱公司在大尺寸靶材市场上占据着垄断份额。
发明内容
本发明旨在提供一种新的平面靶材制造方法,其步骤是先将高纯靶材金属用雾化法制成粉末;再选择合适的靶材衬底,对其表面进行喷砂处理,使其表面粗糙化;再采用超音速冷气动力喷涂法,以高纯氩气或高纯氦气为气动介质,将超低氧含量的高纯球形金属粉喷涂沉积到衬底板上,金属粉颗粒以超音速撞击到粗糙化的衬底上,发生塑性变形+冷焊合,在界面处实现彼此键合,当金属涂层沉积到一定厚度后即成为靶坯;对所获得的靶坯进行真空退火,消除喷涂过程产生的应力,并获得靶坯进行多道次的冷轧加工,获得一定厚度的胚板;再用校平机对胚板进行校平,获得合格胚板;对获得的靶坯进行线切割、铣磨等粗加工、随后在数控机床上对其进行精加工,制成不同规格的靶材,并可按照常规工艺对所获得的靶材进行绑定,最终制成大尺寸平面靶材成品。
本发明工艺制备的靶材,微观结构致密、无孔隙,相对密度达到99.5%以上;且晶粒尺寸均匀,晶粒尺寸小于10μm(80%以上晶粒尺寸均<5μm),不仅较好地解决了大尺寸平面靶生产中如何实现靶材中晶粒细小,晶粒尺寸均匀这一工艺控制难题;而且采用冷喷涂法制造靶材时不受靶材尺寸限制,且可以保证靶材内各处均保持相同的晶粒尺寸大小与均一性。本发明工艺流程简单,可制备多数金属平面靶,如纯铜靶,纯银靶,各种合金靶等。该发明应用于制造有机EL显示器、薄膜太阳能电池、Low-E玻璃、光记录介质等领域用到的超大尺寸靶材时,工艺优势明显,具有较大商业价值。
具体实施方式
以下结合具体实施例来对本发明及有益效果作进一步详细的描述,但本发明的实施方式并不限于此。
实施例1
本实施例提供了一种大尺寸平面铜靶的制备方法,包括以下步骤:
步骤一、先将纯度为99.999%的阴极Cu原料投入高纯石墨坩埚内进行真空中频感应熔炼,然后采用惰性气体雾化法将铜液制成高纯球形粉末,雾化介质为高纯氩气。
步骤二、将步骤一获得的高纯球形铜粉进行标准筛分,选出325~600目范围内的粉末,测得该粉末D50为18μm;将该粉末进行控氧工艺处理,所获得的铜粉氧含量为110ppm,铜粉纯度仍保持在99.995%。
步骤三、将步骤二获得的粒径合格的Cu粉进行冷气动力喷涂,冷喷涂介质气体采用高纯氩气。冷喷涂气压为2.6-2.9Mpa,粉末输送量为200-250g/min,喷涂时粉末预热温度为450-500℃。喷涂基板为预先准备好的T1无氧铜板。喷涂工作时,铜粉被喷枪喷出的气流加速后以超音速撞向无氧铜基板,铜粉颗粒发生大塑性变形,粉末颗粒撞扁之后以近似于冷焊合的方式结合在一起,逐层沉积在基板上。冷喷涂的喷枪安装在机械臂上,喷枪按照设计好的轨迹一边喷涂一边移动,最终在无氧铜基板上获得一层30-35mm厚的高纯铜涂层,铜粉的利用率为97%。
步骤四、将步骤三获得的铜胚板进行真空退火处理,以消除胚料内部应力。退火温度为550℃,退火时间为1h。
步骤五、将步骤四获得的退火铜胚板在多辊轧机下进行3-4道次冷轧压延加工,每道次的加工量在10-50%。
步骤六、对步骤五获得的轧制铜板材,按照设计图纸要求进行机加工,即可获得铜靶成品,该铜靶无需进行额外的靶材绑定。
用该工艺方法制成的铜靶,测得最终纯度为:Cu>99.995%,O<0.013%;铜靶内晶粒平均尺寸为5μm以下,最大晶粒直径<20μm,铜靶的相对密度达到99.6%。
实施例2
本实施例提供了大尺寸平面银靶的制备方法,包括以下步骤:
步骤一、先将纯度为99.999%的Ag原料投入高纯石墨坩埚内进行高频真空感应熔炼,然后采用惰性气体雾化法将银液制成高纯球形粉末,雾化介质为高纯氩气。
步骤二、将步骤一获得的高纯球形银粉进行标准筛分,选出300~600目范围内的粉末,测得该粉末D50为20μm;将该粉末进行特定控氧工艺处理,所获得的银粉氧含量为为55ppm,银粉纯度保持在99.996%。
步骤三、将步骤二获得的粒径合格的Ag粉进行冷气动力喷涂,冷喷涂介质气体采用高纯氩气。冷喷涂气压为2.6-2.9Mpa,粉末输送量为200-250g/min,喷涂时粉末预热温度为450-500℃。喷涂基板为预先准备好的T1无氧铜板。喷涂工作时,银粉被喷枪喷出的气流加速后以超音速撞向无氧铜基板,银粉颗粒发生大塑性变形,粉末颗粒撞扁之后以近似于冷焊合的方式结合在一起,逐层沉积在基板上。冷喷涂的喷枪安装在机械臂上,喷枪按照设计好的轨迹一边喷涂一边移动,最终在无氧铜基板上获得一层30-35mm厚的高纯银涂层,银粉的利用率为98.5%。
步骤四、将步骤三获得的银-铜复合胚板进行真空退火处理,以消除胚料内部应力。退火温度为530-550℃,退火时间为1h。
步骤五、将步骤四获得的银-铜复合胚板在多辊轧机下进行4-5道次冷轧压延加工,每道次的加工量在5-25%。
步骤六、对步骤五获得的轧制后的银-铜复合板材,只需按照设计图纸要求进行机加工,即可获得银靶成品,该银靶的背面即为纯铜基板,且铜基板与银靶层之间实现了冶金级结合,无需额外再进行靶材绑定。
用该工艺方法制成的银靶,测得纯度为:Ag>99.995%,O<0.0065%,银靶内的晶粒平均尺寸为5μm以下,最大晶粒直径<20μm,银靶的相对密度为99.5%。
实施例3
本实施例提供了大尺寸平面AgCu靶的制备方法,包括以下步骤:
步骤一、先将纯度为99.999%的Ag与Cu原料按照1:1的重量百分比投入高纯石墨坩埚内进行高频真空感应熔炼,然后采用惰性气体雾化法将合金液制成高纯球形合金粉末,雾化介质为高纯氩气。
步骤二、将步骤一获得的高纯球形银铜合金粉进行标准筛分,选出350~600目范围内的粉末,测得该粉末D50为16.5μm;将该粉末进行特定的控氧工艺处理,所获得的银铜合金粉氧含量为为87ppm,银铜合金粉纯度保持在99.996%以上。
步骤三、将步骤二获得的粒径合格的AgCu合金粉进行冷气动力喷涂,冷喷涂介质气体采用高纯氩气。冷喷涂气压为2.2-2.6Mpa,粉末输送量为200-220g/min,喷涂时粉末预热温度为450-500℃。喷涂基板为预先准备好的T1无氧铜板。喷涂工作时,AgCu28合金粉被喷枪喷出的气流加速后以超音速撞向无氧铜基板,银合金粉颗粒发生大塑性变形,粉末颗粒撞扁之后以近似于冷焊合的方式结合在一起,逐层沉积在基板上。冷喷涂的喷枪安装在机械臂上,喷枪按照设计好的轨迹一边喷涂一边移动,最终在无氧铜基板上获得一层40-45mm厚的AgCu合金涂层。
步骤四、将步骤三获得的复合胚板进行真空退火处理,以消除胚料内部应力。退火温度为500-550℃,退火时间为1h。
步骤五、将步骤四获得的复合胚板在多辊轧机下进行6-9道次冷轧压延加工,每道次的加工量在5-25%。
步骤六、对步骤五获得的轧制后的复合板材,只需按照设计图纸要求进行机加工,即可获得银靶成品,该银铜靶的背面即为纯铜基板,且铜基板与银铜合金靶层之间实现了冶金级结合,无需进行额外的靶材绑定。
用该工艺方法制成的AgCu合金靶,测得纯度为:AgCu>99.995%,O<0.0095%,靶内的晶粒平均尺寸为5μm以下,最大晶粒直径仍<20μm。
实施例4
本实施例提供了大尺寸平面AlSi合金靶的制备方法,包括以下步骤:
步骤一、先将纯度为99.995%的Al与Si原料按照96:4的重量百分比投入高纯石墨坩埚内进行高频真空感应熔炼,然后采用惰性气体雾化法将合金液制成高纯球形合金粉末,雾化介质为高纯氩气。
步骤二、将步骤一获得的高纯球形AlSi合金粉进行标准筛分,选出350~600目范围内的粉末,测得该粉末D50为17.5μm;所获得的AlSi合金粉氧含量为为140ppm,AlSi合金粉纯度保持在99.996%以上。
步骤三、将步骤二获得的粒径合格的AlSi合金粉进行冷气动力喷涂,冷喷涂介质气体采用高纯氩气。冷喷涂气压为2.8-3.4Mpa,粉末输送量为160-180g/min,喷涂时粉末预热温度为400-450℃。喷涂基板为预先准备好的纯铝板。喷涂工作时,AlSi合金粉被喷枪喷出的气流加速后以超音速撞向纯铝基板,AlSi合金颗粒发生大塑性变形,粉末颗粒之间以近似于冷焊合的方式结合在一起,逐层沉积在基板上。冷喷涂的喷枪安装在机械臂上,喷枪按照设计好的轨迹一边喷涂一边移动,最终在纯铝基板上获得一层35-40mm厚的AlSi合金合金涂层。
步骤四、将步骤三获得的复合胚板进行真空退火处理,以消除胚料内部应力。退火温度为450-480℃,退火时间为1h。
步骤五、将步骤四获得的复合胚板在多辊轧机下进行3-5道次冷轧压延加工,每道次的加工量在5-25%。
步骤六、对步骤五获得的轧制后的复合板材,只需按照设计图纸要求进行机加工,即可获得靶材成品,且铝基板与AlSi合金靶层之间实现了冶金级结合,无需进行额外的靶材绑定。
用该工艺方法制成的AlSi合金靶,测得纯度为:AlSi>99.994%,O<0.015%,靶内的晶粒平均尺寸为5μm以下,最大晶粒直径仍<20μm。
实施例5
本实施例提供了大尺寸平面NiCr合金靶的制备方法,包括以下步骤:
步骤一、先将纯度为99.995%的Ni与Cr原料按照80:20的重量百分比投入高纯石墨坩埚内进行真空中频感应熔炼,然后采用惰性气体雾化法将合金液制成高纯球形合金粉末,雾化介质为高纯氩气,合金熔炼温度为1550-1600℃。
步骤二、将步骤一获得的高纯球形NiCr合金粉进行标准筛分,选出350~600目范围内的粉末,测得该粉末D50为22μm;所获得的NiCr合金粉氧含量为为140ppm,NiCr合金粉纯度保持在99.99%以上。
步骤三、将步骤二获得的粒径合格的NiCr合金粉进行冷气动力喷涂,冷喷涂介质气体采用高纯氩气。冷喷涂气压为3.2-3.4Mpa,粉末输送量为120-140g/min,喷涂时粉末预热温度为500-550℃。喷涂基板为预先准备好的铜板。喷涂工作时,NiCr合金粉被喷枪喷出的气流加速后以超音速撞向铜基板,NiCr合金颗粒发生大塑性变形,粉末颗粒撞扁之后以近似于冷焊合的方式结合在一起,逐层沉积在基板上。冷喷涂的喷枪安装在机械臂上,喷枪按照设计好的轨迹一边喷涂一边移动,最终在铜基板上获得一层25-30mm厚的NiCr合金涂层。
步骤四、对步骤三获得的复合胚板进行机加工,将NiCr合金涂层背后的铜板铣除干净,然后将NiCr合金靶胚真空退火处理,以消除胚料内部应力。退火温度为600-650℃,退火时间为1h。
步骤五、将步骤四获得的NiCr合金靶胚在多辊轧机下进行5-9道次冷轧压延加工,每道次的加工量在10-20%,直至获得所需厚度的NiCr板材。
步骤六、将步骤五获得的轧制后的NiCr合金板材较平,再按照设计图纸要求进行机加工,随后按照常规工艺对该合金靶材进行绑定。
用该工艺方法制成NiCr合金靶,测得纯度为:NiCr含量>99.99%,O<0.015%,靶内的晶粒平均尺寸为5μm以下,最大晶粒直径仍<20μm。
根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的配方范围内相关合金元素配比变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (9)

1.一种大尺寸平面金属靶材的制备方法,至少包括以下步骤:
步骤一、选择合适的靶材衬底,对其表面进行喷砂处理,使其表面粗糙化;
步骤二、采用超音速冷气动力喷涂法,以高纯氩气或高纯氦气为气动介质,将超低氧含量的高纯球形金属粉喷涂沉积到衬底板上,金属粉颗粒以超音速撞击到粗糙化的衬底上,发生塑性变形+冷焊合,在界面处实现彼此键合;当金属涂层沉积到一定厚度后即成为靶坯;
步骤三、对步骤二所获得的靶坯进行真空退火,消除喷涂过程产生的应力;
步骤四、对步骤三获得靶坯进行多道次的冷轧加工,获得一定厚度的胚板;
步骤五、用校平机对胚板进行校平,获得合格胚板;
步骤六、对步骤五获得的靶坯进行线切割、铣磨等粗加工、随后在数控机床上对其进行精加工,制成不同规格的靶材;
步骤七、可按照常规工艺对步骤六所获得的靶材进行绑定,最终制成大尺寸平面靶材成品。
2.根据权利要求1所述的大尺寸平面金属靶材的制备方法,其特征在于,步骤一中的靶材衬底材质为Al、Cu、不锈钢或其他合金;喷砂处理所用的材料为氧化铝、氧化锆、碳化硼等无机材料颗粒,喷砂的粒度为16~60目。
3.根据权利要求1所述的大尺寸平面金属靶材的制备方法,其特征在于,步骤二所述的靶材成分的高纯球形金属粉末材质为铜、银等纯单质金属或镍铬、锌铝、硅铝等合金材质;金属粉末的纯度须大于99.99%,越高越好;含氧量须小于150ppm,越低越好;金属粉末的粒径范围为5-45μm,优选范围15-30μm。
4.根据权利要求1所述的大尺寸平面金属靶材的制备方法,其中的超音速冷气动力喷涂法,以高纯氩气或高纯氦气为气动介质,气体工作温度为室温~600℃,冷喷涂气压为1.5~3.5Mpa,粉末输送量为0.1~400g/min;工作时,金属粉末通过送粉系统被喷枪喷出的气流加速后高速撞向基板,金属粉颗粒发生塑性变形,进而牢固附着在基板表面上,并逐层沉积;喷枪安装在机械臂上,按照预先设计好的路径一边喷涂一边往复移动,最终在大面积基板上形成一层厚度可控的高纯金属涂层,涂层厚度可在0.3-100mm范围任意选择。
5.根据权利要求1所述的大尺寸平面金属靶材的制备方法,其特征在于,步骤二所获得的靶胚,须进行真空退火,以消除喷涂过程中涂层内部产生的应力,真空退火的工艺条件视靶材的材质而定。
6.根据权利要求1所述的大尺寸平面金属靶材的制备方法,其特征在于,对步骤三所获得的靶胚,须用多辊轧机进行3-9道次的冷轧加工,轧制时每道次变形量在10%-50%范围内;
对胚靶进行多道次的冷轧加工主要是为了消除靶材内的的小气孔、微裂纹等缺陷,同时使靶胚厚度更贴近最终要求。
7.根据权利要求1所述的大尺寸平面金属靶材的制备方法,其特征在于,步骤四所获得的靶坯,如有需要,可用校平机进行校平,消除靶胚可能存在的局部翘曲。
8.根据权利要求1所述的大尺寸平面金属靶材的制备方法,其特征在于,须对步骤五所获得的靶胚进行线切割、铣磨等粗加工、随后在数控机床上对其进行精加工,制成不同规格的平面靶材。
9.根据权利要求1所述的大尺寸平面金属靶材的制备方法,其特征在于,步骤五所获得的靶材,如有必要,可按照常规工艺用焊料将靶材绑定在背板上,最终制成大尺寸平面靶材成品;铜靶和银靶通常会使用无氧铜作为冷喷涂背板,随后可直接将靶胚加工成靶材成品,无需额外进行靶材绑定。
CN202111654726.3A 2021-12-31 2021-12-31 一种大尺寸平面金属靶材的制备方法 Pending CN114231918A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111654726.3A CN114231918A (zh) 2021-12-31 2021-12-31 一种大尺寸平面金属靶材的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111654726.3A CN114231918A (zh) 2021-12-31 2021-12-31 一种大尺寸平面金属靶材的制备方法

Publications (1)

Publication Number Publication Date
CN114231918A true CN114231918A (zh) 2022-03-25

Family

ID=80744896

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111654726.3A Pending CN114231918A (zh) 2021-12-31 2021-12-31 一种大尺寸平面金属靶材的制备方法

Country Status (1)

Country Link
CN (1) CN114231918A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115415534A (zh) * 2022-09-30 2022-12-02 先导薄膜材料(广东)有限公司 一种银钯铟靶材及其制备方法
CN116460138A (zh) * 2023-04-20 2023-07-21 山东格美钨钼材料股份有限公司 一种降耗式高密度钼钛靶材加工方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008141593A1 (en) * 2007-05-22 2008-11-27 Safina, A.S. Method for production of sputtering targets
CN104831242A (zh) * 2015-04-08 2015-08-12 无锡舒玛天科新能源技术有限公司 大尺寸一体化铝钕旋转靶材及其制备方法
CN105220121A (zh) * 2015-10-27 2016-01-06 有研亿金新材料有限公司 一种靶材组件及其制备方法
TWI677589B (zh) * 2019-01-14 2019-11-21 宏進金屬科技股份有限公司 一種濺射靶材的製備方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008141593A1 (en) * 2007-05-22 2008-11-27 Safina, A.S. Method for production of sputtering targets
CN104831242A (zh) * 2015-04-08 2015-08-12 无锡舒玛天科新能源技术有限公司 大尺寸一体化铝钕旋转靶材及其制备方法
CN105220121A (zh) * 2015-10-27 2016-01-06 有研亿金新材料有限公司 一种靶材组件及其制备方法
TWI677589B (zh) * 2019-01-14 2019-11-21 宏進金屬科技股份有限公司 一種濺射靶材的製備方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高志等主编: "《表面科学与工程》", 31 October 2006, 华东理工大学出版社, pages: 29 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115415534A (zh) * 2022-09-30 2022-12-02 先导薄膜材料(广东)有限公司 一种银钯铟靶材及其制备方法
CN116460138A (zh) * 2023-04-20 2023-07-21 山东格美钨钼材料股份有限公司 一种降耗式高密度钼钛靶材加工方法及装置

Similar Documents

Publication Publication Date Title
US9212418B2 (en) Al-Ni-La system Al-based alloy sputtering target
US9783882B2 (en) Fine grained, non banded, refractory metal sputtering targets with a uniformly random crystallographic orientation, method for making such film, and thin film based devices and products made therefrom
CN114231918A (zh) 一种大尺寸平面金属靶材的制备方法
US20090242394A1 (en) Al-based alloy sputtering target and manufacturing method thereof
JP5046890B2 (ja) Ag系スパッタリングターゲット
JP2015505903A (ja) 非晶質形成能を有する結晶質合金、その製造方法、スパッタリング用合金ターゲット及びその製造方法
CN107620060A (zh) 一种激光熔覆用修复160CrNiMo半钢轧辊的金属粉末
EP2772564A1 (en) Indium sputtering target, and method for producing same
CN109609926A (zh) 一种化学气相沉积高纯钨溅射靶材制作方法
CN114411104A (zh) 一种高纯银靶及其制备方法和用途
CN110904364B (zh) 一种铝合金靶材的制备方法
CN113122837A (zh) 一种基于冷喷涂工艺的AgCuTiX合金箔带钎料及其制备方法
CN103898459B (zh) 一种高纯钴靶材的制备方法
CN112779508A (zh) 一种高纯钒靶坯的制备方法及利用其制得的高纯钒靶材
CN109338316B (zh) 一种组织及织构可控的超高纯钽及其制备方法和应用
CN112157269A (zh) 一种基于热处理铝合金粉末的冷喷涂涂层制备方法
CN114875291B (zh) 一种高熵合金粉末及其制备方法和一种高熵合金激光熔覆层及其制备方法
CN112719296B (zh) 一种4Cr5MoSiV1合金钢力学性能调控方法
CN116496760A (zh) 一种具有多主元中/高熵合金镀覆层的超硬材料磨粒及其制备方法
CN105483626B (zh) 一种细晶粒平面钼靶材的生产方法
CN104593719B (zh) 靶材的制作方法
CN102000702A (zh) 一种高纯钽溅射靶材的加工工艺
TW201348459A (zh) 濺射鉬靶材及其製造方法
CN110565001A (zh) 一种热喷涂粉末及其用于制备热喷涂层的方法
CN113718093B (zh) 一种高速冲击大面积制备非晶/纳米晶复合涂层及其制备工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination