CN114230357B - 一种复合材料缝隙波导天线的制备方法 - Google Patents
一种复合材料缝隙波导天线的制备方法 Download PDFInfo
- Publication number
- CN114230357B CN114230357B CN202111583826.1A CN202111583826A CN114230357B CN 114230357 B CN114230357 B CN 114230357B CN 202111583826 A CN202111583826 A CN 202111583826A CN 114230357 B CN114230357 B CN 114230357B
- Authority
- CN
- China
- Prior art keywords
- composite
- density
- waveguide antenna
- slot waveguide
- composite material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 96
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 63
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 44
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 41
- 239000004917 carbon fiber Substances 0.000 claims abstract description 41
- 238000001465 metallisation Methods 0.000 claims abstract description 31
- 238000005229 chemical vapour deposition Methods 0.000 claims abstract description 29
- 239000011159 matrix material Substances 0.000 claims abstract description 28
- 239000004744 fabric Substances 0.000 claims abstract description 19
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 17
- 238000007493 shaping process Methods 0.000 claims abstract description 10
- 238000005470 impregnation Methods 0.000 claims abstract description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 17
- 239000000956 alloy Substances 0.000 claims description 17
- 238000003754 machining Methods 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 16
- 239000000919 ceramic Substances 0.000 claims description 15
- 239000011226 reinforced ceramic Substances 0.000 claims description 15
- 238000000280 densification Methods 0.000 claims description 14
- 238000000151 deposition Methods 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 239000007789 gas Substances 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 10
- 238000002468 ceramisation Methods 0.000 claims description 9
- 239000002243 precursor Substances 0.000 claims description 9
- 230000008021 deposition Effects 0.000 claims description 7
- 238000009941 weaving Methods 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 239000010931 gold Substances 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 230000001681 protective effect Effects 0.000 claims description 5
- 229910052709 silver Inorganic materials 0.000 claims description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 4
- 238000000626 liquid-phase infiltration Methods 0.000 claims description 4
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 4
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 4
- 239000004332 silver Substances 0.000 claims description 4
- 229910000601 superalloy Inorganic materials 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 230000004087 circulation Effects 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 238000005137 deposition process Methods 0.000 claims 1
- 238000001764 infiltration Methods 0.000 claims 1
- 230000008595 infiltration Effects 0.000 claims 1
- 230000008018 melting Effects 0.000 claims 1
- 238000002844 melting Methods 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 15
- 229910000838 Al alloy Inorganic materials 0.000 abstract description 14
- 239000011347 resin Substances 0.000 abstract description 9
- 229920005989 resin Polymers 0.000 abstract description 9
- 230000035939 shock Effects 0.000 abstract description 7
- 238000012545 processing Methods 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 239000011247 coating layer Substances 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 229910001021 Ferroalloy Inorganic materials 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- DWAWYEUJUWLESO-UHFFFAOYSA-N trichloromethylsilane Chemical group [SiH3]C(Cl)(Cl)Cl DWAWYEUJUWLESO-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 239000002313 adhesive film Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 239000011104 metalized film Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920003257 polycarbosilane Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 125000003866 trichloromethyl group Chemical group ClC(Cl)(Cl)* 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
- C04B35/83—Carbon fibres in a carbon matrix
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
- C04B35/571—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
- C04B35/573—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/51—Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
- C04B41/5116—Ag or Au
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/51—Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
- C04B41/5127—Cu, e.g. Cu-CuO eutectic
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/51—Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
- C04B41/515—Other specific metals
- C04B41/5155—Aluminium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/85—Coating or impregnation with inorganic materials
- C04B41/88—Metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/10—Resonant slot antennas
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/614—Gas infiltration of green bodies or pre-forms
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/616—Liquid infiltration of green bodies or pre-forms
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9607—Thermal properties, e.g. thermal expansion coefficient
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Composite Materials (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
本发明公开了一种复合材料缝隙波导天线的制备方法,包括以下步骤:首先将成型天线碳纤维织物预制体;然后经过化学气相沉积碳对织物进行定形,定形后对外形粗机加,再对其进致密,对外形精密加工后,对外形面进行保护后,再次循环致密,直至材料密度达到2.0‑2.3g/cm3,复合材料成型后,再对表面进行金属化。本发明方法可获得一种低密度、极低热膨胀系数、耐高温、抗热冲击的缝隙波导天线,重量比铝合金天线要低10‑20%,耐高温能力为1650℃,热膨胀系数为0.5‑3×10‑6/℃,同时由于耐高温,可以采用铝合金与碳纤维增强树脂基复合材料无法采用的CVD或者RMI方法进行深宽比腔体的金属化处理。
Description
技术领域
本发明涉及天线技术领域,具体涉及一种复合材料缝隙波导天线的制备方法。
背景技术
缝隙波导天线在航空航天领域的需求越来越迫切,由于一般天线都采用金属材质,同时由于尺寸越来越大,热变形也越来越大,以铝合金为例,其热膨胀系数约为24×10-6/℃、密度2.7g/cm3,并需要多次焊接成型。由于宇航飞行器中的使用对于减重、尺寸稳定性的指标要求越来越高,因此铝合金固有的一些缺点已经限制了其进一步的应用。
年来,碳纤维增强树脂基复合材料(CFRP)金属化的缝隙波导天线也逐渐获得研究和利用,如申请号为CN201410717937.0公开一种缝隙共形天线,包括纤维、树脂和通孔,通过在导电碳纤维编织成的纤维布中形成具有特定形状和分布的镂空网眼,随后将纤维布浸入树脂胶膜制得预浸料,固化形成基板后,在纤维布的镂空网眼的位置进行开孔形成缝隙,制得缝隙共形天线。但是该技术存在高的深宽比腔体金属化难度高的问题,同时大尺寸的产品也存在局限性。而碳纤维增强增强陶瓷基复合材料有着密度低、热膨胀系数低、耐高温的优点,通过预制体织物预成型的方式制备复杂构形结构,同时远超铝合金和树脂基复合材料的耐高温性能,也意味着材料本体可以在高温下进行金属化。目前针对基于碳纤维增强陶瓷基复合材料金属化后的缝隙波导天线,在文献中未见报道。
发明内容
本发明所要解决的技术问题在于如何解决现有的碳纤维增强树脂基复合材料金属化的缝隙波导天线,存在高的深宽比腔体金属化难度高的问题。
本发明通过以下技术手段实现解决上述技术问题的:
一种复合材料缝隙波导天线的制备方法,包括以下步骤:
(1)预制体成型
采用针刺编制设备将碳纤维进行成形为2.5D织物预制体,成形后的织物密度控制在0.45-0.55g/cm3;
(2)化学气相沉积(CVD)碳
将步骤(1)中制得的预制体置于化学气相沉积炉中进行化学气相沉积(CVD)碳,得到低密度C/C复合材料,其中,沉积温度为900-1000℃,沉积后的低密度C/C复合材料的密度控制在0.6-0.7g/cm3;
(3)粗机加与陶瓷化
对低密度C/C复合材料外形面进行粗机加,随后进行陶瓷致密,经过多个循环至复合材料密度为1.7-1.9g/cm3;
(4)精机加与陶瓷化
对碳纤维增强陶瓷基复合材料外形面进行精机加,随后对外形面进行保护后,继续进行陶瓷致密,直至复合材料密度为2.0-2.3g/cm3;
(5)金属化后定型
对碳纤维增强陶瓷基复合材料表面进行深宽比腔体的金属化处理,得到密度为2.1-2.4g/cm3的复合材料缝隙波导天线(C/C-SiC材料)。
本发明方法可获得一种低密度、极低热膨胀系数、耐高温、抗热冲击的缝隙波导天线,重量比铝合金天线要低10-20%,耐高温能力为1650℃,热膨胀系数为0.5-3×10-6/℃,同时由于耐高温,可以采用铝合金与碳纤维增强树脂基复合材料无法采用的CVD或者RMI方法进行深宽比腔体的金属化处理。
优选地,所述步骤(1)中碳纤维为PAN基碳纤维。
优选地,所述步骤(1)的成形过程中采用的工装为高温合金工装,便于后期腐蚀处理。
优选地,所述步骤(1)的成形过程中采用的芯模为高温合金芯模,高温合金芯模耐温1200℃以上。
优选地,所述高温合金芯模包括高温铁合金。
优选地,所述步骤(2)中化学气相沉积(CVD)碳过程中气源选自甲烷、丙烯中的一种。
优选地,所述步骤(2)中化学气相沉积(CVD)碳过程中保护气体为氢气。
优选地,所述步骤(3)和步骤(4)中陶瓷致密方法包括化学相沉积方法、高温熔融渗透法(RMI法)或真空压力浸渍法(PIP法)。
优选地,所述步骤(5)中金属化方法包括化学相沉积方法(CVD法)或高温熔融渗透法(RMI法);CVD或者RMI过程中需采用工装进行约束,以保证金属化膜层的均匀性与一致性。
优选地,所述步骤(5)中金属化的前驱体选自铝、铜、银、金中的一种。
本发明具有如下的有益效果:本发明方法可获得一种低密度、极低热膨胀系数、耐高温、抗热冲击的缝隙波导天线,重量比铝合金天线要低10-20%,耐高温能力为1650℃,热膨胀系数为0.5-3×10-6/℃,同时由于耐高温,可以采用铝合金与碳纤维增强树脂基复合材料无法采用的CVD或者RMI方法进行深宽比腔体的金属化处理。
附图说明
图1为本发明实施例的深宽比腔体的金属化处理的结构示意图。
附图标号说明:
1、复合材料基体;2、合金模具;3、金属化层。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图和实施例对本发明进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下述实施例中所用的试验材料和试剂等,如无特殊说明,均可从商业途径获得。
实施例中未注明具体技术或条件者,均可以按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。
本发明下述实施例中采用的碳纤维原料为型号为T700的PAN基碳纤维。
一种复合材料缝隙波导天线的制备方法,包括以下步骤:
(1)预制体成型
采用针刺编制设备将碳纤维进行成形为2.5D织物预制体,成形后的织物密度控制在0.45-0.55g/cm3;
(2)化学气相沉积(CVD)碳
将步骤(1)中制得的预制体置于化学气相沉积炉中进行化学气相沉积(CVD)碳,得到低密度C/C复合材料,其中,沉积温度为900-1000℃,沉积后的低密度C/C复合材料的密度控制在0.6-0.7g/cm3;
(3)粗机加与陶瓷化
对低密度C/C复合材料外形面进行粗机加,随后进行陶瓷致密,经过多个循环至复合材料密度为1.7-1.9g/cm3;
(4)精机加与陶瓷化
对碳纤维增强陶瓷基复合材料外形面进行精机加,随后对外形面进行保护后,继续进行陶瓷致密,直至复合材料密度为2.0-2.3g/cm3;
(5)金属化后定型
如图1所示,通过对复合材料基体1表面进行深宽比腔体的金属化处理,将复合材料基体1置于合金模具2上,在复合材料基体1的表面镀上金属化层3,得到密度为2.1-2.4g/cm3的复合材料缝隙波导天线(C/C-SiC材料)。
实施例1
长100mm宽80mm壁厚0.8mm的复合材料缝隙波导天线的制备方法,包括以下步骤:
(1)采用针刺编制设备将碳纤维进行成长120mm宽100mm的碳纤维织物预制体,成形后的织物密度控制在0.45g/cm3;成形过程中采用的芯模为高温合金芯模,高温合金芯模耐温1200℃以上,高温合金芯模包括高温铁合金;
(2)将步骤(1)中制得的预制体置于化学气相沉积炉中进行化学气相沉积碳,沉积温度为900℃,气源选用甲烷,保护气体为氢气,得到密度为0.6g/cm3的低密度C/C复合材料;
(3)对低密度C/C复合材料外形面进行粗机加,随后采用CVD法对复合材料进行陶瓷致密,前驱体为三氯甲基硅烷,经过多个循环至复合材料密度为1.7g/cm3;
(4)精机加与陶瓷化
对碳纤维增强陶瓷基复合材料外形面进行精机加,随后对外形面进行保护后,继续采用CVD法对复合材料进行陶瓷致密,前驱体为三氯甲基硅烷,直至复合材料密度为2.0g/cm3;
(5)金属化后定型
采用CVD法对复合材料基体表面进行深宽比腔体的金属化处理,前驱体采用三甲基铝,得到密度为2.1g/cm3的复合材料缝隙波导天线(C/C-SiC材料)。
实施例2
长180mm宽100mm壁厚0.8mm的复合材料缝隙波导天线的制备方法,包括以下步骤:
(1)采用针刺编制设备将碳纤维进行成200mm宽120mm的碳纤维织物预制体,成形后的织物密度控制在0.5g/cm3;成形过程中采用的芯模为高温合金芯模,高温合金芯模耐温1200℃以上,高温合金芯模包括高温铁合金;
(2)将步骤(1)中制得的预制体置于化学气相沉积炉中进行化学气相沉积碳,沉积温度为1000℃,气源选用丙烯,保护气体为氢气,得到密度为0.64g/cm3的低密度C/C复合材料;
(3)对低密度C/C复合材料外形面进行粗机加,随后采用RMI法对复合材料进行陶瓷致密,硅源为单质硅,经过多个循环至复合材料密度为1.85g/cm3;
(4)精机加与陶瓷化
对碳纤维增强陶瓷基复合材料外形面进行精机加,随后对外形面进行保护后,继续采用CVD法对复合材料进行陶瓷致密,前驱体为三氯甲基硅烷,直至复合材料密度为2.1g/cm3;
(5)金属化后定型
采用RMI法对碳纤维增强陶瓷基复合材料表面进行金属化银,前驱体采用银,得到密度为2.2g/cm3的复合材料缝隙波导天线(C/C-SiC材料)。
实施例3
长240mm宽120mm壁厚0.8mm的复合材料缝隙波导天线的制备方法,包括以下步骤:
(1)采用针刺编制设备将碳纤维进行成长长260mm宽140mm的碳纤维织物预制体,成形后的织物密度控制在0.55g/cm3;成形过程中采用的芯模为高温合金芯模,高温合金芯模耐温1200℃以上,高温合金芯模包括高温铁合金;
(2)将步骤(1)中制得的预制体置于化学气相沉积炉中进行化学气相沉积碳,沉积温度为1000℃,气源选用丙烯,保护气体为氢气,得到密度为0.66g/cm3的低密度C/C复合材料;
(3)对低密度C/C复合材料外形面进行粗机加,随后采用PIP法对复合材料进行陶瓷致密,硅源为聚碳硅烷,经过多个循环至复合材料密度为1.8g/cm3;
(4)精机加与陶瓷化
对碳纤维增强陶瓷基复合材料外形面进行精机加,随后对外形面进行保护后,继续采用CVD法对复合材料进行陶瓷致密,前驱体为三氯甲基硅烷,直至复合材料密度为2.2g/cm3;
(5)金属化后定型
采用RMI法对碳纤维增强陶瓷基复合材料表面进行金属化金,前驱体采用单质金,得到密度为2.2g/cm3的复合材料缝隙波导天线(C/C-SiC材料)。
对比例1
本对比例制备铝合金天线波导裂缝天线,铝合金天线波导裂缝天线制造过程的主要难点在于焊接过程变形以及整体质量的减重潜能已逼近极,制备的波导裂缝天线密度为2.7g/cm3,同时在天线焊接过程中不可避免的存在变形、开裂甚至报废的风险;而本发明的C/C-SiC材料得整个工艺方法都是一体成型,不存在焊接、装配问题,同时C/C-SiC材料密度可以比铝合金天线降低10-23%。
对比例2
本对比例采用实施例1的方法制备轻量化碳纤维复合材料(CFRP)波导裂缝天线,区别在于:轻量化碳纤维复合材料(CFRP)波导裂缝天线制造过程的主要难点是复合材料的高精度成型和波导腔体的金属层制备,CFRP的金属化镀层需要设计成三层,即底镀层、中间过渡层和功能性导电层另外。
由于碳纤维复合材料材料上镀覆层的附着力相对较弱,镀层内应力对附着力产生影响的因素不容忽视,因此在进行中间过渡层工艺设计时,需对各类镀层所产生的“拉”或“压”应力进行研究,使总镀层的内应力降至最低,以减少镀层内应力对附着力产生的不利影响;最外表面的功能性导电镀层拟选用电学性能极佳的Ag或Au层,通过合适的电沉积技术获得。
与CFRP的金属化相比,本申请的C/C-SiC的金属化存在以下优势:1)CFRP表面与金属层之间的结合主要为机械结合形式,而C/C-SiC中的C与SiC可以与金属层在高温下形成共价结合,结合力更高;2)若CFRP采用金属化转移法制备金属层,也需要腐蚀金属芯模,而酸碱溶液会对CFRP基体或者纤维产生腐蚀,而C/C-SiC腐蚀芯模过程中则不会有此类问题;3)CFRP金属化前表面需进行粗化处理以提高机械结合力,C/C-SiC的金属化则不需要;4)CFRP波导裂缝天线腔体的金属化主要通过化学镀、金属化转移等方法,无法使用高温化学气相沉积(CVD)进行金属化,而C/C-SiC波导裂缝天线腔体可以使用定向沉积工装配合,采用CVD进行金属化,亦可以采用熔反应熔体渗透法(RMI)。
性能测试手段
密度:材料本体属性,平均密度可采用“质量/体积”方法计算。
耐高温能力:材料本体属性,可在马弗炉内进行高温测试。
热膨胀系数:铝合金天线材料热膨胀系数测定可参考GB/T 4339-2008《金属材料热膨胀特征参数的测定》,CFRP天线材料热膨胀系数测定可参考GB/T36800.2-2018/ISO11359-2:1999《塑料热膨胀分析法(TMA)》,C/C-SiC天线材料热膨胀系数测定可参考GB/T16535-2008《工程陶瓷线膨胀系数试验方法》。
抗热冲击性:(YB376 YB4018高低温试验)
表1为实施例和对比例2、对比例3的复合材料的性能对比
组别 | 复合材料密度(g/cm<sup>3</sup>) | 耐高温能力/℃ | 热膨胀系数 | 抗热冲击性 |
实施例1 | 2.1 | 1650 | 0.5-3×10<sup>-6</sup>/℃ | 抗热震性好 |
对比例1 | 2.7 | ≤180 | 23.8×10<sup>-6</sup>/℃ | 抗热震性差 |
对比例2 | 1.9-2.3 | ≤180 | 7×10<sup>-6</sup>/℃ | 抗热震性差 |
根据表1的数据不难发现,本发明方法可获得一种低密度、极低热膨胀系数、耐高温、抗热冲击的缝隙波导天线,重量比铝合金天线要低10-20%,耐高温能力为1650℃,热膨胀系数为0.5-3×10-6/℃,同时由于耐高温,可以采用铝合金与碳纤维增强树脂基复合材料无法采用的CVD或者RMI方法进行深宽比腔体的金属化处理。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
Claims (10)
1.一种复合材料缝隙波导天线的制备方法,其特征在于,包括以下步骤:
(1)预制体成型
采用针刺编制设备将碳纤维进行成形为2.5D织物预制体,成形后的织物密度控制在0.45-0.55g/cm3;
(2)化学气相沉积碳
将步骤(1)中制得的预制体置于化学气相沉积炉中进行化学气相沉积碳,得到低密度C/C复合材料,其中,沉积温度为900-1000℃,沉积后的低密度C/C复合材料的密度控制在0.6-0.7g/cm3;
(3)粗机加与陶瓷化
对低密度C/C复合材料外形面进行粗机加,随后进行陶瓷致密,经过多个循化至复合材料密度为1.7-1.9g/cm3;
(4)精机加与陶瓷化
对碳纤维增强陶瓷基复合材料外形面进行精机加,随后对外形面进行保护后继续进行陶瓷致密,直至复合材料密度为2.0-2.3g/cm3;
(5)金属化后定型
对碳纤维增强陶瓷基复合材料表面进行金属化,得到密度为2.1-2.4g/cm3的复合材料缝隙波导天线。
2.根据权利要求1所述的一种复合材料缝隙波导天线的制备方法,其特征在于:步骤(1)中碳纤维为PAN基碳纤维。
3.根据权利要求1所述的一种复合材料缝隙波导天线的制备方法,其特征在于:所述步骤(1)的成形过程中采用的工装为高温合金工装。
4.根据权利要求1所述的一种复合材料缝隙波导天线的制备方法,其特征在于:所述步骤(1)的成形过程中采用的芯模为高温合金芯模,高温合金芯模耐温1200℃以上。
5.根据权利要求4所述的一种复合材料缝隙波导天线的制备方法,其特征在于:所述高温合金芯模包括高温铁合金。
6.根据权利要求1所述的一种复合材料缝隙波导天线的制备方法,其特征在于:所述步骤(2)中化学气相沉积碳过程中气源选自甲烷、丙烯中的一种。
7.根据权利要求1所述的一种复合材料缝隙波导天线的制备方法,其特征在于:所述步骤(2)中化学气相沉积碳过程中保护气体为氢气。
8.根据权利要求1所述的一种复合材料缝隙波导天线的制备方法,其特征在于:所述步骤(3)和步骤(4)中陶瓷致密方法包括化学相沉积方法、高温熔融渗透法或真空压力浸渍法。
9.根据权利要求1所述的一种复合材料缝隙波导天线的制备方法,其特征在于:所述步骤(5)中金属化方法包括化学相沉积方法或高温熔融渗透法。
10.根据权利要求1所述的一种复合材料缝隙波导天线的制备方法,其特征在于:所述步骤(5)中金属化的前驱体选自铝、铜、银、金中的一种。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111583826.1A CN114230357B (zh) | 2021-12-22 | 2021-12-22 | 一种复合材料缝隙波导天线的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111583826.1A CN114230357B (zh) | 2021-12-22 | 2021-12-22 | 一种复合材料缝隙波导天线的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114230357A CN114230357A (zh) | 2022-03-25 |
CN114230357B true CN114230357B (zh) | 2023-01-31 |
Family
ID=80761600
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111583826.1A Active CN114230357B (zh) | 2021-12-22 | 2021-12-22 | 一种复合材料缝隙波导天线的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114230357B (zh) |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0673900A2 (en) * | 1994-03-25 | 1995-09-27 | The B.F. Goodrich Company | Carbon/carbon composites and electrical apparatus containing the same |
CN1482272A (zh) * | 2002-09-12 | 2004-03-17 | 厦门大学 | 电化学方法制备纤维增强金属基复合材料的生产工艺 |
CN1757270A (zh) * | 2003-03-01 | 2006-04-05 | 3M创新有限公司 | 使用致密金属粉末来形成电磁通讯电路组件 |
CN101708999A (zh) * | 2009-12-11 | 2010-05-19 | 中国人民解放军国防科学技术大学 | C/ZrC陶瓷基复合材料及其制备方法 |
CN104313518A (zh) * | 2014-09-28 | 2015-01-28 | 中南大学 | 一种陶瓷复合材料及其制备方法和应用 |
CN105237020A (zh) * | 2015-08-31 | 2016-01-13 | 中国人民解放军国防科学技术大学 | 一种碳纤维增强ZrB2-ZrN复相陶瓷基复合材料及其制备方法 |
CN105720372A (zh) * | 2014-12-01 | 2016-06-29 | 深圳光启创新技术有限公司 | 一种缝隙共形天线及其制造方法 |
CN106977218A (zh) * | 2016-11-18 | 2017-07-25 | 北京航空航天大学 | 一种多元碳与陶瓷基复合材料活塞及其制备方法与应用 |
CN107382355A (zh) * | 2017-07-24 | 2017-11-24 | 苏州宏久航空防热材料科技有限公司 | 一种致密c/c复合材料制备方法 |
CN110372408A (zh) * | 2019-07-23 | 2019-10-25 | 中南大学 | 一种陶瓷纤维增韧cvd碳化硅复合材料及其制备方法和应用 |
CN111825473A (zh) * | 2020-07-29 | 2020-10-27 | 湖南博云新材料股份有限公司 | 一种碳/碳复合材料的制备方法 |
CN112190761A (zh) * | 2020-09-28 | 2021-01-08 | 湖南碳康生物科技有限公司 | 一种碳基复合材料人工骨修补材料及其制备方法 |
CN112374901A (zh) * | 2020-11-19 | 2021-02-19 | 航天特种材料及工艺技术研究所 | 一种耐烧蚀改性C/SiC复合材料及其制备方法 |
CN112573937A (zh) * | 2020-12-29 | 2021-03-30 | 中京吉泰(北京)科技有限责任公司 | 一种C/C-SiC-Cu复合材料及其制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130309396A1 (en) * | 2011-02-23 | 2013-11-21 | United States Of America As Represented By The Secretary Of The Air Force | Thermoplastic/Fiber Composite-Based Electrically Conductive Structures |
-
2021
- 2021-12-22 CN CN202111583826.1A patent/CN114230357B/zh active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0673900A2 (en) * | 1994-03-25 | 1995-09-27 | The B.F. Goodrich Company | Carbon/carbon composites and electrical apparatus containing the same |
CN1482272A (zh) * | 2002-09-12 | 2004-03-17 | 厦门大学 | 电化学方法制备纤维增强金属基复合材料的生产工艺 |
CN1757270A (zh) * | 2003-03-01 | 2006-04-05 | 3M创新有限公司 | 使用致密金属粉末来形成电磁通讯电路组件 |
CN101708999A (zh) * | 2009-12-11 | 2010-05-19 | 中国人民解放军国防科学技术大学 | C/ZrC陶瓷基复合材料及其制备方法 |
CN104313518A (zh) * | 2014-09-28 | 2015-01-28 | 中南大学 | 一种陶瓷复合材料及其制备方法和应用 |
CN105720372A (zh) * | 2014-12-01 | 2016-06-29 | 深圳光启创新技术有限公司 | 一种缝隙共形天线及其制造方法 |
CN105237020A (zh) * | 2015-08-31 | 2016-01-13 | 中国人民解放军国防科学技术大学 | 一种碳纤维增强ZrB2-ZrN复相陶瓷基复合材料及其制备方法 |
CN106977218A (zh) * | 2016-11-18 | 2017-07-25 | 北京航空航天大学 | 一种多元碳与陶瓷基复合材料活塞及其制备方法与应用 |
CN107382355A (zh) * | 2017-07-24 | 2017-11-24 | 苏州宏久航空防热材料科技有限公司 | 一种致密c/c复合材料制备方法 |
CN110372408A (zh) * | 2019-07-23 | 2019-10-25 | 中南大学 | 一种陶瓷纤维增韧cvd碳化硅复合材料及其制备方法和应用 |
CN111825473A (zh) * | 2020-07-29 | 2020-10-27 | 湖南博云新材料股份有限公司 | 一种碳/碳复合材料的制备方法 |
CN112190761A (zh) * | 2020-09-28 | 2021-01-08 | 湖南碳康生物科技有限公司 | 一种碳基复合材料人工骨修补材料及其制备方法 |
CN112374901A (zh) * | 2020-11-19 | 2021-02-19 | 航天特种材料及工艺技术研究所 | 一种耐烧蚀改性C/SiC复合材料及其制备方法 |
CN112573937A (zh) * | 2020-12-29 | 2021-03-30 | 中京吉泰(北京)科技有限责任公司 | 一种C/C-SiC-Cu复合材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114230357A (zh) | 2022-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108117412B (zh) | 一种层叠结构C/C-SiC-ZrB2复合材料及其制备方法 | |
CN110372390B (zh) | 基于増材制造的连续纤维增强SiC零件制备方法及产品 | |
US4613473A (en) | Method for forming composite articles of complex shapes | |
JP4740716B2 (ja) | 層間強度を向上させるために非被覆繊維を組み込んだSiC/SiC複合材 | |
CN108101566B (zh) | Rtm工艺辅助制备碳化硅陶瓷基复合材料构件的方法 | |
CN112500180B (zh) | 氮化物纤维增强陶瓷基透波复合材料及其精密成型方法 | |
CN108191432B (zh) | 一种SiC/SiC复合材料的连接方法 | |
CN108840694B (zh) | 一种透波型Si3N4f/Si3N4复合材料表面涂层的制备方法 | |
EP2970018A2 (en) | Method for making gas turbine engine composite structure | |
CN111302820B (zh) | 一种C/SiC复合材料的制备方法 | |
CN113956061A (zh) | 一种连续纤维增强陶瓷基复合材料螺钉的制备方法 | |
CN113896558B (zh) | 一种高性能热疏导复合材料及其制备方法 | |
US20100081350A1 (en) | Smooth surface ceramic composites | |
CN114230357B (zh) | 一种复合材料缝隙波导天线的制备方法 | |
CA2046560C (en) | Cooled refractory structure and manufacturing process therefor | |
CN114654822A (zh) | 一种仿生层状结构金属基复合材料的制备方法 | |
CN111039687B (zh) | 一种连续纤维增强陶瓷基复合材料无伤制孔方法 | |
JP5173372B2 (ja) | 炭素繊維強化樹脂製中空ロール及びその製造方法並びに炭素繊維強化樹脂製グラビア製版ロール | |
CN114853480B (zh) | 一种高温透波氮化物复合材料天线罩的低成本快速制备方法 | |
CN114041241A (zh) | 由相同组成的连续细丝制造多层陶瓷结构的方法 | |
CN115417699A (zh) | PyC-SiC-HfC三界面相改性C/C-SiBCN双基体抗烧蚀复合材料制备方法 | |
CN114230347A (zh) | 连续纤维增强ZrC/SiC复合零件的制备方法及产品 | |
CN114128045A (zh) | 由不同组成的连续细丝制造多层陶瓷结构 | |
CN117820000B (zh) | 一种纤维增韧烧结碳化硅/氮化硅陶瓷基复合材料及其制备方法 | |
CN115974570B (zh) | 一种陶瓷/树脂杂化基体复合材料薄壁构件制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |