CN114213697B - 一种高强聚乳酸微孔泡沫材料及其制备方法 - Google Patents

一种高强聚乳酸微孔泡沫材料及其制备方法 Download PDF

Info

Publication number
CN114213697B
CN114213697B CN202111457385.0A CN202111457385A CN114213697B CN 114213697 B CN114213697 B CN 114213697B CN 202111457385 A CN202111457385 A CN 202111457385A CN 114213697 B CN114213697 B CN 114213697B
Authority
CN
China
Prior art keywords
polylactic acid
stretching
block polymer
foaming
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111457385.0A
Other languages
English (en)
Other versions
CN114213697A (zh
Inventor
赵晓文
叶林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN202111457385.0A priority Critical patent/CN114213697B/zh
Publication of CN114213697A publication Critical patent/CN114213697A/zh
Application granted granted Critical
Publication of CN114213697B publication Critical patent/CN114213697B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/912Polymers modified by chemical after-treatment derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33348Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing isocyanate group
    • C08G65/33351Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing isocyanate group acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33348Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing isocyanate group
    • C08G65/33355Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing isocyanate group cyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2387/00Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

本发明公开一种高强聚乳酸微孔泡沫材料及其制备方法,其特点是首先通过分子设计,采用简便高效的大分子反应性加工方法将具有较低熔点及良好生物可降解性的聚合物链节引入聚乳酸分子链,制备长链支化聚乳酸基嵌段聚合物,在增加聚乳酸分子缠结程度的同时形成具有熔点差异的两相分离结构;在此基础上,利用固相热拉伸联合超临界CO2发泡技术,通过调控发泡温度(低熔点相熔点附近)远低于拉伸取向温度(介于聚乳酸相与低熔点相熔点之间),从而使嵌段聚合物分子在取向‑发泡过程中形成并保持高度取向结晶结构而获得高强聚乳酸微孔泡沫材料。

Description

一种高强聚乳酸微孔泡沫材料及其制备方法
技术领域
本发明涉及一种高强聚乳酸微孔泡沫材料及其制备方法,属于生物可降解泡沫材料和高分子材料加工技术领域。
背景技术
聚合物泡沫材料具有质轻、比强度高、能量吸收性优异等特点而广泛应用于建筑、包装和运输等领域。目前常用的聚合物泡沫材料,如聚苯乙烯(PS)、聚丙烯(PP)等,多以石油基聚合物为基体材料,该类材料难于降解且回收困难,其过度使用引发了一系列石油化工能源危机及生态环境问题。为代替石油基聚合物泡沫材料,实现绿色可持续经济发展,生物可降解聚合物发泡材料的研究引起了广泛关注。
聚乳酸(PLA)是一种可生物降解的脂肪族聚酯,来源于玉米、木薯、高粱等可再生资源,由于其优异的力学性能、良好的生物相容性及加工性能,被认为是最有希望替代石油基聚合物的材料。然而,由于其线性分子结构和缓慢的结晶动力学,聚乳酸在加工温度下通常表现出较低的粘弹性,在发泡过程中,易发生泡孔并聚和破裂,对泡孔生长和泡孔均匀性产生不利影响。CN200310110047.5以异氰酸酯作为扩链剂,通过反应性熔融加工及高温化学发泡制备了抗拉强度为3.6~12.8MPa,断裂伸长率为3.3~5.5%的聚乳酸泡沫材料;CN202010086835.9利用纤维素纳米纤维作为成核剂以改善聚乳酸的结晶性能与熔体强度,进一步采用超临界流体作为发泡剂,通过注塑发泡成型获得密度为0.05~0.7g/cm3的聚乳酸发泡材料;CN201410691587.5以羟基戊酸酯作为增韧剂、以二异氰酸酯及丁二醇作为交联剂、以滑石粉或蒙脱石作为成核剂,采用AC发泡剂在挤出过程中对聚乳酸进行发泡,制得具有较好韧性的聚乳酸泡沫材料,其冲击韧性达3.7~6.7KJ/m2,断裂伸长率达56~91%。然而,上述普通改性方法虽能在一定程度上改善聚乳酸的发泡行为及泡沫体力学性能,但增强效果仍较为有限,难以实现其力学强度成倍提升。
发明内容
本发明的目的是提供一种高强聚乳酸微孔泡沫材料及其制备方法,其特点是以多官能团环氧化合物联合多官能团酸酐或多官能团异氰酸酯化合物作为支化改性剂,并选择熔点(Tm2)远低于聚乳酸熔点(Tm1)的生物可降解聚合物链节作为共聚单元,通过简便易行的反应性加工方法制备具有长链支化结构的聚乳酸基嵌段聚合物,在增加聚乳酸分子缠结程度的同时,形成具有熔点差异的两相分离结构;进一步采用固相热拉伸技术,通过施加拉伸应力场诱导嵌段聚合物分子形成大量取向微纤化结晶结构,随后以CO2作为发泡剂,采用超临界二氧化碳(sc-CO2)发泡技术,对其进行发泡处理,利用聚乳酸相与低熔点聚合物相两相间存在熔点差异,调控其固相热拉伸温度介于两相熔点之间(Tm2~Tm1),而发泡温度在低熔点相的熔点(Tm2)附近,以防止拉伸取向后材料内部高熔点聚乳酸相在随后超临界CO2发泡过程中解取向的发生,保持其稳定取向结晶结构,同时发泡剂CO2又可在处于熔融态的低熔点相内形成快速溶解与扩散,进而获得具有高发泡倍率、且泡壁聚合物分子呈高度取向结晶结构的高强聚乳酸微孔泡沫材料。
本发明的目的由以下技术措施实现,其中所述原料分数除特殊说明外,均为重量份数。
高度取向微纤化聚乳酸基嵌段聚合物的制备:
将0.05~5份多官能环氧化合物、0.05~5份多官能酸酐化合物、0.05~5份多官能异氰酸酯化合物、5~40份低熔点可降解聚合物与100份聚乳酸一起加入密炼机中,于150~220℃下反应5~60min,得到具有长链支化结构的聚乳酸基嵌段聚合物;
将聚乳酸基嵌段聚合物进行压制成型,制成尺寸为30×5×1mm3的样片,压制温度为150~220℃,压制压力为5~20MPa,然后将样片固定在可控温调速的拉伸装置上,于60~120℃下恒温5~60min后进行拉伸取向,拉伸速率为5~1000mm/min,待拉伸倍率达到4-12倍后停止拉伸、冷却、卸载、取样,得到取向试样;
其中,所述多官能环氧化合物为乙二醇二缩水甘油醚、1,4-丁二醇二缩水甘油醚、丙三醇三缩水甘油醚、季戊四醇四缩水甘油醚、间苯二酚缩甲醛四缩水甘油醚中的任一种;
所述多官能酸酐化合物为均苯四酸二酐、3,3',4,4'-联苯四酸二酐、3,3',4,4'-二苯醚四酸二酐、3,3',4,4'-二苯甲酮四酸二酐中的任一种;
所述多官能异氰酸酯化合物为1,6-己二异氰酸酯、4,4’-二环己基甲烷二异氰酸酯、异佛尔酮二异氰酸酯、L-赖氨酸二异氰酸酯及L-赖氨酸三异氰酸酯中的任一种;
所述低熔点可降解聚合物为聚己内酯、聚乙二醇、聚对二氧环己酮、聚丁二酸丁二醇酯中的任一种。
取向微纤化聚乳酸基嵌段聚合物的发泡成型:
将取向微纤化聚乳酸基嵌段聚合物试样置于10~60℃的高压发泡釜中并向釜体内充入CO2,使釜内压力达5~18MPa并保持0.5~2h,随后快速泄压,取出样品并迅速冷却,得到高强聚乳酸泡沫。
当聚乳酸基嵌段聚合物在固相热拉伸过程中拉伸倍率达到8倍时,由本发明制备的高强聚乳酸微孔泡沫,其平均泡孔尺寸<10μm,拉伸强度及模量可分别达20~60MPa及0.1~1.5GPa。
本发明具有如下优点
本发明针对高强聚乳酸泡沫材料的制备难点,首先通过分子设计研究制备具有熔点差异两相分离结构及长链支化结构的聚乳酸基嵌段聚合物,在此基础上,利用固相拉伸联合超临界CO2发泡技术获得泡壁聚合物具有高度取向微纤化结晶结构的高强聚乳酸微孔泡沫材料,其优势如下:
·采用简便高效的大分子反应性加工方法将具有较低熔点及良好生物可降解性的聚合物链节引入聚乳酸分子链,制备长链支化聚乳酸基嵌段聚合物,构筑具有熔点差异的两相分离结构。一方面,聚乳酸相与低熔点聚合物相两相间的熔点差异有利于调控其在固相热拉伸及超临界CO2发泡加工过程中的加工温度,使其固相热拉伸温度介于两相熔点之间,而发泡温度在低熔点聚合物相的熔点附近,不仅可有效防止热拉伸取向后材料内部高熔点聚乳酸相在随后超临界CO2发泡过程中解取向的发生,保持其稳定取向结晶结构,同时发泡剂CO2又可在处于熔融态的低熔点相内形成快速扩散与溶解,提高材料内部CO2溶解度,提升泡沫发泡倍率;
·聚乳酸基嵌段聚合物长链支化结构的形成可显著增强其分子缠结程度,赋予其“应变硬化”拉伸流变特性及高熔体强度,有利于提高其在固相热拉伸取向过程中的拉伸倍率,防止材料过早断裂,实现聚合物分子高度取向;同时高熔体强度亦可提高材料在发泡过程中泡孔生长的稳定性,减少发泡过程中的泡孔破裂、塌陷,有利于促使材料形成均匀泡孔结构;
·本发明所制备的高强聚乳酸泡沫材料不存在共混、填充改性等外增强(如玻纤、碳纤、无机纳米粒子增强)材料中普遍存在的界面问题,增强效果更加显著,且密度低、质轻、方便回收,具有完全生物可降解性。
具体实施方式
下面通过实施例对本发明进行具体的描述,有必要在此指出的是本实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,该领域的技术熟练人员可以根据上述本发明的内容对本发明做出一些非本质的改进和调整。
实施例1
将0.5份乙二醇二缩水甘油醚、0.25份均苯四酸二酐、0.25份1,6-己二异氰酸酯、10份聚己内酯与100份聚乳酸一起加入密炼机中,于170℃下反应20min,得到具有长链支化结构的聚乳酸基嵌段聚合物;将聚乳酸基嵌段聚合物进行压制成型,制成尺寸为30×5×1mm3的样片,压制温度为170℃,压制压力为10MPa,然后将样片固定在可控温调速的拉伸装置上,于70℃下恒温10min,随后进行拉伸取向,拉伸速率为10mm/min,待拉伸倍率达6时,停止拉伸、冷却、卸载、取样,得到取向试样;
将取向试样置于30℃的高压发泡釜中并向釜体内充入CO2,使釜内压力达10MPa并保持0.5h,随后快速泄压,取出样品并迅速冷却,得到高强聚乳酸泡沫。
实施例2
将1份1,4-丁二醇二缩水甘油醚、0.5份3,3',4,4'-联苯四酸二酐、0.5份4,4’-二环己基甲烷二异氰酸酯、20份聚乙二醇与100份聚乳酸一起加入密炼机中,于190℃下反应30min,得到具有长链支化结构的聚乳酸基嵌段聚合物;将聚乳酸基嵌段聚合物进行压制成型,制成尺寸为30×5×1mm3的样片,压制温度为190℃,压制压力为15MPa,然后将样片固定在可控温调速的拉伸装置上,于90℃下恒温20min,随后进行拉伸取向,拉伸速率为100mm/min,待拉伸倍率达8时,停止拉伸、冷却、卸载、取样,得到取向试样;
将取向试样置于40℃的高压发泡釜中并向釜体内充入CO2,使釜内压力达15MPa并保持1h,随后快速泄压,取出样品并迅速冷却,得到高强聚乳酸泡沫。
实施例3
将5份季戊四醇四缩水甘油醚、2.5份3,3',4,4'-二苯甲酮四酸二酐、2.5份L-赖氨酸二异氰酸酯、40份聚对二氧环己酮与100份聚乳酸一起加入密炼机中,于220℃下反应60min,得到具有长链支化结构的聚乳酸基嵌段聚合物;将聚乳酸基嵌段聚合物进行压制成型,制成尺寸为30×5×1mm3的样片,压制温度为220℃,压制压力为20MPa,然后将样片固定在可控温调速的拉伸装置上,于110℃下恒温60min,随后进行拉伸取向,拉伸速率为500mm/min,待拉伸倍率达10时,停止拉伸、冷却、卸载、取样,得到取向试样;
将取向试样置于50℃的高压发泡釜中并向釜体内充入CO2,使釜内压力达18MPa并保持2h,随后快速泄压,取出样品并迅速冷却,得到高强聚乳酸泡沫。

Claims (1)

1.一种高强聚乳酸微孔泡沫材料的制备方法, 包括高度取向微纤化聚乳酸基嵌段聚合物制备及发泡成型两个步骤;
其中,高度取向微纤化聚乳酸基嵌段聚合物的制备方法包括以下步骤:
将0.05~5份多官能环氧化合物、0.05~5份多官能酸酐化合物、0.05~5份多官能异氰酸酯化合物、5~40份低熔点可降解聚合物与100份聚乳酸一起加入密炼机中,于150~220℃下反应5~60min,得到具有长链支化结构的聚乳酸基嵌段聚合物;
将聚乳酸基嵌段聚合物进行压制成型,制成尺寸为30×5×1mm3的样片,压制温度为150~220℃,压制压力为5~20MPa,然后将样片固定在可控温调速的拉伸装置上,于60~120℃下恒温5~60min后进行拉伸取向,拉伸速率为5~1000mm/min,待拉伸倍率达到4-12倍后停止拉伸、冷却、卸载、取样,得到取向试样;
所述多官能环氧化合物为乙二醇二缩水甘油醚、1,4-丁二醇二缩水甘油醚、丙三醇三缩水甘油醚、季戊四醇四缩水甘油醚、间苯二酚缩甲醛四缩水甘油醚中的任一种;
所述多官能酸酐化合物为均苯四酸二酐、3,3',4,4'-联苯四酸二酐、3,3',4,4'-二苯醚四酸二酐、3,3',4,4'-二苯甲酮四酸二酐中的任一种;
所述多官能异氰酸酯化合物为1,6-己二异氰酸酯、4,4’-二环己基甲烷二异氰酸酯、异佛尔酮二异氰酸酯、L-赖氨酸二异氰酸酯及L-赖氨酸三异氰酸酯中的任一种;
所述低熔点可降解聚合物为聚己内酯、聚乙二醇、聚对二氧环己酮、聚丁二酸丁二醇酯中的任一种;
发泡成型方法包括以下步骤:
将取向微纤化聚乳酸基嵌段聚合物试样置于10~60℃的高压发泡釜中并向釜体内充入CO2,使釜内压力达5~18MPa并保持0.5~2h,随后快速泄压,取出样品并迅速冷却,得到高强聚乳酸泡沫。
CN202111457385.0A 2021-12-01 2021-12-01 一种高强聚乳酸微孔泡沫材料及其制备方法 Active CN114213697B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111457385.0A CN114213697B (zh) 2021-12-01 2021-12-01 一种高强聚乳酸微孔泡沫材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111457385.0A CN114213697B (zh) 2021-12-01 2021-12-01 一种高强聚乳酸微孔泡沫材料及其制备方法

Publications (2)

Publication Number Publication Date
CN114213697A CN114213697A (zh) 2022-03-22
CN114213697B true CN114213697B (zh) 2022-11-01

Family

ID=80699316

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111457385.0A Active CN114213697B (zh) 2021-12-01 2021-12-01 一种高强聚乳酸微孔泡沫材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114213697B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117087192A (zh) * 2023-09-20 2023-11-21 西华大学 一种同时具有取向泡孔和有序β型片晶的微发泡PP的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107778435A (zh) * 2017-11-22 2018-03-09 四川大学 一种高强聚乳酸骨固定材料及其制备方法
CN113292832A (zh) * 2021-05-31 2021-08-24 广东工业大学 一种聚乳酸发泡复合材料及其制备方法与应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107778435A (zh) * 2017-11-22 2018-03-09 四川大学 一种高强聚乳酸骨固定材料及其制备方法
CN113292832A (zh) * 2021-05-31 2021-08-24 广东工业大学 一种聚乳酸发泡复合材料及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Highly Reinforced Poly(lactic acid) Foam Fabricated by Formation of a Heat-Resistant Oriented Stereocomplex Crystalline Structure;Ruiguang Li et al.;《ACS Sustainable Chem. Eng.》;20210903;第9卷(第37期);第12674–12686页 *
Long-Chain Branched Poly(lactic acid)‑b‑poly(lactide-cocaprolactone):Structure, Viscoelastic Behavior, and Triple-Shape Memory Effect as Smart Bone Fixation Material;Yalong Liu et al.;《Ind. Eng. Chem. Res.》;20200219;第59卷(第10期);第4524–4532页 *

Also Published As

Publication number Publication date
CN114213697A (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
Javadi et al. Processing and characterization of microcellular PHBV/PBAT blends
WO2021159705A1 (zh) 一种超临界流体注塑发泡聚乳酸泡沫材料及其制备方法
Zhao et al. Role of high-density polyethylene in the crystallization behaviors, rheological property, and supercritical CO2 foaming of poly (lactic acid)
CN107722581B (zh) 一种高发泡倍率的聚乳酸合金发泡材料及其制备方法
Song et al. Role of chain extension in the rheological properties, crystallization behaviors, and microcellular foaming performances of poly (butylene adipate‐co‐terephthalate)
CN107177052B (zh) 一种不同结晶度的轻质聚醚醚酮或其复合材料板材及制备方法
CN110746749A (zh) 一种分步法制备微纳米纤维素聚酯微孔发泡片材的方法
CN111171538B (zh) 一种聚乳酸复合材料及其制备方法
CN114213697B (zh) 一种高强聚乳酸微孔泡沫材料及其制备方法
Huang et al. Phase morphology, rheological behavior, and mechanical properties of poly (lactic acid)/poly (butylene succinate)/hexamethylene diisocyanate reactive blends
KR20120108798A (ko) 폴리유산 복합재료 조성물의 제조방법
Li et al. Enhanced heat resistance and compression strength of microcellular poly (lactic acid) foam by promoted stereocomplex crystallization with added D-Mannitol
Li et al. Sustainable blends of poly (propylene carbonate) and stereocomplex polylactide with enhanced rheological properties and heat resistance
CN115651382A (zh) 一种可生物降解泡沫塑料及其制备方法
CN109280349B (zh) 一种具有纳米泡孔的聚乳酸泡沫材料及其制备方法
Han et al. Technology and mechanism of enhanced compatibilization of polylactic acid-grafted glycidyl methacrylate
KR20150119577A (ko) 생분해성 고분자 발포체 및 이의 제조방법
Liu et al. Preparation of fast‐degrading poly (lactic acid)/soy protein concentrate biocomposite foams via supercritical CO2 foaming
CN111647258A (zh) 一种聚苯乙烯改性聚乳酸复合材料及其制法
CN114752097A (zh) 一种开孔聚乳酸发泡材料及其制备方法
Li et al. Efficient fabrication of PLA/PHB composites with enhanced mechanical properties, excellent thermal stability, fast crystallization ability, and degradation rate via the synergistic of weak shear field and melt quenching technique
CN107778435B (zh) 一种高强聚乳酸骨固定材料及其制备方法
Wang et al. Controllable cell structures of poly (ether-block-amide) foams via isothermal melt crystallization-foaming in supercritical CO2
Gao et al. Enhancing interfacial interaction of immiscible PCL/PLA blends by in-situ crosslinking to improve the foamability
US5324556A (en) Polyester blow-molded articles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant