CN114203973A - 一种高强度硅合金锂电负极材料的制备方法 - Google Patents

一种高强度硅合金锂电负极材料的制备方法 Download PDF

Info

Publication number
CN114203973A
CN114203973A CN202111512183.1A CN202111512183A CN114203973A CN 114203973 A CN114203973 A CN 114203973A CN 202111512183 A CN202111512183 A CN 202111512183A CN 114203973 A CN114203973 A CN 114203973A
Authority
CN
China
Prior art keywords
negative electrode
lithium battery
electrode material
silicon alloy
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111512183.1A
Other languages
English (en)
Inventor
陈家禄
何倩
陈子博
韩旭然
史丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Yuborui Material Technology Co ltd
Original Assignee
Nanjing Yuborui Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Yuborui Material Technology Co ltd filed Critical Nanjing Yuborui Material Technology Co ltd
Priority to CN202111512183.1A priority Critical patent/CN114203973A/zh
Publication of CN114203973A publication Critical patent/CN114203973A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种高强度硅合金锂电负极材料及其制备方法,主要采用以下步骤:将原材料(即金属粉、硅纳米粉、碳材料、聚丙烯腈纤维和格伦胶)进行混合粉粹,并加入二甲基乙酰胺进行研磨;将研磨好的混合物涂布在铜箔上进行真空干燥;随后将干燥好的铜箔进行热分解处理并退火至室温。本发明制备的电极材料具有较高的机械强度;电池充放电过程中硅体积变化得到有效地缓解;具有高机械弹性的石墨烯包裹的硅颗粒,有助于适应显著的体积变化。

Description

一种高强度硅合金锂电负极材料的制备方法
技术领域
本发明涉及锂电池负极材料领域,具体涉及一种高强度硅合金锂电负极材料的制备方法。
背景技术
由于锂电池在充放电过程中,硅颗粒发生巨大的体积变化,即大颗粒转变为小颗粒,电极导电性下降,硅表面形成不稳定的固体电解质膜(SEI),造成电池容量快速下降。研究表明,硅在临界尺寸150nm以下具有抗颗粒破裂能力,该尺寸的颗粒有助于维持电极的完整性。另外,小颗粒可缩短锂离子扩散路径的长度,提高了倍率性能。因此,构建具有合适尺寸的复合硅负极是改善体积膨胀效应,提高极片电子电导率的重要途径。申请号:202011018129.7的专利中采用水热反应,制备了一种氮掺杂石墨烯包覆SiC纳米颗粒锂离子电池负极材料的制备方法,申请号为201510675842.1的专利提出一种锂离子电池用硅基负极材料的制备方法,以正硅酸乙酯和纳米氧化铝为模板剂,制备出的二氧化硅包裹的纳米氧化铝材料在与多巴胺聚合热处理后,最后得到聚多巴胺热解碳层包覆的中空多孔硅。现有的技术方案虽然可制备复合结构的纳米硅材料,但碳硅之间只是简单的物理混合,无法紧密的链接,导致硅复合材料机械强度下降,充放电过程中很容易出现电极片结构崩塌或者断裂,最终使得电池容量和寿命快速下降。
发明内容
本发明旨在克服现有硅合金机械强度低的问题,提供一种具有高强度硅合金锂电负极材料的制备方法。该方法可有效降低硅在临界尺寸,并增强负极材料的强度。
本发明提出的一种高强度硅合金锂电负极材料的制备方法通过以下技术方案予以实现。
一种高强度硅合金锂电负极材料的制备方法,包括以下步骤:
步骤(1):将金属粉、硅纳米粉、碳材料、聚丙烯腈纤维和格伦胶混合,并粉碎成混合物A;
步骤(2):将步骤(1)所得混合物A进行研磨,研磨过程中加入二甲基乙酰胺;得到混合物B;
步骤(3):将步骤(2)研磨得到的混合物B涂布至铜箔上;
步骤(4):随后将步骤(3)得到的负载混合物B的铜箔进行真空干燥;得到电极片;
步骤(5):对步骤(4)所得的电极片进行热分解处理;
步骤(6):对步骤(5)的电极片进行退火处理,使电极片降至室温。
作为优选,负极材料中各组分的质量百分数分别为:金属粉15~25%、硅纳米粉30~40%、碳材料20~30%、聚丙烯腈纤维15~25%、格伦胶5~10%、二甲基乙酰胺5~10%。
本发明在研磨前对混合物进行粉碎处理,这一操作旨在降低金属粉和硅钠米粉的颗粒尺寸,使金属粉、硅纳米、碳材料等进行充分有效的混合。加入聚丙烯腈纤维主要有三个方面作用:一是经过热分解处理后,可以在极片中形成一种微米级通道,对硅纳米粉在充放电过程中出现的巨大体积变化起到缓冲作用;二是聚丙烯腈纤维可以和碳导电添加剂形成离域电子,增加负极极片的电子导电率;三是聚丙烯腈纤维本身也可以作为锂离子电池硅基负极材料粘合剂,可以与硅颗粒表面形成强氢键作用。研磨过程中加入二甲基乙酰胺可以防止金属粉和硅纳米粉颗粒出现团聚,使得粉末颗粒在溶液中分布更加均匀。加入格伦胶,在经过后续工艺处理后,能够显著增加,颗粒和颗粒之间,导电剂和颗粒之间,涂层和铜箔集流体之间,导电剂和导电剂之间的粘合力。
作为优选,步骤(1)中的所述的金属粉,其金属为镍、铁、铜或钴的一种。碳材料为石墨烯、碳纳米管或导电石墨中的一种。
作为优选,步骤(2)中研磨所采用的研磨珠为氧化锆。氧化锆在常温下具有高强度和高韧性、高密度、耐磨性好、耐高温耐腐蚀、刚度高、不导磁、电绝缘,热膨胀系数接近钢等优点。
作为优选,步骤(4),铜箔厚度为5~15μm,涂布面密度为30~100g/m2(均是行业常用数值范围)。
作为优选,步骤(5)中真空干燥温度为60~90℃,干燥时间为6~12小时。真空干燥温度过高会导致极片表面涂层出现裂纹,温度过低会导致涂层水分含量过高,影响电池性能。
作为优选,步骤(6)中热分解温度为400~600℃。分解温度过高会引起极片发生氧化反应导致失效,温度过低会使得聚丙烯腈纤维热分解不够充分,达不到预期效果。
作为优选,步骤(6)达到热分解温度的升温速度为5~15℃/min,热分解过程恒温处理时间60~120min。
作为优选,步骤(7)退火速度为6~10℃/min。退火速度过快会导致极片裂纹,微结构分布不均匀,退火速度过慢会导致处理时间过长,增加生产成本。
因此,本发明具有如下有益效果:(1)由于采用新型的集流体粉碎研磨技术,与传统硅负电极相比,制备的高级结构具有更高的机械强度;(2)同时采用了新型混合粘结剂,能够有效的缓解硅体积变化带来的电池性能快速下降,为低成本、电化学性能由于的电极制备提供了新的参考途径;(3)热解成型的聚丙烯腈纤维和石墨烯导电剂可均匀分布在纳米硅颗粒表面,硅颗粒周围的石墨烯具有较高的机械弹性,有助于适应显著的体积变化。
具体实施方式
下面结合具体实施方式对本发明做进一步的描述。具体制备步骤如下:
(1)将金属粉、硅纳米粉、碳材料、聚丙烯腈纤维、格伦胶和二甲基乙酰胺混合形成混合浆料,负极材料中各组分的质量百分数分别为:金属粉15~25%、硅纳米粉30~40%、碳材料(石墨烯、碳黑、碳纳米管或石墨等一种或几种)20~30%、聚丙烯腈纤维15~25%、格伦胶5~10%、二甲基乙酰胺5~10%;
(2)对步骤(1)所述的混合浆料进行粉碎处理;
(3)将步骤(2)所得溶液进行用锆珠研磨,并加入二甲基乙酰胺;
(4)然后将步骤(3)研磨得到的浆料涂布在铜箔上,铜箔厚度为5~15μm,涂布面密度为30~100g/m2
(5)将步骤(4)涂布后的铜箔在真空干燥,干燥温度为60~90℃,干燥时间为6~12小时;
(6)对步骤(5)所得的电极片进行热分解处理,热分解温度为400~600℃,升温速度为5~15℃/min,热分解过程恒温处理时间60~120min;
(7)退火使电极片降至室温,退火速度为6~10℃/min。
实施案例1:
Figure BDA0003396374680000041
实施案例2
Figure BDA0003396374680000042
实施案例3
Figure BDA0003396374680000051
对比案例1(对比实施案例1,降低热解温度由500℃至300℃)
Figure BDA0003396374680000052
对比案例2(对比实施案例1,金属粉代替硅纳米粉)
Figure BDA0003396374680000061
对比案例3(对比实施案例1,去掉集流体粉碎过程)
Figure BDA0003396374680000062
对比案例4(对比实施案例1,羧甲基纤维素钠代替格伦胶)
Figure BDA0003396374680000071
结论分析:负极材料的机械性能主要通过极片剥离强度和极片反弹率来评估,极片剥离强度越大,反弹率越小,说明材料的机械弹性性能越好。
Figure BDA0003396374680000072
Figure BDA0003396374680000081
由实施案例1~3以及对比案例1~4数据可知,只有在本发明权利要求范围内的方案,才能够在各方面均能满足上述性能要求,才能是负极材料具有更好的机械性能。而对于配比的改动、原料组分的替换或者加减,或者改变加料顺序,改变加工工艺流程或者参数,均会带来相应的负面影响。
以上所述,仅为本发明中的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可理解想到的变换或替换,都应涵盖在本发明的包含范围之内,因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (9)

1.一种高强度硅合金锂电负极材料的制备方法,其特征在于,包括以下步骤:
步骤(1):将金属粉、硅纳米粉、碳材料、聚丙烯腈纤维和格伦胶混合,并粉碎成混合物A;
步骤(2):将步骤(1)所得混合物A进行研磨,研磨过程中加入二甲基乙酰胺;得到混合物B;
步骤(3):将步骤(2)研磨得到的混合物B涂布至铜箔上;
步骤(4):随后将步骤(3)得到的负载混合物B的铜箔进行真空干燥;得到电极片;
步骤(5):对步骤(4)所得的电极片进行热分解处理;
步骤(6):对步骤(5)热分解处理后的电极片进行退火处理,使电极片降至室温。
2.根据权利要求1所述的一种高强度硅合金锂电负极材料的制备方法,其特征在于,所述硅合金锂电负极材料中各组分的质量百分数分别为:金属粉15~25%、硅纳米粉30~40%、碳材料20~30%、聚丙烯腈纤维15~25%、格伦胶5~10%、二甲基乙酰胺5~10%。
3.根据权利要求1所述的一种高强度硅合金锂电负极材料的制备方法,其特征在于,步骤(1)中所述的金属粉,其金属成分为镍、铁、铜或钴的一种;所述碳材料为石墨烯、碳纳米管或导电石墨中的一种。
4.根据权利要求1所述的一种高强度硅合金锂电负极材料的制备方法,其特征在于,步骤(2)中研磨所采用的研磨珠为氧化锆。
5.根据权利要求1所述的一种高强度硅合金锂电负极材料的制备方法,其特征在于,所述铜箔厚度为5~15μm,涂布面密度为30~100g/m2
6.根据权利要求1所述的一种高强度硅合金锂电负极材料的制备方法,其特征在于,步骤(4)中真空干燥温度为60~90℃,干燥时间为6~12小时。
7.根据权利要求1所述的一种高强度硅合金锂电负极材料的制备方法,其特征在于,步骤(5)中热分解温度为400~600℃。
8.根据权利要求1所述的一种高强度硅合金锂电负极材料的制备方法,其特征在于,步骤(5)达到热分解温度的升温速度为5~15℃/min,热分解过程恒温处理时间60~120min。
9.根据权利要求1所述的一种高强度硅合金锂电负极材料的制备方法,其特征在于,步骤(6)退火速度为6~10℃/min。
CN202111512183.1A 2021-12-07 2021-12-07 一种高强度硅合金锂电负极材料的制备方法 Pending CN114203973A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111512183.1A CN114203973A (zh) 2021-12-07 2021-12-07 一种高强度硅合金锂电负极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111512183.1A CN114203973A (zh) 2021-12-07 2021-12-07 一种高强度硅合金锂电负极材料的制备方法

Publications (1)

Publication Number Publication Date
CN114203973A true CN114203973A (zh) 2022-03-18

Family

ID=80652769

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111512183.1A Pending CN114203973A (zh) 2021-12-07 2021-12-07 一种高强度硅合金锂电负极材料的制备方法

Country Status (1)

Country Link
CN (1) CN114203973A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013159470A1 (zh) * 2012-04-26 2013-10-31 上海杉杉科技有限公司 锂离子电池三维多孔硅基复合负极材料及其制备方法
CN104617269A (zh) * 2015-01-23 2015-05-13 深圳市贝特瑞新能源材料股份有限公司 一种硅合金复合负极材料、制备方法及锂离子电池
CN109755483A (zh) * 2017-11-03 2019-05-14 北京万源工业有限公司 一种锂离子电池硅碳负极材料的制备方法及应用
CN112117441A (zh) * 2019-06-19 2020-12-22 万向一二三股份公司 一种高强度锂离子电池硅合金复合负极材料的制备方法
CN112885997A (zh) * 2020-04-23 2021-06-01 郑州轻工业大学 一种锂离子电池新型硅基复合多孔负极材料的制备方法及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013159470A1 (zh) * 2012-04-26 2013-10-31 上海杉杉科技有限公司 锂离子电池三维多孔硅基复合负极材料及其制备方法
CN104617269A (zh) * 2015-01-23 2015-05-13 深圳市贝特瑞新能源材料股份有限公司 一种硅合金复合负极材料、制备方法及锂离子电池
CN109755483A (zh) * 2017-11-03 2019-05-14 北京万源工业有限公司 一种锂离子电池硅碳负极材料的制备方法及应用
CN112117441A (zh) * 2019-06-19 2020-12-22 万向一二三股份公司 一种高强度锂离子电池硅合金复合负极材料的制备方法
CN112885997A (zh) * 2020-04-23 2021-06-01 郑州轻工业大学 一种锂离子电池新型硅基复合多孔负极材料的制备方法及其应用

Similar Documents

Publication Publication Date Title
KR102561118B1 (ko) 탄화규소 및 탄소 입자를 포함하는 복합물
CN108511685B (zh) 一种含有导电涂层的锂离子电池负极片及其制备方法
CN109873152B (zh) 一种锂离子电池用石墨烯-硅基复合负极材料及其制备方法
CN103066243B (zh) 一种锂离子动力电池用煤焦粉基负极材料及其制备方法
JP6625647B2 (ja) 粉末、このような粉末を含む電極及び電池
CN108232175B (zh) 一种锂离子电池用石墨/钛酸锂复合负极材料及制备方法
CN105098138B (zh) 锂离子电池用负极片及其制备方法
CN111063872A (zh) 一种硅炭负极材料及其制备方法
CN110620236B (zh) 一种锂离子电池用三相复合负极材料及其制备方法
Fan et al. One‐pot hydrothermal synthesis of ZnS nanospheres anchored on 3D conductive MWCNTs networks as high‐rate and cold‐resistant anode materials for sodium‐ion batteries
CN111697218A (zh) 一种硅碳负极材料及其制备方法
CN101724864B (zh) 一种非石墨化导电碳阳极材料的制备方法
WO2024165012A1 (zh) 石墨包覆的硬碳材料的制备方法
CN109786696B (zh) 一种多组分硅碳材料及其制备方法
CN108963237B (zh) 一种钠离子电池负极材料的制备方法
CN108630912B (zh) 一种锂离子电池用硅碳负极材料及其制备方法
CN108365209B (zh) 氧化铝修饰的石墨烯锂离子电池负极材料的制备方法
CN113336552A (zh) 一种铝电解用低电阻率阳极炭块及其制备方法
CN107749462B (zh) 一种高性能锂离子动力电池负极材料
CN116682958B (zh) 一种纳米硅碳复合材料及其制备方法与应用
CN116995206A (zh) 一种含碳纳米管的硅碳复合材料及其制备方法和应用
CN112117441A (zh) 一种高强度锂离子电池硅合金复合负极材料的制备方法
CN114203973A (zh) 一种高强度硅合金锂电负极材料的制备方法
CN115954457A (zh) 一种聚合物涂层包覆的硅基负极材料、制备方法及应用
CN102560530A (zh) 纳米镍质点增强的非石墨化导电碳阳极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220318