CN114203452B - 一种非晶态水合镍钴磷酸盐柔性电极材料的制备方法 - Google Patents

一种非晶态水合镍钴磷酸盐柔性电极材料的制备方法 Download PDF

Info

Publication number
CN114203452B
CN114203452B CN202111507088.2A CN202111507088A CN114203452B CN 114203452 B CN114203452 B CN 114203452B CN 202111507088 A CN202111507088 A CN 202111507088A CN 114203452 B CN114203452 B CN 114203452B
Authority
CN
China
Prior art keywords
hpo
nico
amorphous
electrode
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111507088.2A
Other languages
English (en)
Other versions
CN114203452A (zh
Inventor
韩丹丹
高冬岩
徐倩
魏金鹤
潘怡帆
王思宇
丁宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Institute of Chemical Technology
Original Assignee
Jilin Institute of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin Institute of Chemical Technology filed Critical Jilin Institute of Chemical Technology
Priority to CN202111507088.2A priority Critical patent/CN114203452B/zh
Publication of CN114203452A publication Critical patent/CN114203452A/zh
Application granted granted Critical
Publication of CN114203452B publication Critical patent/CN114203452B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本专利涉及非晶态NiCo‑(HPO4)2·H2O柔性电极材料的制备方法,针对实施例1中的图2产物形貌,所得的电极材料具有球形三维非晶态结构,碳布原位生长赋予电极柔性且三维结构增大了电极比表面积,无序非晶态结构表面具有悬浮键和更松散的原子结构,有利于缓解充放电过程中的体积膨胀。电化学测试结果表明,在电流密度为1 A·g‑1时,单电极比容量达到1528.9 F·g‑1

Description

一种非晶态水合镍钴磷酸盐柔性电极材料的制备方法
技术领域
本发明属于电化学储能技术领域,具体涉及柔性非晶态NiCo-(HPO4)2·H2O电极材料的制备方法和镍钴协同储能机理。
背景技术
混合型超级电容器(HSCs)具有高功率密度,长循环稳定性等优势,成为近年来研究热点,其能量密度很大程度取决于正极材料的比容量和电位窗,因此提高正极材料的比容量成为改善器件储能的主要渠道,过渡金属磷酸盐(TMPs)因其较高的导电性和在HSCs中应用的高容量而成为研究的焦点,特别是,与单组分相比,具有更高电导率和优异准金属性能的二元 TMP 因其增强的电化学性能而备受关注,例如,Jin等人,通过低温磷化工艺报道了介孔NiCoP微花,受益于不同过渡金属的共存和协同作用,该电极在1A·g-1下表现出1153F·g-1的高比电容,7000次循环后衰减可忽略不计3%, Zhang和同事发现,S-NiCoP-300的高容量(1A·g-1时为603C·g-1)远优于相应的NiP-300(218C·g-1)和CoP-300 (202C·g-1),可见,镍钴协同的磷化物具有更高的比容量,特别是无定型磷酸盐电极材料的研究为进一步提高电化学储能提供了可能,理论计算表明无定型材料表面具有大量的悬浮键,松散堆积的结构更有利于磷化物在氧化还原过程中的缓冲体积变化和快速离子传输,使得储能特性大幅度提升,尽管取得了这些令人兴奋的进展,但通过简单的工艺大规模合成具有优异倍率性能和高循环稳定性的双金属磷酸盐电极材料仍然是一个巨大的挑战。
Journal of Alloys and Compounds 767 (2018) 789报道了通过温和的化学沉淀法,在低温下煅烧制备了一系列磷酸钴镍,随着 Co/Ni 摩尔比的变化,所制备样品的成分和微观结构得到调节,并且它们作为电池类材料的电化学性能得到优化,但制备方法复杂,且非原位生长制备的粉末增加了电极的阻抗,材料导电性受限。
电沉积法制备纳米材料是目前纳米材料制备中最为活跃的一个领域,不受纳米晶粒尺寸限制或形状限制,具有高的密度和极少的空隙率,且相对于其他物理和化学方法,成本低,适合批量生产,极具工业价值,为纳米储能材料的生产提供了一个切实可行的工业化规模的方法,但是将此方法用于制备无定型的一水合NiCo-(HPO4)2,并用于混合电容器储能,鲜有报道。
发明内容
本发明采用循环伏安法在柔性碳布上一步电沉积完成一水合NiCo-(HPO4)2纳米球状电极材料的制备,通过调控电沉积时间,在25℃恒温条件下实现了对产物形貌和结构结晶水含量的可控调节,短时间电沉积形成了低水合镍钴磷酸盐,此三维球状的一水合NiCo-(HPO4)2具有更大的比表面积,使得其有利于电解液渗透和离子传输,且无序非晶态的NiCo-(HPO4)2·H2O与结晶良好的电极材料相比较,表面具有悬浮键和更松散的原子结构,有利于缓解充放电过程中的体积膨胀,实现高电子传输通道和电子渗透度,其次,碳布为基底实现了柔性电极材料的构筑,有利于电极弯曲状态下的储能,最后,原位生长与导电基底具有良好的接触,免去了胶黏剂的使用,降低了电极的阻抗。
为解决上述技术问题,本发明采取如下技术方案:本发明的基于循环伏安电沉积法制备一水合NiCo-(HPO4)2非晶态纳米微球的制备方法,等摩尔量Ni(NO3)2·6H2O、 Co(NO3)2·6H2O和NaH2PO2·H2O依次溶于等体积比的乙醇和水的混合溶液中,并在磁力搅拌下以300 r·min-1搅拌15分钟,以铂片为对电极,以饱和甘汞电极为参比电极,在25 ℃恒温水浴锅中,采用循环伏安法在一定电压范围内,进行电沉积,洗涤后,60 ℃真空干燥箱干燥24h,得到一水合NiCo-(HPO4)2非晶态纳米微球。
所得到的一水合NiCo-(HPO4)2非晶态电极材料是在不受室温干扰的恒温水浴中进行,首先形成的薄膜覆盖住碳布纤维后,成核二次生长为三维多孔纳米球,直径为200-500nm,所制备的电极材料质量控制为0.2-0.4 mg,电沉积前的浸泡时间对控制电极质量起到重要作用,适当的质量避免死体积和比表面积的失效,由于以上优势,电极在电流密度为1A·g-1时,单电极比容量达到1528.9 F·g-1
附图说明
图1是实施例1中所制备的NiCo-(HPO4)2·H2O非晶态材料的XRD曲线。
图2是实施例1中所制备的NiCo-(HPO4)2·H2O非晶态材料的扫描电镜照片。
图3是实施例1中所制备的NiCo-(HPO4)2·H2O非晶态材料的热失重曲线。
图4是实施例1中所制备的NiCo-(HPO4)2·H2O非晶态材料的循环伏安曲线。
图5是实施例1中所制备的NiCo-(HPO4)2·H2O非晶态材料的充放电曲线。
具体实施方式
下面结合实施例对本发明的技术方案及效果作进一步描述,但是,所使用的具体方法、配方和说明并不是对本发明的限制。
实施例1:0.2 mmol Ni(NO3)2·6H2O、 0.1 mmol Co(NO3)2·6H2O和0.2 mmolNaH2PO2·H2O依次溶于等体积比的乙醇和水的混合溶液中,并在磁力搅拌下以300 r·min-1搅拌15分钟,以铂片为对电极,以饱和甘汞电极为参比电极,在25 ℃恒温水浴锅中,采用循环伏安法在-1.5~0.25 V电压范围内,进行电沉积2次循环,洗涤后,60 ℃真空干燥箱干燥24 h,得到一水合NiCo-(HPO4)2非晶态纳米微球。
实施例2:0.3 mmol Ni(NO3)2·6H2O、0.2 mmol Co(NO3)2·6H2O和0.2 mmolNaH2PO2·H2O依次溶于乙醇和水体积比为1:2的溶液中,并在磁力搅拌下以300 r·min-1搅拌15分钟,以铂片为对电极,以饱和甘汞电极为参比电极,在25 ℃恒温水浴锅中,采用循环伏安法在-1.5~0.25 V电压范围内,进行电沉积5次循环,洗涤后,60 ℃真空干燥箱干燥24h,得到一水合NiCo-(HPO4)2非晶态纳米微球。
实施例3:0.4 mmol Ni(NO3)2·6H2O、0.3 mmol Co(NO3)2·6H2O和0.4 mmolNaH2PO2·H2O依次溶于乙醇和水体积比为1:3的混合溶液中,并在磁力搅拌下以300 r·min-1搅拌15分钟,以铂片为对电极,以饱和甘汞电极为参比电极,在25 ℃恒温水浴锅中,采用循环伏安法在-1.5~0.25 V电压范围内,进行电沉积50次循环,洗涤后,60 ℃真空干燥箱干燥24 h,得到一水合NiCo-(HPO4)2非晶态纳米微球。

Claims (1)

1.一种非晶态NiCo-(HPO4)2·H2O柔性电极材料,其特征在于,所述的一水合NiCo-(HPO4)2原位生长在柔性碳布表面,且形貌为无序非晶态的三维多孔纳米球体,无序非晶态结构表面具有悬浮键和更松散的原子结构,具体合成步骤如下:0.2~0.4mmol Ni(NO3)2·6H2O、0.1~0.3mmol Co(NO3)2·6H2O和0.2~0.4mmol NaH2PO2·H2O依次溶于体积比为1:1~1:3的乙醇和水的混合溶液中,并在磁力搅拌下以300r·min-1搅拌15分钟,以铂片为对电极,在25℃恒温水浴锅中,采用循环伏安法在-1.5~0.25V电压范围内,进行电沉积2-50次循环,洗涤后,60℃真空干燥箱干燥24h,得到一水合NiCo-(HPO4)2非晶态纳米微球。
CN202111507088.2A 2021-12-10 2021-12-10 一种非晶态水合镍钴磷酸盐柔性电极材料的制备方法 Active CN114203452B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111507088.2A CN114203452B (zh) 2021-12-10 2021-12-10 一种非晶态水合镍钴磷酸盐柔性电极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111507088.2A CN114203452B (zh) 2021-12-10 2021-12-10 一种非晶态水合镍钴磷酸盐柔性电极材料的制备方法

Publications (2)

Publication Number Publication Date
CN114203452A CN114203452A (zh) 2022-03-18
CN114203452B true CN114203452B (zh) 2023-11-21

Family

ID=80652229

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111507088.2A Active CN114203452B (zh) 2021-12-10 2021-12-10 一种非晶态水合镍钴磷酸盐柔性电极材料的制备方法

Country Status (1)

Country Link
CN (1) CN114203452B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10317021A (ja) * 1997-05-22 1998-12-02 Akita Pref Gov Shigen Gijutsu Kaihatsu Kiko 球状アモルファスCo−Ni−P三元合金粉末およびその製造法
WO2011149330A1 (en) * 2010-05-26 2011-12-01 Mimos Berhad Method of electrodepositing nickel-cobalt alloy
JP2014071968A (ja) * 2012-09-28 2014-04-21 Sumitomo Metal Mining Co Ltd リチウム二次電池用正極活物質の前駆体とその製造方法、および該前駆体を用いたリチウム二次電池用正極活物質とその製造方法、並びに該正極活物質を用いたリチウム二次電池
WO2019013609A1 (fr) * 2017-07-14 2019-01-17 Universite Mohammed V Rabat Nouveau matériau d'insertion pour batteries rechargeables, le phosphite de titane (iii) et de lithium liti(hpo3)2.
CN112239200A (zh) * 2020-10-23 2021-01-19 兰州交通大学 一种非晶磷酸盐材料的制备及作为超级电容器电极材料的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011059794A1 (en) * 2009-10-29 2011-05-19 Uchicago Argonne, Llc, Operator Of Argonne National Laboratory Autogenic pressure reactions for battery materials manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10317021A (ja) * 1997-05-22 1998-12-02 Akita Pref Gov Shigen Gijutsu Kaihatsu Kiko 球状アモルファスCo−Ni−P三元合金粉末およびその製造法
WO2011149330A1 (en) * 2010-05-26 2011-12-01 Mimos Berhad Method of electrodepositing nickel-cobalt alloy
JP2014071968A (ja) * 2012-09-28 2014-04-21 Sumitomo Metal Mining Co Ltd リチウム二次電池用正極活物質の前駆体とその製造方法、および該前駆体を用いたリチウム二次電池用正極活物質とその製造方法、並びに該正極活物質を用いたリチウム二次電池
WO2019013609A1 (fr) * 2017-07-14 2019-01-17 Universite Mohammed V Rabat Nouveau matériau d'insertion pour batteries rechargeables, le phosphite de titane (iii) et de lithium liti(hpo3)2.
CN112239200A (zh) * 2020-10-23 2021-01-19 兰州交通大学 一种非晶磷酸盐材料的制备及作为超级电容器电极材料的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A General Electrodeposition Strategy for Fabricating Ultrathin Nickel Cobalt Phosphate Nanosheets with Ultrahigh Capacity and Rate Performance;Jun huang et al;ACS Nano;第14卷;第14201−14211 *
镍钴氢氧化物的制备及其电化学性能;安露露;米杰;;应用化学(第05期);全文 *

Also Published As

Publication number Publication date
CN114203452A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
Wang et al. Facile solvothermal synthesis of novel MgCo2O4 twinned-hemispheres for high performance asymmetric supercapacitors
Wu et al. Electrophoretic deposition of nickel oxide electrode for high-rate electrochemical capacitors
Li et al. Regulating the oxidation degree of nickel foam: a smart strategy to controllably synthesize active Ni 3 S 2 nanorod/nanowire arrays for high-performance supercapacitors
Liu et al. Ultrafine nickel–cobalt alloy nanoparticles incorporated into three-dimensional porous graphitic carbon as an electrode material for supercapacitors
US20100273051A1 (en) Composite electrode and method for manufacturing the same
CN113373476B (zh) 一种磷掺杂的单金属元素电子结构可调的双金属硒化物电催化剂材料及其制备方法与应用
KR20050057237A (ko) 금속 산화물, 금속 질화물 또는 금속 탄화물 코트 탄소 미분말, 그 제조 방법, 당해 탄소 미분말을 사용한 슈퍼 커패시터 및 2차 전지
Qin et al. Novel MnO2/cobalt composites nanosheets array as efficient anode for asymmetric supercapacitor
Heubner et al. Scalable fabrication of nanostructured tin oxide anodes for high-energy lithium-ion batteries
CN115863666A (zh) 一种全钒液流电池用石墨毡改性电极的制备方法
CN112927947A (zh) 一种基于蛋黄壳结构的镍钴硫电极材料、制备方法及超级电容器
Yang et al. Bi 2 S 3 nanorods modified with Co (OH) 2 ultrathin nanosheets to significantly improve its pseudocapacitance for high specific capacitance
Lv et al. Controllable architecture of the NiCoZnS@ NiCoFe layered double hydroxide coral-like structure for high-performance supercapacitors
CN113223869B (zh) 三维多孔纳米花状NiS2/碳布复合材料的制备及应用
CN107910525B (zh) 一种氮掺杂碳酸锰及其复合物的制备方法
CN114203452B (zh) 一种非晶态水合镍钴磷酸盐柔性电极材料的制备方法
CN113968741A (zh) 具有硫催化功能的含氮高熵MXene、隔膜复合材料及电池
KR102667918B1 (ko) 니켈코발트 산화물 나노시트의 제조 방법, 이로부터 제조된 니켈코발트 산화물 나노시트 및 이를 포함하는 슈퍼커패시터
CN110931267B (zh) 一种镍钴钼三元金属硫化物及其制备方法和应用
CN109473634A (zh) 固相共热合成二硒化钼/氮掺杂碳棒的方法
CN110391411B (zh) 一种镍钴硫化物/碳复合材料及其制备方法与储能应用
CN107622878B (zh) 纳米多孔金/二氧化锰复合电极材料的制备方法
CN112885613B (zh) 一种纳米材料及其制备方法与应用
KR102315320B1 (ko) 양극활물질, 이의 제조방법 및 이를 포함하는 나트륨 이온 이차전지
CN112934248B (zh) 一种基于介孔碳基体的双功能催化剂及其磁电沉积制法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant