CN114196696B - 一种与特定短肽标签融合能高效催化Reb M生成的重组酶 - Google Patents

一种与特定短肽标签融合能高效催化Reb M生成的重组酶 Download PDF

Info

Publication number
CN114196696B
CN114196696B CN202111481579.4A CN202111481579A CN114196696B CN 114196696 B CN114196696 B CN 114196696B CN 202111481579 A CN202111481579 A CN 202111481579A CN 114196696 B CN114196696 B CN 114196696B
Authority
CN
China
Prior art keywords
leu
recombinant
glu
ser
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111481579.4A
Other languages
English (en)
Other versions
CN114196696A (zh
Inventor
马媛媛
李亚桐
魏晓珍
汪振洋
宋浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Sinochem Health Co Ltd
Original Assignee
Tianjin University
Sinochem Health Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University, Sinochem Health Co Ltd filed Critical Tianjin University
Priority to CN202111481579.4A priority Critical patent/CN114196696B/zh
Publication of CN114196696A publication Critical patent/CN114196696A/zh
Application granted granted Critical
Publication of CN114196696B publication Critical patent/CN114196696B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/75Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1003Transferases (2.) transferring one-carbon groups (2.1)
    • C12N9/1007Methyltransferases (general) (2.1.1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/18Preparation of compounds containing saccharide radicals produced by the action of a glycosyl transferase, e.g. alpha-, beta- or gamma-cyclodextrins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • C12P19/56Preparation of O-glycosides, e.g. glucosides having an oxygen atom of the saccharide radical directly bound to a condensed ring system having three or more carbocyclic rings, e.g. daunomycin, adriamycin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y201/00Transferases transferring one-carbon groups (2.1)
    • C12Y201/01Methyltransferases (2.1.1)
    • C12Y201/0115Isoflavone 7-O-methyltransferase (2.1.1.150)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了一种与特定短肽标签融合的能高效催化Reb M生成的重组酶,主要构建步骤为:将四个短肽标签的DNA片段分别构建至线性化质粒pET‑UGT2中,获得重组质粒,转入宿主细胞,获得重组菌。本发明将编码与特定短肽标签融合的UGT2的核酸序列用于制备能够催化莱鲍迪苷D生成莱鲍迪苷M的重组蛋白,相比于野生型的UGT2蛋白,制备出的四个重组蛋白在大肠杆菌中的可溶性表达均明显提高。在55℃温浴15min后,Sr76AC2及Sr76AC3重组酶的可溶蛋白残余量分别为UGT2的4.60倍和4.33倍,展现出比UGT2更好的热稳定性。

Description

一种与特定短肽标签融合能高效催化Reb M生成的重组酶
技术领域
本发明属于生物工程领域,具体涉及一种与特定短肽标签融合的UGT2重组酶,在增强糖基转移酶UGT2的可溶性表达,以及重组菌株在莱胞迪苷M生产中的应用。
背景技术
甜菊叶是南美洲人们所广泛使用的一种天然甜味剂,近年来,已经从中鉴定出超过35种甜菊糖苷混合物。新发现的莱鲍迪苷M(Rebaudioside M,Reb M)的甜度最高,约为蔗糖的400倍,苦味或涩味更为轻微。在欧盟法规(EC)No 1333/2008中将其规定为可以使用的食品添加剂。
Reb M在甜菊叶中约占总细胞干重的0.4—0.5%,从2公斤的甜菊叶中可提纯得到1.1g Reb M(纯度>98%),因此直接从甜菊属植物中提纯Reb M,无法满足工业化经济生产的需求。随着Reb M合成途径基因被逐渐揭示,利用酶法催化生成Reb M的方式受到了越来越多的关注。
在天然甜叶菊体内,UDP—糖基转移酶UGT2催化Reb D生成Reb M。经检索,在大肠杆菌(Escherichia coli)系统中对UGT2进行异源表达及表达优化,得到重组蛋白酶,可用于催化Reb D生成Reb M。然而该重组蛋白在大肠杆菌中的可溶性表达较低,为后续纯化造成困难且限制了催化Reb D生成Reb M的活性。
基于现有技术的缺陷,亟需优化UGT2在大肠杆菌中的可溶性表达,以高效的催化Reb D生成Reb M。
发明内容
为了解决上述技术问题,本发明提供一种与特定短肽标签融合能高效催化Reb M生成的重组酶,解决现有技术中UGT2在大肠杆菌中可溶性表达不佳的问题。
本发明的技术方案如下:
增强重组蛋白可溶性表达的应用,所述重组载体的核酸序列为:
a)SEQ ID NO.5-SEQ ID NO.8所示的任一核苷酸序列;或
b)与a)的核苷酸序列不同,能够编码SEQ ID NO.1-SEQ ID NO.4所示氨基酸序列的核苷酸序列。
在一些实施方案中,本发明提供了一种重组载体,所述重组载体中含有:
a)SEQ ID NO.5-SEQ ID NO.8所示的核苷酸序列;或
b)与a)的核苷酸序列不同,能够编码SEQ ID NO.1-SEQ ID NO.4所示氨基酸序列的核苷酸序列。
在一些实施方案中,所述重组载体包括pPICZα-A/B/C、pPIC9K、pPIC9、pPinkα-HC、pYES2、YCplac33、YEplac195、pHT01、pHT08、pHT43、pET系列载体、pMAL、pCOLD系列载体和pBAD系列载体中的任意一种。
当宿主细胞为巴斯德毕赤酵母时,重组载体可以为pPIC9K、pPIC9和pPinka-HC中的任意一种。
当宿主细胞为酿酒酵母,选用表达载体可以为pYES2、YCplac33和YEplac195中的任意一种;
当宿主细胞为枯草芽孢杆菌时,选用表达载体可以为pHT01、pHT08和pHT43中的任意一种。
在一些实施方案中,本发明提供了一种重组菌,该重组菌中含有能够编码与特定短肽标签融合的UGT2的核酸序列,所述核酸序列为:
a)如SEQ ID NO.5-SEQ ID NO.8所示的核苷酸序列;或
b)与a)的核苷酸序列不同,能够编码SEQ ID NO.1-SEQ ID NO.4所示氨基酸序列的核苷酸序列。
在一些实施方案中,重组菌的重组宿主包括埃希氏菌属、巴斯德毕赤酵母菌、酿酒酵母、枯草芽孢杆菌中的任意一种。
在一些实施方案中,所述埃希氏菌属包括E.coli BL21(DE3)、BL21star(DE3)、Tuner(DE3)、T7Express和BL21-A1中的任意一种。
在一些实施方案中,所述的重组菌的制备方法,是将糖基转移酶UGT2及酸性尾标签基因连接至重组载体后,转入宿主细胞,获得重组菌。
与特定短肽标签融合的UGT2重组酶,所述重组酶包含SEQ ID NO.1-SEQ ID NO.4具有至少70%的序列同一性的氨基酸序列。
所述重组酶由所述的重组菌诱导制备。
在一些实施方案中,所述的重组菌在LB培养基中培养至OD600=0.5-0.9时加入异丙基-β-D-硫代半乳糖苷,所述异丙基-β-D-硫代半乳糖苷浓度为0.1-1.2M。
在一些实施方案中,所述诱导表达的温度在18-30℃,诱导表达时间6-18h。
在一些实施方案中,所述诱导表达的温度在25℃。
在一些实施方案中,将重组菌株在含有卡那霉素的LB液体培养基预培养至OD600在0.5-0.9,加入IPTG使菌液终浓度为0.1mM,然后在25℃的温度条件下诱导表达12h,从诱导表达的培养物制取粗酶液。
在一些实施方案中,所述方法还包括以下步骤:将诱导后菌液离心,收集菌体,破胞后离心得到重组酶。
在一些实施方案中,本发明提供了上述任一的重组载体或重组菌在制备能够催化底物莱鲍迪苷D生成莱鲍迪苷M的重组酶中的应用。
在一些实施方案中,所述重组酶以UDPG为糖基供体,催化底物莱鲍迪苷D生成莱鲍迪苷M。
在一些实施方案中,以莱鲍迪苷D、UDPG、Mg2+和所述重组酶,构建糖基化反应体系,进行糖基化反应。
在一些实施方案中,以莱鲍迪苷D、蔗糖合酶、蔗糖底物、UDP、Mg2+和所述重组酶,构建糖基化反应体系,进行糖基化反应。
为了节约UDPG的成本,可以通过添加蔗糖合酶+蔗糖底物+UDP的方式实现UDPG的添加,利用蔗糖合酶将蔗糖分解成为葡萄糖和果糖,葡萄糖与UDP结合,形成UDPG。
在一些实施方案中,所述糖基化反应的温度为18℃-50℃,糖基化反应时间为1~48h,糖基化反应体系的pH为5.0-10.5。
在一些实施方案中,所述糖基反应体系中重组酶的催化温度为30℃。
在一些实施方案中,所述糖基化反应体系中重组酶的催化pH为7.0-7.5。
在一些实施方案中,所述粗酶液采用GE公司的Ni-NTAHis.Bind树脂对进行纯化。
有益效果:本发明将编码与特定短肽标签融合的UGT2的核酸序列用于制备能够催化莱鲍迪苷D生成莱鲍迪苷M的重组蛋白,相比于野生型的UGT2蛋白,制备出的四个重组蛋白在大肠杆菌中的可溶性表达均明显提高,Sr76AC2的可溶性表达最高,为UGT2的322%,其中Sr76AC3的可溶性表达次之,为UGT2的255%。在55℃温浴15min后,Sr76AC2及Sr76AC3重组酶的可溶蛋白残余量分别为UGT2的4.60倍和4.33倍,展现出比UGT2更好的热稳定性。Sr76AC2(8.56U/mmol,5.81×10-4U/L)及Sr76AC3(11.65U/mmol,7.86×10-4U/L)纯化酶以UDPG为糖基供体,在最佳pH反应条件下,单位纯化酶比活力分别较UGT2(13.67U/mmol)降低了37.35%和14.80%,单位菌体获得的纯化酶酶活力单位分别为UGT2(3.88×10-4U/L)的149.80%、202.46%。
附图说明
图1为实施例1中得到的四个与特定短肽融合的UGT2重组酶pET28a-Sr76AC1(A)、pET28a-Sr76AC2(B)、pET28a-Sr76AC3(C)、pET28a-Sr76AC4(D)质粒图谱;
图2为实施例2中得到Sr76AC1、Sr76AC2、Sr76AC3、Sr76AC4、UGT2的SDS-PAGE凝胶蛋白电泳图谱;
图3为实施例2中Sr76AC1、Sr76AC2、Sr76AC3、Sr76AC4、UGT2可溶性表达图;
图4为实施例3中Sr76AC1、Sr76AC2、Sr76AC3、Sr76AC4、UGT2粗酶催化活性图;
图5为实施例4中Sr76AC1、Sr76AC2、Sr76AC3、Sr76AC4、UGT2基于SDS-PAGE的热稳定性检测图;
图6为实施例4中Sr76AC1、Sr76AC2、Sr76AC3、Sr76AC4、UGT2在55℃热孵育15min后的可溶性蛋白残余量图;
图7为实施例5中UGT2、Sr76AC2、Sr76AC3的纯化条件优化图;
图8为实施例6中UGT2及Sr76AC2和Sr76AC3纯化酶在不同pH条件下反应的比活力比较。
具体实施方式
需要说明的是,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”等用语,亦仅为便于叙述的明了,而非用以限定可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同;本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
如本文所使用,术语“约”用于提供与给定术语、度量或值相关联的灵活性和不精确性。本领域技术人员可以容易地确定具体变量的灵活性程度。
如本文所使用,术语“......中的至少一个”旨在与“......中的一个或多个”同义。例如,“A、B和C中的至少一个”明确包括仅A、仅B、仅C以及它们各自的组合。
浓度、量和其他数值数据可以在本文中以范围格式呈现。应当理解,这样的范围格式仅是为了方便和简洁而使用,并且应当灵活地解释为不仅包括明确叙述为范围极限的数值,而且还包括涵盖在所述范围内的所有单独的数值或子范围,就如同每个数值和子范围都被明确叙述一样。例如,约1至约4.5的数值范围应当被解释为不仅包括明确叙述的1至约4.5的极限值,而且还包括单独的数字(诸如2、3、4)和子范围(诸如1至3、2至4等)。相同的原理适用于仅叙述一个数值的范围,诸如“小于约4.5”,应当将其解释为包括所有上述的值和范围。此外,无论所描述的范围或特征的广度如何,都应当适用这种解释。
任何方法或过程权利要求中所述的任何步骤可以以任何顺序执行,并且不限于权利要求中提出的顺序。
本文中所使用的简称如下:
莱鲍迪苷D和莱鲍迪苷M分别简称为Reb D和Reb M。
二磷酸尿苷葡糖简称为UDPG;
二磷酸尿苷简称为UDP;
异丙基-β-D-硫代半乳糖苷简称为IPTG;
下面结合具体实施例对本发明作进一步的说明。
实施例1
与特定短肽标签融合的UGT2重组酶基因的获取及重组菌株的构建
由上海生工公司合成SEQ ID NO.9-SEQ ID NO.23引物基因,利用PCR扩增出AC1、AC2、AC3、AC4的DNA片段,通过无缝克隆构建至pET28a-UGT2线性化载体上,经过测序证实获得质粒pET28a-Sr76AC1、pET28a-Sr76AC2、pET28a-Sr76AC3、pET28a-Sr76AC4(图1)。
将所得质粒pET28a-Sr76AC1、pET28a-Sr76AC2、pET28a-Sr76AC3、pET28a-Sr76AC4转化至E.coli BL21感受态细胞中,采用含有50μg/ml(也可以是50~100μg/ml)卡那霉素的LB(1%蛋白胨,0.5%酵母粉,1%NaCl,1.6%琼脂粉)固体平板进行筛选,将筛选出的单克隆转化子进行菌落PCR鉴定,得到重组菌株BL21(pET28a-Sr76AC1)、BL21(pET28a-Sr76AC2)、BL21(pET28a-Sr76AC3)、BL21(pET28a-Sr76AC4)。
上述重组质粒也可转化至E.coli Tuner(DE3)、BL21star(DE3)和T7Express和BL21-A1等感受态细胞,并获得相应的重组菌株。
实施例2
重组菌株的诱导表达及粗酶液的制备
以重组菌株BL21(pET28a-Sr76AC1)为例,说明与特定短肽标签融合的UGT2重组酶基因在大肠杆菌中的表达方式。
菌株BL21(pET28a-Sr76AC1)在含有50μg/ml(也可以是50~100μg/ml中任一数值)卡那霉素的LB液体培养基(1%蛋白胨,0.5%酵母粉,0.5%NaCl)中于37℃、220rpm条件下培养至OD600在0.5-0.9,加入异丙基-β-D-硫代半乳糖苷(IPTG),使菌液终浓度为0.1-1mM,在18℃-30℃条件下诱导表达5-17h。
将诱导表达的培养物离心(12000rpm、4℃、10min),弃去上清液,收集菌体沉淀。再将收集的菌体用10mM PBS(pH7.2)洗涤1次除净菌体上残留的培养基;用10mM PBS(pH7.2)重悬菌体,在冰浴中超声破胞,条件:150W,工作5s,间歇8s,全程10~20min。然后将破胞菌液离心(12000g、4℃、10min)收集上清,上清即为UGT2酸性尾融合酶的粗酶液(CE,CrudeEnzyme),沉淀用1ml 10mM PBS(pH7.2)重悬即为包涵体(IB,Inclusion Bodies)。
分别取5~20μL粗酶液,加入5×蛋白上样loading buffer,混匀后,100℃高温条件下进行10min的变性失活处理,离心(12000g、4℃、2min),上清用于10%SDS-PAGE凝胶蛋白电泳,结果见图2,蛋白Marker泳道,从上到下依次为180,135,100,75,65,45,35kDa。
从图2可知在45-65kDa范围内有一条明显的条带与预估的目的蛋白的大小基本一致,说明成功的制备出了与特定短肽标签融合的UGT2重组酶的粗酶液。且相比于野生型的UGT2,改造后的四个UGT2重组酶的可溶性表达均明显提高,从图3可知Sr76AC2的可溶性表达最高,为UGT2的322%,Sr76AC3的可溶性表达次之,为UGT2的255%。
实施例3
与特定短肽标签融合的UGT2重组酶粗酶液催化莱鲍迪苷D生成莱胞迪苷M的糖基化反应
以莱鲍迪苷D为底物、UGT2重组酶催化其生成莱胞迪苷M的反应体系如下:加入终浓度为0.6-1g/L的RebD、终浓度为1-4mM的尿苷二磷酸葡萄糖(UDPG),终浓度为1-3mM的Mg2+(氯化镁),加入实施例2中所获取得重组菌UGT2重组酶的粗酶液。
糖基化反应体系配好后,18-40℃静置反应6-48h。反应完成后,加入200μL色谱纯乙腈,振荡混匀后,静置10min,室温下12000rpm离心10min,上清液过0.2μm有机膜再进HPLC液相分析。HPLC采用Luna C18反相键合硅胶分离柱(4.6mm×250mm,5μm),流动相采用25%乙腈,流速1mL/min,柱温40℃,采用紫外检测器VWD,VWD检测器波长210nm,进样量50μL。
通过液相分析可得知底物Reb D和产物Reb M的浓度变化。如图4所示,检测Sr76AC1、Sr76AC2、Sr76AC3、Sr76AC4以及UGT2的粗酶催化活性。结果发现,与UGT2相比,四个重组酶粗酶活性均有提高,Sr76AC1、Sr76AC2、Sr76AC3、Sr76AC4粗酶活性分别为改造前的1.11倍、1.08倍、1.11倍、1.20倍。
实施例4
与特定短肽标签融合的UGT2重组酶热稳定性分析
在30ml LB培养基中,将BL21(pET28a-Sr76AC1)、BL21(pET28a-Sr76AC2)、BL21(pET28a-Sr76AC3)、BL21(pET28a-Sr76AC4)以及BL21(pET28a-UGT2)五个菌株在诱导剂浓度为0.1mM,25℃诱导12h,离心收集菌体,用超声破碎,破胞后离心收集上清,制成粗酶液。
将粗酶液分成六等份,在30-55℃的一系列梯度下热孵育15min后,离心,将每一部分分成上清液(CE)和沉淀(IB),分别进行SDS-PAGE电泳,评价其热稳定性。
蛋白质溶解度是其热稳定性的指标。因此,我们进行了SDS-PAGE溶解度分析,以评估短肽标签AC1-AC4对在大肠杆菌中表达的重组UGT2的热稳定作用。结果显示,UGT2及其短肽标签重组酶在热处理15分钟(温度梯度为30–55℃)后,溶解度下降(图5)。虽然在50℃及以下,UGT2的溶解度没有显著的下降,但在55℃热孵育15min后,Sr76AC2和Sr76AC3的可溶蛋白残余量分别为UGT2的4.60倍和4.33倍(图6),展现出比UGT2更好的热稳定性。这表明酸性尾AC2和AC3融合后赋予UGT2更高的热稳定性。
实施例5
UGT2、Sr76AC2、Sr76AC3纯化条件的优化
UGT2、Sr76AC2、Sr76AC3在不同pH条件下纯化,将获得的纯酶在500ul反应体系中(2mM UDPG,3mM MgCl2,50mM磷酸缓冲液(pH 7.2)),以0.8mM-1mM RD为底物,加入15μg纯化酶,考察UGT2、Sr76AC2、Sr76AC3的比活力。在30℃静置反应1小时后(在产物形成的线性范围内),取出样品,加入200μl乙腈静置10分钟以终止反应,并在12000rpm下离心10分钟,通过高效液相色谱法测定上清液中的产物RM浓度。在上述条件下,每分钟催化底物RD产生1μmol RM所需要的酶量,定义为糖基转移酶的一个活力单位。
通过测定UGT2、Sr76AC2、Sr76AC3在的比活力,揭示了不同pH纯化条件下UGT2、Sr76AC2、Sr76AC3催化RD生成RM的能力差异(图7),UGT2(5.12U/mmol)、Sr76AC2(3.20U/mmol)、Sr76AC3(3.82U/mmol)的最优纯化pH均为PBS buffer 4.0。
实施例6
UGT2、Sr76AC2、Sr76AC3重组酶不同pH下的活性实验
在500ul反应体系中(2mM UDPG,3mM MgCl2,50mM磷酸缓冲液(pH 6.0-10.0),以0.8mM-1mM RD为底物,加入15μg纯化酶,考察UGT2、Sr76AC2及Sr76AC3的比活力。在30℃静置反应1小时后(在产物形成的线性范围内),取出样品,加入200μl乙腈静置10分钟以终止反应,并在12000rpm下离心10分钟,通过高效液相色谱法测定上清液中的产物RM浓度。在上述条件下,每分钟催化底物RD产生1μmol RM所需要的酶量,定义为糖基转移酶的一个活力单位。
通过测定UGT2、Sr76AC2及Sr76AC3的比活力,揭示了不同pH条件下UGT2、Sr76AC2及Sr76AC3催化RD生成RM的能力差异。在pH 6.0-10.0反应条件下,三种重组酶均能够有效地催化RD生成RM,在pH 8.0-9.0反应条件下,三种重组酶的比活力均能达到6.47U/mmol以上。UGT2(13.67U/mmol)、Sr76AC2(8.56U/mmol)及Sr76AC3(11.65U/mmol)均在pH9.0的甘氨酸氢氧化钠缓冲液中反应的比活力最高。短肽标签重组酶Sr76AC2及Sr76AC3的单位纯化酶比活力分别较UGT2降低了37.35%和14.80%(图8),单位菌体获得的纯化酶比活力分别为UGT2的149.80%、202.46%(表1)。
表1 UGT2、Sr76AC2及Sr76AC3的最高比活力
Specific activity a:1毫摩尔的酶中含有的酶活力单位数U/mmol;Specificactivity b:1L菌液纯化获得的酶活力单位数U/L。
序列表
<110> 天津大学
<120> 一种与特定短肽标签融合能高效催化Reb M生成的重组酶
<160> 23
<170> SIPOSequenceListing 1.0
<210> 1
<211> 488
<212> PRT
<213> 人工合成()
<400> 1
Met Glu Asn Lys Thr Glu Thr Thr Val Arg Arg Arg Arg Arg Ile Ile
1 5 10 15
Leu Phe Pro Val Pro Phe Gln Gly His Ile Asn Pro Ile Leu Gln Leu
20 25 30
Ala Asn Val Leu Tyr Ser Lys Gly Phe Ser Ile Thr Ile Phe His Thr
35 40 45
Asn Phe Asn Lys Pro Lys Thr Ser Asn Tyr Pro His Phe Thr Phe Arg
50 55 60
Phe Ile Leu Asp Asn Asp Pro Gln Asp Glu Arg Ile Ser Asn Leu Pro
65 70 75 80
Thr His Gly Pro Leu Ala Gly Met Arg Ile Pro Ile Ile Asn Glu His
85 90 95
Gly Ala Asp Glu Leu Arg Arg Glu Leu Glu Leu Leu Met Leu Ala Ser
100 105 110
Glu Glu Asp Glu Glu Val Ser Cys Leu Ile Thr Asp Ala Leu Trp Tyr
115 120 125
Phe Ala Gln Ser Val Ala Asp Ser Leu Asn Leu Arg Arg Leu Val Leu
130 135 140
Met Thr Ser Ser Leu Phe Asn Phe His Ala His Val Ser Leu Pro Gln
145 150 155 160
Phe Asp Glu Leu Gly Tyr Leu Asp Pro Asp Asp Lys Thr Arg Leu Glu
165 170 175
Glu Gln Ala Ser Gly Phe Pro Met Leu Lys Val Lys Asp Ile Lys Ser
180 185 190
Ala Tyr Ser Asn Trp Gln Ile Leu Lys Glu Ile Leu Gly Lys Met Ile
195 200 205
Lys Gln Thr Lys Ala Ser Ser Gly Val Ile Trp Asn Ser Phe Lys Glu
210 215 220
Leu Glu Glu Ser Glu Leu Glu Thr Val Ile Arg Glu Ile Pro Ala Pro
225 230 235 240
Ser Phe Leu Ile Pro Leu Pro Lys His Leu Thr Ala Ser Ser Ser Ser
245 250 255
Leu Leu Asp His Asp Arg Thr Val Phe Gln Trp Leu Asp Gln Gln Pro
260 265 270
Pro Ser Ser Val Leu Tyr Val Ser Phe Gly Ser Thr Ser Glu Val Asp
275 280 285
Glu Lys Asp Phe Leu Glu Ile Ala Arg Gly Leu Val Asp Ser Lys Gln
290 295 300
Ser Phe Leu Trp Val Val Arg Pro Gly Phe Val Lys Gly Ser Thr Trp
305 310 315 320
Val Glu Pro Leu Pro Asp Gly Phe Leu Gly Glu Arg Gly Arg Ile Val
325 330 335
Lys Trp Val Pro Gln Gln Glu Val Leu Ala His Gly Ala Ile Gly Ala
340 345 350
Phe Trp Thr His Ser Gly Trp Asn Ser Thr Leu Glu Ser Val Cys Glu
355 360 365
Gly Val Pro Met Ile Phe Ser Asp Phe Gly Leu Asp Gln Pro Leu Asn
370 375 380
Ala Arg Tyr Met Ser Asp Val Leu Lys Val Gly Val Tyr Leu Glu Asn
385 390 395 400
Gly Trp Glu Arg Gly Glu Ile Ala Asn Ala Ile Arg Arg Val Met Val
405 410 415
Asp Glu Glu Gly Glu Tyr Ile Arg Gln Asn Ala Arg Val Leu Lys Gln
420 425 430
Lys Ala Asp Val Ser Leu Met Lys Gly Gly Ser Ser Tyr Glu Ser Leu
435 440 445
Glu Ser Leu Val Ser Tyr Ile Ser Ser Leu Asp Pro Asp Asn Glu Ala
450 455 460
Tyr Glu Met Pro Ser Glu Glu Gly Tyr Gln Asp Tyr Glu Pro Glu Ala
465 470 475 480
Leu Glu His His His His His His
485
<210> 2
<211> 507
<212> PRT
<213> 人工合成()
<400> 2
Met Glu Asn Lys Thr Glu Thr Thr Val Arg Arg Arg Arg Arg Ile Ile
1 5 10 15
Leu Phe Pro Val Pro Phe Gln Gly His Ile Asn Pro Ile Leu Gln Leu
20 25 30
Ala Asn Val Leu Tyr Ser Lys Gly Phe Ser Ile Thr Ile Phe His Thr
35 40 45
Asn Phe Asn Lys Pro Lys Thr Ser Asn Tyr Pro His Phe Thr Phe Arg
50 55 60
Phe Ile Leu Asp Asn Asp Pro Gln Asp Glu Arg Ile Ser Asn Leu Pro
65 70 75 80
Thr His Gly Pro Leu Ala Gly Met Arg Ile Pro Ile Ile Asn Glu His
85 90 95
Gly Ala Asp Glu Leu Arg Arg Glu Leu Glu Leu Leu Met Leu Ala Ser
100 105 110
Glu Glu Asp Glu Glu Val Ser Cys Leu Ile Thr Asp Ala Leu Trp Tyr
115 120 125
Phe Ala Gln Ser Val Ala Asp Ser Leu Asn Leu Arg Arg Leu Val Leu
130 135 140
Met Thr Ser Ser Leu Phe Asn Phe His Ala His Val Ser Leu Pro Gln
145 150 155 160
Phe Asp Glu Leu Gly Tyr Leu Asp Pro Asp Asp Lys Thr Arg Leu Glu
165 170 175
Glu Gln Ala Ser Gly Phe Pro Met Leu Lys Val Lys Asp Ile Lys Ser
180 185 190
Ala Tyr Ser Asn Trp Gln Ile Leu Lys Glu Ile Leu Gly Lys Met Ile
195 200 205
Lys Gln Thr Lys Ala Ser Ser Gly Val Ile Trp Asn Ser Phe Lys Glu
210 215 220
Leu Glu Glu Ser Glu Leu Glu Thr Val Ile Arg Glu Ile Pro Ala Pro
225 230 235 240
Ser Phe Leu Ile Pro Leu Pro Lys His Leu Thr Ala Ser Ser Ser Ser
245 250 255
Leu Leu Asp His Asp Arg Thr Val Phe Gln Trp Leu Asp Gln Gln Pro
260 265 270
Pro Ser Ser Val Leu Tyr Val Ser Phe Gly Ser Thr Ser Glu Val Asp
275 280 285
Glu Lys Asp Phe Leu Glu Ile Ala Arg Gly Leu Val Asp Ser Lys Gln
290 295 300
Ser Phe Leu Trp Val Val Arg Pro Gly Phe Val Lys Gly Ser Thr Trp
305 310 315 320
Val Glu Pro Leu Pro Asp Gly Phe Leu Gly Glu Arg Gly Arg Ile Val
325 330 335
Lys Trp Val Pro Gln Gln Glu Val Leu Ala His Gly Ala Ile Gly Ala
340 345 350
Phe Trp Thr His Ser Gly Trp Asn Ser Thr Leu Glu Ser Val Cys Glu
355 360 365
Gly Val Pro Met Ile Phe Ser Asp Phe Gly Leu Asp Gln Pro Leu Asn
370 375 380
Ala Arg Tyr Met Ser Asp Val Leu Lys Val Gly Val Tyr Leu Glu Asn
385 390 395 400
Gly Trp Glu Arg Gly Glu Ile Ala Asn Ala Ile Arg Arg Val Met Val
405 410 415
Asp Glu Glu Gly Glu Tyr Ile Arg Gln Asn Ala Arg Val Leu Lys Gln
420 425 430
Lys Ala Asp Val Ser Leu Met Lys Gly Gly Ser Ser Tyr Glu Ser Leu
435 440 445
Glu Ser Leu Val Ser Tyr Ile Ser Ser Leu Gly Glu Gly Met Glu Glu
450 455 460
Gly Glu Phe Ser Glu Ala Arg Glu Asp Leu Ala Ala Leu Glu Lys Asp
465 470 475 480
Tyr Glu Glu Val Gly Ala Glu Gly Gly Asp Asp Glu Asp Asp Glu Gly
485 490 495
Glu Glu Tyr Leu Glu His His His His His His
500 505
<210> 3
<211> 502
<212> PRT
<213> 人工合成()
<400> 3
Met Glu Asn Lys Thr Glu Thr Thr Val Arg Arg Arg Arg Arg Ile Ile
1 5 10 15
Leu Phe Pro Val Pro Phe Gln Gly His Ile Asn Pro Ile Leu Gln Leu
20 25 30
Ala Asn Val Leu Tyr Ser Lys Gly Phe Ser Ile Thr Ile Phe His Thr
35 40 45
Asn Phe Asn Lys Pro Lys Thr Ser Asn Tyr Pro His Phe Thr Phe Arg
50 55 60
Phe Ile Leu Asp Asn Asp Pro Gln Asp Glu Arg Ile Ser Asn Leu Pro
65 70 75 80
Thr His Gly Pro Leu Ala Gly Met Arg Ile Pro Ile Ile Asn Glu His
85 90 95
Gly Ala Asp Glu Leu Arg Arg Glu Leu Glu Leu Leu Met Leu Ala Ser
100 105 110
Glu Glu Asp Glu Glu Val Ser Cys Leu Ile Thr Asp Ala Leu Trp Tyr
115 120 125
Phe Ala Gln Ser Val Ala Asp Ser Leu Asn Leu Arg Arg Leu Val Leu
130 135 140
Met Thr Ser Ser Leu Phe Asn Phe His Ala His Val Ser Leu Pro Gln
145 150 155 160
Phe Asp Glu Leu Gly Tyr Leu Asp Pro Asp Asp Lys Thr Arg Leu Glu
165 170 175
Glu Gln Ala Ser Gly Phe Pro Met Leu Lys Val Lys Asp Ile Lys Ser
180 185 190
Ala Tyr Ser Asn Trp Gln Ile Leu Lys Glu Ile Leu Gly Lys Met Ile
195 200 205
Lys Gln Thr Lys Ala Ser Ser Gly Val Ile Trp Asn Ser Phe Lys Glu
210 215 220
Leu Glu Glu Ser Glu Leu Glu Thr Val Ile Arg Glu Ile Pro Ala Pro
225 230 235 240
Ser Phe Leu Ile Pro Leu Pro Lys His Leu Thr Ala Ser Ser Ser Ser
245 250 255
Leu Leu Asp His Asp Arg Thr Val Phe Gln Trp Leu Asp Gln Gln Pro
260 265 270
Pro Ser Ser Val Leu Tyr Val Ser Phe Gly Ser Thr Ser Glu Val Asp
275 280 285
Glu Lys Asp Phe Leu Glu Ile Ala Arg Gly Leu Val Asp Ser Lys Gln
290 295 300
Ser Phe Leu Trp Val Val Arg Pro Gly Phe Val Lys Gly Ser Thr Trp
305 310 315 320
Val Glu Pro Leu Pro Asp Gly Phe Leu Gly Glu Arg Gly Arg Ile Val
325 330 335
Lys Trp Val Pro Gln Gln Glu Val Leu Ala His Gly Ala Ile Gly Ala
340 345 350
Phe Trp Thr His Ser Gly Trp Asn Ser Thr Leu Glu Ser Val Cys Glu
355 360 365
Gly Val Pro Met Ile Phe Ser Asp Phe Gly Leu Asp Gln Pro Leu Asn
370 375 380
Ala Arg Tyr Met Ser Asp Val Leu Lys Val Gly Val Tyr Leu Glu Asn
385 390 395 400
Gly Trp Glu Arg Gly Glu Ile Ala Asn Ala Ile Arg Arg Val Met Val
405 410 415
Asp Glu Glu Gly Glu Tyr Ile Arg Gln Asn Ala Arg Val Leu Lys Gln
420 425 430
Lys Ala Asp Val Ser Leu Met Lys Gly Gly Ser Ser Tyr Glu Ser Leu
435 440 445
Glu Ser Leu Val Ser Tyr Ile Ser Ser Leu Gln Gly Ala Gln Gln Gly
450 455 460
Asp Leu Pro Val Pro Glu Gly Glu Thr Asp Pro Glu Ala Glu Asn Phe
465 470 475 480
Asp Pro Thr Ala Glu Ser Asp Asp Gly Ser Glu Glu Tyr Glu Leu Glu
485 490 495
His His His His His His
500
<210> 4
<211> 502
<212> PRT
<213> 人工合成()
<400> 4
Met Glu Asn Lys Thr Glu Thr Thr Val Arg Arg Arg Arg Arg Ile Ile
1 5 10 15
Leu Phe Pro Val Pro Phe Gln Gly His Ile Asn Pro Ile Leu Gln Leu
20 25 30
Ala Asn Val Leu Tyr Ser Lys Gly Phe Ser Ile Thr Ile Phe His Thr
35 40 45
Asn Phe Asn Lys Pro Lys Thr Ser Asn Tyr Pro His Phe Thr Phe Arg
50 55 60
Phe Ile Leu Asp Asn Asp Pro Gln Asp Glu Arg Ile Ser Asn Leu Pro
65 70 75 80
Thr His Gly Pro Leu Ala Gly Met Arg Ile Pro Ile Ile Asn Glu His
85 90 95
Gly Ala Asp Glu Leu Arg Arg Glu Leu Glu Leu Leu Met Leu Ala Ser
100 105 110
Glu Glu Asp Glu Glu Val Ser Cys Leu Ile Thr Asp Ala Leu Trp Tyr
115 120 125
Phe Ala Gln Ser Val Ala Asp Ser Leu Asn Leu Arg Arg Leu Val Leu
130 135 140
Met Thr Ser Ser Leu Phe Asn Phe His Ala His Val Ser Leu Pro Gln
145 150 155 160
Phe Asp Glu Leu Gly Tyr Leu Asp Pro Asp Asp Lys Thr Arg Leu Glu
165 170 175
Glu Gln Ala Ser Gly Phe Pro Met Leu Lys Val Lys Asp Ile Lys Ser
180 185 190
Ala Tyr Ser Asn Trp Gln Ile Leu Lys Glu Ile Leu Gly Lys Met Ile
195 200 205
Lys Gln Thr Lys Ala Ser Ser Gly Val Ile Trp Asn Ser Phe Lys Glu
210 215 220
Leu Glu Glu Ser Glu Leu Glu Thr Val Ile Arg Glu Ile Pro Ala Pro
225 230 235 240
Ser Phe Leu Ile Pro Leu Pro Lys His Leu Thr Ala Ser Ser Ser Ser
245 250 255
Leu Leu Asp His Asp Arg Thr Val Phe Gln Trp Leu Asp Gln Gln Pro
260 265 270
Pro Ser Ser Val Leu Tyr Val Ser Phe Gly Ser Thr Ser Glu Val Asp
275 280 285
Glu Lys Asp Phe Leu Glu Ile Ala Arg Gly Leu Val Asp Ser Lys Gln
290 295 300
Ser Phe Leu Trp Val Val Arg Pro Gly Phe Val Lys Gly Ser Thr Trp
305 310 315 320
Val Glu Pro Leu Pro Asp Gly Phe Leu Gly Glu Arg Gly Arg Ile Val
325 330 335
Lys Trp Val Pro Gln Gln Glu Val Leu Ala His Gly Ala Ile Gly Ala
340 345 350
Phe Trp Thr His Ser Gly Trp Asn Ser Thr Leu Glu Ser Val Cys Glu
355 360 365
Gly Val Pro Met Ile Phe Ser Asp Phe Gly Leu Asp Gln Pro Leu Asn
370 375 380
Ala Arg Tyr Met Ser Asp Val Leu Lys Val Gly Val Tyr Leu Glu Asn
385 390 395 400
Gly Trp Glu Arg Gly Glu Ile Ala Asn Ala Ile Arg Arg Val Met Val
405 410 415
Asp Glu Glu Gly Glu Tyr Ile Arg Gln Asn Ala Arg Val Leu Lys Gln
420 425 430
Lys Ala Asp Val Ser Leu Met Lys Gly Gly Ser Ser Tyr Glu Ser Leu
435 440 445
Glu Ser Leu Val Ser Tyr Ile Ser Ser Leu Lys Gly Ala Gln Gln Val
450 455 460
Asn Leu Pro Val Pro Glu Gly Cys Thr Asp Pro Val Ala Glu Asn Phe
465 470 475 480
Asp Pro Thr Ala Arg Ser Asp Asp Gly Thr Cys Val Tyr Asn Leu Glu
485 490 495
His His His His His His
500
<210> 5
<211> 1464
<212> DNA
<213> 人工合成()
<400> 5
atggagaaca agaccgaaac caccgtgcgt cgtcgtcgtc gtatcattct gtttccggtt 60
ccgttccagg gccacatcaa cccgattctg caactggcga acgtgctgta cagcaaaggt 120
tttagcatca ccatttttca caccaacttc aacaagccga aaaccagcaa ctatccgcac 180
ttcacctttc gtttcatcct ggacaacgat ccgcaggacg agcgtattag caacctgccg 240
acccacggcc cgctggcggg tatgcgtatc ccgatcatta acgagcacgg cgcggatgaa 300
ctgcgtcgtg agctggaact gctgatgctg gcgagcgagg aagacgagga agttagctgc 360
ctgattaccg atgcgctgtg gtacttcgcg caaagcgtgg cggacagcct gaacctgcgt 420
cgtctggttc tgatgaccag cagcctgttt aacttccacg cgcacgtgag cctgccgcag 480
tttgacgagc tgggctacct ggacccggac gataagaccc gtctggagga acaagcgagc 540
ggtttcccga tgctgaaggt taaagatatc aaaagcgcgt atagcaactg gcagatcctg 600
aaggaaattc tgggcaagat gatcaaacaa accaaggcga gcagcggtgt gatttggaac 660
agctttaagg agctggagga aagcgagctg gaaaccgtta tccgtgaaat tccggcgccg 720
agcttcctga tcccgctgcc gaaacacctg accgcgagca gcagcagcct gctggaccac 780
gatcgtaccg tgttccagtg gctggaccag caaccgccga gcagcgtgct gtacgttagc 840
tttggcagca ccagcgaggt ggacgaaaaa gatttcctgg agattgcgcg tggtctggtt 900
gacagcaagc agagcttcct gtgggtggtt cgtccgggct tcgtgaaagg tagcacctgg 960
gttgagccgc tgccggatgg ttttctgggc gaacgtggtc gtatcgtgaa atgggttccg 1020
caacaagaag tgctggcgca cggcgcgatt ggtgcgttct ggacccacag cggttggaac 1080
agcaccctgg agagcgtgtg cgaaggcgtt ccgatgatct ttagcgactt cggtctggat 1140
cagccgctga acgcgcgtta catgagcgat gttctgaaag tgggcgttta tctggagaac 1200
ggctgggagc gtggtgaaat cgcgaacgcg attcgtcgtg tgatggttga cgaggaaggt 1260
gagtacatcc gtcagaacgc gcgtgtgctg aagcaaaaag cggatgttag cctgatgaaa 1320
ggtggcagca gctacgagag cctggaaagc ctggttagct atattagcag cctggacccc 1380
gacaatgaag cctacgagat gcccagcgag gaaggttacc aggactacga gcccgaggcc 1440
ctcgagcacc accaccacca ccac 1464
<210> 6
<211> 1521
<212> DNA
<213> 人工合成()
<400> 6
atggagaaca agaccgaaac caccgtgcgt cgtcgtcgtc gtatcattct gtttccggtt 60
ccgttccagg gccacatcaa cccgattctg caactggcga acgtgctgta cagcaaaggt 120
tttagcatca ccatttttca caccaacttc aacaagccga aaaccagcaa ctatccgcac 180
ttcacctttc gtttcatcct ggacaacgat ccgcaggacg agcgtattag caacctgccg 240
acccacggcc cgctggcggg tatgcgtatc ccgatcatta acgagcacgg cgcggatgaa 300
ctgcgtcgtg agctggaact gctgatgctg gcgagcgagg aagacgagga agttagctgc 360
ctgattaccg atgcgctgtg gtacttcgcg caaagcgtgg cggacagcct gaacctgcgt 420
cgtctggttc tgatgaccag cagcctgttt aacttccacg cgcacgtgag cctgccgcag 480
tttgacgagc tgggctacct ggacccggac gataagaccc gtctggagga acaagcgagc 540
ggtttcccga tgctgaaggt taaagatatc aaaagcgcgt atagcaactg gcagatcctg 600
aaggaaattc tgggcaagat gatcaaacaa accaaggcga gcagcggtgt gatttggaac 660
agctttaagg agctggagga aagcgagctg gaaaccgtta tccgtgaaat tccggcgccg 720
agcttcctga tcccgctgcc gaaacacctg accgcgagca gcagcagcct gctggaccac 780
gatcgtaccg tgttccagtg gctggaccag caaccgccga gcagcgtgct gtacgttagc 840
tttggcagca ccagcgaggt ggacgaaaaa gatttcctgg agattgcgcg tggtctggtt 900
gacagcaagc agagcttcct gtgggtggtt cgtccgggct tcgtgaaagg tagcacctgg 960
gttgagccgc tgccggatgg ttttctgggc gaacgtggtc gtatcgtgaa atgggttccg 1020
caacaagaag tgctggcgca cggcgcgatt ggtgcgttct ggacccacag cggttggaac 1080
agcaccctgg agagcgtgtg cgaaggcgtt ccgatgatct ttagcgactt cggtctggat 1140
cagccgctga acgcgcgtta catgagcgat gttctgaaag tgggcgttta tctggagaac 1200
ggctgggagc gtggtgaaat cgcgaacgcg attcgtcgtg tgatggttga cgaggaaggt 1260
gagtacatcc gtcagaacgc gcgtgtgctg aagcaaaaag cggatgttag cctgatgaaa 1320
ggtggcagca gctacgagag cctggaaagc ctggttagct atattagcag cctgggtgag 1380
ggtatggaag aaggagaatt ttcagaggct cgtgaggatc ttgcagcatt ggagaaggat 1440
tacgaagagg ttggtgctga aggtggtgac gatgaggatg atgaaggaga ggagtacctc 1500
gagcaccacc accaccacca c 1521
<210> 7
<211> 1506
<212> DNA
<213> 人工合成()
<400> 7
atggagaaca agaccgaaac caccgtgcgt cgtcgtcgtc gtatcattct gtttccggtt 60
ccgttccagg gccacatcaa cccgattctg caactggcga acgtgctgta cagcaaaggt 120
tttagcatca ccatttttca caccaacttc aacaagccga aaaccagcaa ctatccgcac 180
ttcacctttc gtttcatcct ggacaacgat ccgcaggacg agcgtattag caacctgccg 240
acccacggcc cgctggcggg tatgcgtatc ccgatcatta acgagcacgg cgcggatgaa 300
ctgcgtcgtg agctggaact gctgatgctg gcgagcgagg aagacgagga agttagctgc 360
ctgattaccg atgcgctgtg gtacttcgcg caaagcgtgg cggacagcct gaacctgcgt 420
cgtctggttc tgatgaccag cagcctgttt aacttccacg cgcacgtgag cctgccgcag 480
tttgacgagc tgggctacct ggacccggac gataagaccc gtctggagga acaagcgagc 540
ggtttcccga tgctgaaggt taaagatatc aaaagcgcgt atagcaactg gcagatcctg 600
aaggaaattc tgggcaagat gatcaaacaa accaaggcga gcagcggtgt gatttggaac 660
agctttaagg agctggagga aagcgagctg gaaaccgtta tccgtgaaat tccggcgccg 720
agcttcctga tcccgctgcc gaaacacctg accgcgagca gcagcagcct gctggaccac 780
gatcgtaccg tgttccagtg gctggaccag caaccgccga gcagcgtgct gtacgttagc 840
tttggcagca ccagcgaggt ggacgaaaaa gatttcctgg agattgcgcg tggtctggtt 900
gacagcaagc agagcttcct gtgggtggtt cgtccgggct tcgtgaaagg tagcacctgg 960
gttgagccgc tgccggatgg ttttctgggc gaacgtggtc gtatcgtgaa atgggttccg 1020
caacaagaag tgctggcgca cggcgcgatt ggtgcgttct ggacccacag cggttggaac 1080
agcaccctgg agagcgtgtg cgaaggcgtt ccgatgatct ttagcgactt cggtctggat 1140
cagccgctga acgcgcgtta catgagcgat gttctgaaag tgggcgttta tctggagaac 1200
ggctgggagc gtggtgaaat cgcgaacgcg attcgtcgtg tgatggttga cgaggaaggt 1260
gagtacatcc gtcagaacgc gcgtgtgctg aagcaaaaag cggatgttag cctgatgaaa 1320
ggtggcagca gctacgagag cctggaaagc ctggttagct atattagcag cctgcaaggt 1380
gctcaacagg gtgacttgcc agttcctgaa ggtgaaactg atccagaagc tgagaacttc 1440
gatcctacag cagaatctga cgatggatct gaagagtatg aactcgagca ccaccaccac 1500
caccac 1506
<210> 8
<211> 1506
<212> DNA
<213> 人工合成()
<400> 8
atggagaaca agaccgaaac caccgtgcgt cgtcgtcgtc gtatcattct gtttccggtt 60
ccgttccagg gccacatcaa cccgattctg caactggcga acgtgctgta cagcaaaggt 120
tttagcatca ccatttttca caccaacttc aacaagccga aaaccagcaa ctatccgcac 180
ttcacctttc gtttcatcct ggacaacgat ccgcaggacg agcgtattag caacctgccg 240
acccacggcc cgctggcggg tatgcgtatc ccgatcatta acgagcacgg cgcggatgaa 300
ctgcgtcgtg agctggaact gctgatgctg gcgagcgagg aagacgagga agttagctgc 360
ctgattaccg atgcgctgtg gtacttcgcg caaagcgtgg cggacagcct gaacctgcgt 420
cgtctggttc tgatgaccag cagcctgttt aacttccacg cgcacgtgag cctgccgcag 480
tttgacgagc tgggctacct ggacccggac gataagaccc gtctggagga acaagcgagc 540
ggtttcccga tgctgaaggt taaagatatc aaaagcgcgt atagcaactg gcagatcctg 600
aaggaaattc tgggcaagat gatcaaacaa accaaggcga gcagcggtgt gatttggaac 660
agctttaagg agctggagga aagcgagctg gaaaccgtta tccgtgaaat tccggcgccg 720
agcttcctga tcccgctgcc gaaacacctg accgcgagca gcagcagcct gctggaccac 780
gatcgtaccg tgttccagtg gctggaccag caaccgccga gcagcgtgct gtacgttagc 840
tttggcagca ccagcgaggt ggacgaaaaa gatttcctgg agattgcgcg tggtctggtt 900
gacagcaagc agagcttcct gtgggtggtt cgtccgggct tcgtgaaagg tagcacctgg 960
gttgagccgc tgccggatgg ttttctgggc gaacgtggtc gtatcgtgaa atgggttccg 1020
caacaagaag tgctggcgca cggcgcgatt ggtgcgttct ggacccacag cggttggaac 1080
agcaccctgg agagcgtgtg cgaaggcgtt ccgatgatct ttagcgactt cggtctggat 1140
cagccgctga acgcgcgtta catgagcgat gttctgaaag tgggcgttta tctggagaac 1200
ggctgggagc gtggtgaaat cgcgaacgcg attcgtcgtg tgatggttga cgaggaaggt 1260
gagtacatcc gtcagaacgc gcgtgtgctg aagcaaaaag cggatgttag cctgatgaaa 1320
ggtggcagca gctacgagag cctggaaagc ctggttagct atattagcag cctgaaagga 1380
gcccagcaag taaacctgcc agttcctgaa gggtgtactg atcctgtggc tgaaaacttt 1440
gatccaacgg ctagaagtga cgatggaacc tgtgtctaca acctcgagca ccaccaccac 1500
caccac 1506
<210> 9
<211> 59
<212> DNA
<213> 人工合成()
<400> 9
ggaaagcctg gttagctata ttagcagcct ggaccccgac aatgaagcct acgagatgc 59
<210> 10
<211> 50
<212> DNA
<213> 人工合成()
<400> 10
gctcgtagtc ctggtaacct tcctcgctgg gcatctcgta ggcttcattg 50
<210> 11
<211> 58
<212> DNA
<213> 人工合成()
<400> 11
atctcagtgg tggtggtggt ggtgctcgag ggcctcgggc tcgtagtcct ggtaacct 58
<210> 12
<211> 59
<212> DNA
<213> 人工合成()
<400> 12
aaggagaatt ttcagaggct cgtgaggatc ttgcagcatt ggagaaggat tacgaagag 59
<210> 13
<211> 59
<212> DNA
<213> 人工合成()
<400> 13
tccttcatca tcctcatcgt caccaccttc agcaccaacc tcttcgtaat ccttctcca 59
<210> 14
<211> 59
<212> DNA
<213> 人工合成()
<400> 14
tggttagcta tattagcagc ctgggtgagg gtatggaaga aggagaattt tcagaggct 59
<210> 15
<211> 56
<212> DNA
<213> 人工合成()
<400> 15
tcagtggtgg tggtggtggt gctcgaggta ctcctctcct tcatcatcct catcgt 56
<210> 16
<211> 57
<212> DNA
<213> 人工合成()
<400> 16
acagggtgac ttgccagttc ctgaaggtga aactgatcca gaagctgaga acttcga 57
<210> 17
<211> 54
<212> DNA
<213> 人工合成()
<400> 17
ctcttcagat ccatcgtcag attctgctgt aggatcgaag ttctcagctt ctgg 54
<210> 18
<211> 59
<212> DNA
<213> 人工合成()
<400> 18
aagcctggtt agctatatta gcagcctgca aggtgctcaa cagggtgact tgccagttc 59
<210> 19
<211> 59
<212> DNA
<213> 人工合成()
<400> 19
atctcagtgg tggtggtggt ggtgctcgag ttcatactct tcagatccat cgtcagatt 59
<210> 20
<211> 57
<212> DNA
<213> 人工合成()
<400> 20
gcaagtaaac ctgccagttc ctgaagggtg tactgatcct gtggctgaaa actttga 57
<210> 21
<211> 54
<212> DNA
<213> 人工合成()
<400> 21
gacacaggtt ccatcgtcac ttctagccgt tggatcaaag ttttcagcca cagg 54
<210> 22
<211> 59
<212> DNA
<213> 人工合成()
<400> 22
aagcctggtt agctatatta gcagcctgaa aggagcccag caagtaaacc tgccagttc 59
<210> 23
<211> 56
<212> DNA
<213> 人工合成()
<400> 23
atctcagtgg tggtggtggt ggtgctcgag gttgtagaca caggttccat cgtcac 56

Claims (8)

1.一种重组载体,其特征在于:该重组载体包含糖基转移酶UGT2与特定短肽标签的融合基因,所述重组融合基因的核酸序列为:
a)SEQ ID NO.6-SEQ ID NO.8所示的任一核苷酸序列;或
b)与a)的核苷酸序列不同,能够编码SEQ ID NO.2-SEQ ID NO.4所示任一氨基酸序列的核苷酸序列。
2.根据权利要求1所述的重组载体,其特征在于,所述重组载体包括pPICZα-A/B/C、pPIC9K、pPIC9、pPinkα-HC、pHT01、pHT08、pHT43、pET系列载体、pMAL、pCOLD系列载体和pBAD系列载体中的任意一种。
3.一种重组菌,其特征在于,该重组菌中含有权利要求1所述重组载体,所述重组菌的重组宿主为大肠杆菌。
4.权利要求3所述的重组菌的制备方法,其特征在于,将权利要求1所述的重组载体,转入宿主细胞,获得重组菌。
5.与特定短肽标签融合的UGT2重组酶,其特征在于:所述重组酶由权利要求3所述的重组菌诱导制备。
6.一种权利要求5所述的重组酶的制备方法,其特征在于,将权利要求3获得的重组菌在培养基中培养,加入诱导剂诱导表达,所述诱导表达的温度在18-30℃,诱导表达时间6-18h;所述方法还包括以下步骤:将诱导后菌液离心,
收集菌体,破胞后离心得到重组酶。
7.权利要求1或2任意一项权利要求所述的重组载体或权利要求3所述的重组菌在制备能够催化底物莱鲍迪苷D生成莱鲍迪苷M的重组酶中的应用。
8.根据权利要求7所述的应用,特征在于,以莱鲍迪苷D、UDPG、金属离子和所述重组酶,构建糖基化反应体系,进行糖基化反应;或以莱鲍迪苷D、糖合酶、蔗糖底物、UDP、金属离子和所述重组酶,构建糖基化反应体系,进行糖基化反应;所述糖基化反应的温度为18℃-50℃,糖基化反应时间为1~48h,糖基化反应体系的pH为5.0-10.5。
CN202111481579.4A 2021-12-06 2021-12-06 一种与特定短肽标签融合能高效催化Reb M生成的重组酶 Active CN114196696B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111481579.4A CN114196696B (zh) 2021-12-06 2021-12-06 一种与特定短肽标签融合能高效催化Reb M生成的重组酶

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111481579.4A CN114196696B (zh) 2021-12-06 2021-12-06 一种与特定短肽标签融合能高效催化Reb M生成的重组酶

Publications (2)

Publication Number Publication Date
CN114196696A CN114196696A (zh) 2022-03-18
CN114196696B true CN114196696B (zh) 2023-10-20

Family

ID=80650857

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111481579.4A Active CN114196696B (zh) 2021-12-06 2021-12-06 一种与特定短肽标签融合能高效催化Reb M生成的重组酶

Country Status (1)

Country Link
CN (1) CN114196696B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114921434B (zh) * 2022-05-27 2024-02-20 中化健康产业发展有限公司 催化Reb A生产Reb M的重组糖基转移酶

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107548417A (zh) * 2015-04-14 2018-01-05 康纳根有限公司 使用工程化全细胞催化剂生产无热量甜味剂
CN108359652A (zh) * 2017-01-25 2018-08-03 中国科学院上海生命科学研究院 糖基转移酶及其应用
CN108396044A (zh) * 2011-08-08 2018-08-14 埃沃尔瓦公司 甜菊醇糖苷类的重组生产
CN110734944A (zh) * 2019-11-11 2020-01-31 中化健康产业发展有限公司 一步法合成莱鲍迪苷m的方法
CN112760302A (zh) * 2020-12-23 2021-05-07 中化健康产业发展有限公司 一种能够催化莱鲍迪苷A生成莱鲍迪苷D的糖基转移酶StUGT

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10294283B2 (en) * 2014-01-17 2019-05-21 The United States Of America, As Represented By The Secretary Of The Navy Single-domain antibodies with improved thermal stability under cytoplasmic expression
US10463062B2 (en) * 2014-11-05 2019-11-05 Manus Bio Inc. Microbial production of steviol glycosides

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108396044A (zh) * 2011-08-08 2018-08-14 埃沃尔瓦公司 甜菊醇糖苷类的重组生产
CN107548417A (zh) * 2015-04-14 2018-01-05 康纳根有限公司 使用工程化全细胞催化剂生产无热量甜味剂
CN108359652A (zh) * 2017-01-25 2018-08-03 中国科学院上海生命科学研究院 糖基转移酶及其应用
CN110734944A (zh) * 2019-11-11 2020-01-31 中化健康产业发展有限公司 一步法合成莱鲍迪苷m的方法
CN112760302A (zh) * 2020-12-23 2021-05-07 中化健康产业发展有限公司 一种能够催化莱鲍迪苷A生成莱鲍迪苷D的糖基转移酶StUGT

Also Published As

Publication number Publication date
CN114196696A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
US9701953B2 (en) Polynucleotide encoding psicose epimerase and method of producing psicose using the same
KR102132381B1 (ko) 아스로박터 글로비포미스에 의해 생산되는 케토오스 3-에피머라제
CN110396513B (zh) 一种d-阿洛酮糖-3-差向异构酶的突变体及其应用
CN110462036B (zh) 一种新型d-阿洛酮糖3-差向异构酶以及使用该酶制备d-阿洛酮糖的方法
CN112760302B (zh) 一种能够催化莱鲍迪苷A生成莱鲍迪苷D的糖基转移酶StUGT
KR101455624B1 (ko) 기능성 희귀당 사이코스의 생산능을 지닌 신규 클로스트리디움 볼티에 유래의 사이코스-3-에피머화 효소 및 이를 이용한 사이코스 생산방법
EP3663397A2 (en) Novel psicose-6-phosphate phosphatase, composition for producing psicose including said enzyme, method for producing psicose using said enzyme
CA2558593A1 (en) .beta.-fructofuranosidase variants
CN114196696B (zh) 一种与特定短肽标签融合能高效催化Reb M生成的重组酶
JP7404537B2 (ja) アルロースエピマー化酵素変異体、その製造方法及びそれを利用したアルロースの製造方法
CN112342178B (zh) 重组微生物、其制备方法及在生产塔格糖中的应用
RU2730602C2 (ru) Новая полифосфат-зависимая глюкокиназа и способ получения глюкозо-6-фосфата с ее использованием
CA2909438C (en) Method of production of monosaccharides
KR102114865B1 (ko) 신규한 사이코스-6-인산 탈인산효소, 상기 효소를 포함하는 사이코스 생산용 조성물, 상기 효소를 이용하여 사이코스를 제조하는 방법
CN114008198A (zh) 具有低副反应性的磷酸核酮糖3-差向异构酶基序和包含该基序的酶
CN106434586B (zh) 海藻糖合成酶突变体及其基因
CN113302299B (zh) 阿洛酮糖差向异构酶变体、其生产方法以及使用其生产阿洛酮糖的方法
CN105154457B (zh) 一种来源于丁香假单胞菌的山梨醇脱氢酶基因及其应用
JP7025941B2 (ja) 新規酵素剤、その製造方法およびその用途
KR102513451B1 (ko) 프럭토오스 6-포스페이트 4-에피머화 효소 및 이의 용도
CN112867793B (zh) 新型果糖-c4-差向异构酶及使用其制备塔格糖的方法
CN107119035A (zh) 苯丙氨酸变位酶、编码基因、重组载体、宿主细胞、多重pcr引物及它们的应用
KR102078272B1 (ko) 과당-4-에피머화 효소 및 이를 이용한 타가토스의 제조 방법
JP2023554112A (ja) 熱安定性に優れたアルロースエピマー化酵素変異体、その製造方法およびこれを用いたアルロースの製造方法
KR101294598B1 (ko) 4-알파-글루카노트랜스퍼레이즈와 아밀로오스의 복합체 및 이의 이용

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant