CN114195705A - 一种二维双层dj型铅溴杂化钙钛矿及制备方法和应用 - Google Patents
一种二维双层dj型铅溴杂化钙钛矿及制备方法和应用 Download PDFInfo
- Publication number
- CN114195705A CN114195705A CN202111500005.7A CN202111500005A CN114195705A CN 114195705 A CN114195705 A CN 114195705A CN 202111500005 A CN202111500005 A CN 202111500005A CN 114195705 A CN114195705 A CN 114195705A
- Authority
- CN
- China
- Prior art keywords
- hybrid perovskite
- layer
- preparation
- dimensional double
- type lead
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 title claims abstract description 20
- 229910052794 bromium Inorganic materials 0.000 title claims abstract description 20
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 239000000463 material Substances 0.000 claims abstract description 58
- 238000001514 detection method Methods 0.000 claims abstract description 24
- 238000010521 absorption reaction Methods 0.000 claims abstract description 14
- -1 aromatic amine cations Chemical class 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims abstract description 5
- 239000013078 crystal Substances 0.000 claims description 39
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 claims description 19
- HDOUGSFASVGDCS-UHFFFAOYSA-N pyridin-3-ylmethanamine Chemical compound NCC1=CC=CN=C1 HDOUGSFASVGDCS-UHFFFAOYSA-N 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 8
- 239000002178 crystalline material Substances 0.000 claims description 6
- 239000002244 precipitate Substances 0.000 claims description 6
- 238000009835 boiling Methods 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 238000005516 engineering process Methods 0.000 abstract description 4
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 abstract description 3
- 239000010410 layer Substances 0.000 abstract 2
- 238000004891 communication Methods 0.000 abstract 1
- 230000008878 coupling Effects 0.000 abstract 1
- 238000010168 coupling process Methods 0.000 abstract 1
- 238000005859 coupling reaction Methods 0.000 abstract 1
- 230000023004 detection of visible light Effects 0.000 abstract 1
- 239000011229 interlayer Substances 0.000 abstract 1
- 239000013307 optical fiber Substances 0.000 abstract 1
- 230000003287 optical effect Effects 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 229910052809 inorganic oxide Inorganic materials 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 238000010583 slow cooling Methods 0.000 description 2
- 238000013112 stability test Methods 0.000 description 2
- 238000004847 absorption spectroscopy Methods 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000023077 detection of light stimulus Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/24—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D213/36—Radicals substituted by singly-bound nitrogen atoms
- C07D213/38—Radicals substituted by singly-bound nitrogen atoms having only hydrogen or hydrocarbon radicals attached to the substituent nitrogen atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C209/00—Preparation of compounds containing amino groups bound to a carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C211/00—Compounds containing amino groups bound to a carbon skeleton
- C07C211/01—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
- C07C211/02—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
- C07C211/03—Monoamines
- C07C211/05—Mono-, di- or tri-ethylamine
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/10—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B2200/00—Indexing scheme relating to specific properties of organic compounds
- C07B2200/13—Crystalline forms, e.g. polymorphs
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Light Receiving Elements (AREA)
Abstract
本发明公开了一种DJ型二维双层铅溴杂化钙钛矿及制备方法和应用,属于光电探测技术领域。针对现有技术使用脂肪胺构筑的杂化钙钛矿导致材料整体热稳定性差和光稳定差的问题,本发明二维双层DJ型铅溴杂化钙钛矿材料使用层间芳香胺阳离子大大提高了材料的稳定性。该材料可溶液法制备,制备工艺简单,常常在低温下就可以合成,同时也易于成膜,将此材料用于光伏材料和光电器件兼具性能较好和成本较低的优点。得到的(3‑氨甲基吡啶)(乙胺)Pb2Br7晶体材料不但可以实现405nm下的可见光光电探测,同时还能通过双光子吸收技术实现在近红外(800nm)区域的光电探测。这就使得该杂化钙钛矿在光纤通信、军事安全和光电耦合等领域有着广阔的前景。
Description
技术领域
本发明属于光电探测技术领域,具体涉及一种二维双层DJ型铅溴杂化钙钛矿及制备方法和应用。
背景技术
传统的无机氧化物半导体面临着带隙大(吸收范围窄)、导电性差等问题,严重制约了它们在光电领域的发展。新兴的有机无机杂化钙钛矿材料由于光吸收系数高(双光子吸收系数也高),晶体缺陷密度低,载流子传输距离长,带隙可调等优势,被广泛用于光电及光伏领域。尤其是低维杂化钙钛矿材料具有丰富的结构多样性,为设计具有优异半导体性能的光电探测材料提供了广阔的空间。
目前,由于本征吸收的限制,大部分二维杂化钙钛矿材料只能用于紫外和可见波段的光电探测,并且用于光电探测的大多是RP型杂化钙钛矿,所以器件的稳定性和光电转换效率不是很高。利用DJ型杂化钙钛矿层间没有范德华间隙以及较高的载流子传输性质等优势,通过双光子吸收可以实现近红外波段的光电探测,这就为此类材料用于复杂环境下更宽波段的光电探测应用提供了可能性。
发明内容
针对目前材料(脂肪胺构筑的杂化钙钛矿)的稳定性差(对湿度、对光、对热)的问题,以及二维杂化钙钛矿材料近红外区光电探测领域空白问题,本发明提供了一种二维双层DJ型铅溴杂化钙钛矿材料及制备方法和在近红外区的光电探测应用。
为了达到上述目的,本发明采用了下列技术方案:
一种二维双层DJ型铅溴杂化钙钛矿材料,所述二维双层DJ型铅溴杂化钙钛矿材料为(3-氨甲基吡啶)(乙胺)Pb2Br7晶体材料,其化学式为:C8H18N3Pb2Br7,结构简式为:(3AMPY)EAPb2Br7;(3AMPY)EAPb2Br7晶体材料属于单斜晶系,P21/c空间群;(3AMPY)FAPb2I7晶体材料的晶胞参数为 Z=4,单胞体积为
一种二维双层DJ型铅溴杂化钙钛矿材料的制备方法,包括以下步骤:
步骤1,将Pb(AC)2·3H2O溶解在HBr溶液中,再依次加入乙胺和3-氨甲基吡啶,得到黄色沉淀;
步骤2,将步骤1得到的黄色沉淀加热至沸腾后,得到一种清澈的黄色溶液,将该溶液采用逐步降温法缓慢冷却至室温可生长出大尺寸单晶体,该单晶体即为(3AMPY)EAPb2Br7晶体材料。
进一步,所述步骤1中的Pb(AC)2·3H2O的浓度为0.379g/mmol,乙胺的浓度为0.05g/mmol,3-氨甲基吡啶的浓度为0.111g/mmol,HBr溶液的浓度为48%的HBr溶液。
进一步,所述步骤1中Pb(AC)2·3H2O的用量为9~11mmol,HBr溶液的用量为30~40mL,乙胺的用量为0.05~0.06mol,3-氨甲基吡啶的用量为3.5~4.5mmol。
进一步,所述步骤2中逐步降温法缓慢冷却的时间为10~25天。通过缓慢降温过程有利于生长出高质量的大晶体材料,满足了其应用于近红外波段的光电探测领域的需求。
该合成方法有利于制备本专利中的DJ型二维双层铅溴杂化钙钛矿材料。改善了此前材料(脂肪胺构筑的杂化钙钛矿)的稳定性差的问题(对湿度、对光、对热),使得到的晶体材料更加稳定、均一,能够被简便、规模化制备。
一种DJ型二维双层铅溴杂化钙钛矿材料的应用,应用于半导体材料或近红外波段探测领域的新型材料。该材料结晶于P21/c空间群,其由顶点连接的PbBr6八面体组成的无机层和平行排列的双质子化的3AMPY阳离子组成,其中乙胺离子填充在由相邻PbI6八面体组成的钙钛矿孔洞里,3AMPY阳离子通过N-H…Br氢键与无机层的桥连I-相连,如此组装使得该晶体材料具有独特的DJ型结构,有利于该晶体材料用于湿度稳定、热稳定和光稳定的近红外波段光电探测领域。
与现有技术相比本发明具有以下优点:
1、本发明二维双层DJ型铅溴杂化钙钛矿材料,可溶液法制备,制备工艺简单,常常在低温下就可以合成,同时也易于成膜,将此材料用于光伏材料和光电器件兼具性能较好和成本较低的优点。
2、本发明的晶体材料通过双光子吸收技术可以实现近红外区的光电探测,扩展了此类材料的光电探测范围。
3、本发明的晶体材料利用DJ型杂化钙钛矿层间没有范德华间隙大大提高了此前材料(脂肪胺构筑的杂化钙钛矿)的稳定性(对湿度、对光、对热)。
附图说明
图1为(3AMPY)EAPb2Br7的块状晶体;
图2为(3AMPY)EAPb2Br7 DJ型二维铅溴双层杂化钙钛矿的结构示意图;
图3为(3AMPY)EAPb2Br7带隙图;
图4为(3AMPY)EAPb2Br7器件在暗态和405nm光照下不同光功率的I-V曲线;
图5为(3AMPY)EAPb2Br7器件上升和下降光响应时间;
图6为(3AMPY)EAPb2Br7器件通过双光子吸收实现了在800nm下的近红外光电探测性能图;
图7为(3AMPY)EAPb2Br7材料经过两个月后的稳定性测试图。
具体实施方式
下面结合说明书附图和具体实施例对本发明内容进行详细说明,但是本发明并不仅限于以下实施例子:
实施例1
将Pb(AC)2·3H2O(9mmol)溶解在10mL(48wt.%)的HBr溶液中。随后,在溶液中加入0.05mol的乙胺和3.5mmol的3-氨甲基吡啶,得到黄色沉淀。加热至沸腾后,得到一种清澈的黄色溶液。将上述溶液以每天1℃的速度从75℃逐步降到25℃,25天后可以得到(3AMPY)EAPb2Br7大尺寸单晶。通过X射线单晶衍射仪进行分析得出晶体结构,如图1所示。
实施例2
(3AMPY)EAPb2Br7晶体材料的吸光能力分析:
通过紫外-可见(UV-Vis)吸收光谱对合成的有机-无机杂化(3AMPY)EAPb2Br7晶体材料进行吸光性能分析,结果表明该晶体的吸收截止边可以达到450nm(图3),直接带隙,(Eg)为~2.73eV。
实施例3
(3AMPY)EAPb2Br7晶体材料在405nm波段下的光电探测性能分析:
在不加光照的暗态下,(3AMPY)EAPb2Br7单晶器件的暗电流低至6.49*10-11A(Vbias=10V),表明该化合物的本征载流子浓度很低,反映了该晶体材料的质量很高。而且在405nm光照下,研究了(3AMPY)EAPb2Br7单晶器件的光电流和光响应曲线。最终得到的结论是(3AMPY)EAPb2Br7器件在光功率为94.5mW/cm2时,光电流可达到8.15*10-7A,开关比可达104。这一结果也足以说明,该晶体是一种优异的光电探测材料。
实施例4
(3AMPY)EAPb2Br7器件在800nm光照下的光电探测性能:
采用波长为800nm的激发光对(3AMPY)EAPb2Br7晶体材料进行光电导性能测试,由于本征吸收的限制,该晶体材料不能吸收800nm的光,但是通过双光子技术我们的晶体可以对800nm的光进行探测。并且在光功率密度为1086.6mW/cm2时,光电流可达到1.5*10-7A。也充分证明了我们所得到的晶体材料在近红外波段也具有较好的光电探测能力。
实施例5
将Pb(AC)2·3H2O(10mmol)溶解在40mL(48wt.%)的HBr溶液中。随后,在溶液中加入0.06mol乙胺和4.5mmol的3-氨甲基吡啶,得到黄色沉淀。加热至沸腾后,得到一种清澈的黄色溶液。将上述溶液以每天1℃的速度从75℃逐步降到25℃,30天后可以得到室温可生长出(3AMPY)EAPb2Br7大尺寸单晶。通过X射线单晶衍射仪进行分析得出晶体结构,如图1所示。
本发明性能评价:
(一)吸光性能
(3AMPY)EAPb2Br7晶体颜色为黄色,该材料的紫外-可见吸收光谱图显示出该晶体在紫外和可见光区都有较强的吸收,而且吸收截止边可以达到~450nm(图3),计算其为直接带隙半导体且带隙(Eg)为~2.73eV,表明该晶体是一种很有前途的光探测候选材料。
(二)405nm光电探测性能和800nm光电探测性能
为了测试该晶体材料的光电探测性能,我们组装了小型光电探测器。基于(3AMPY)EAPb2Br7二维双层DJ型有机-无机杂化钙钛矿光电探测器拥有较低的暗电流(10-11A),在405nm光照下较大的开关比(~104)。此外,器件的上升/下降时间(τr/τf)约为347/256μs。同时,通过双光子技术还可以实现对近红外区(800nm)光的探测。
(三)稳定性测试
该(3AMPY)EAPb2Br7材料暴露在环境中两个月后(图7),表征其组成仍为两个月之前的初始组成,充分说明该材料优异的稳定性。
本发明说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。
Claims (7)
2.一种如权利要求1所述的二维双层DJ型铅溴杂化钙钛矿材料的制备方法,其特征在于:包括以下步骤:
步骤1,将Pb(AC)2·3H2O溶解在HBr溶液中,再依次加入乙胺和3-氨甲基吡啶,得到黄色沉淀;
步骤2,将步骤1得到的黄色沉淀加热至沸腾后,得到一种清澈的黄色溶液,将该溶液采用逐步降温法缓慢冷却至室温可生长出大尺寸单晶体,该单晶体即为(3AMPY)EAPb2Br7晶体材料。
3.根据权利要求2所述的一种二维双层DJ型铅溴杂化钙钛矿材料的制备方法,其特征在于:所述步骤1中的Pb(AC)2·3H2O的浓度为0.379g/mmol,乙胺的浓度为0.05g/mmol,3-氨甲基吡啶的浓度为0.111g/mmol,HBr溶液的浓度为48%的HBr溶液。
4.根据权利要求2所述的一种二维双层DJ型铅溴杂化钙钛矿材料的制备方法,其特征在于:所述步骤1中Pb(AC)2·3H2O的用量为9~11mmol,HBr溶液的用量为30~40mL,乙胺的用量为0.05~0.06mol,3-氨甲基吡啶的用量为3.5~4.5mmol。
5.根据权利要求2所述的一种二维双层DJ型铅溴杂化钙钛矿材料的制备方法,其特征在于:所述步骤1中3-氨甲基吡啶与乙胺的质量比为1:7.5。
6.根据权利要求2所述的一种二维双层DJ型铅溴杂化钙钛矿材料的制备方法,其特征在于:所述步骤2中逐步降温法缓慢冷却的时间为10~30天。
7.一种二维双层DJ型铅溴杂化钙钛矿材料的应用,其特征在于:所得到的晶体材料具有较高的稳定性和较宽波段的探测范围,通过双光子吸收实现近红外波段的光电探测。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111500005.7A CN114195705A (zh) | 2021-12-09 | 2021-12-09 | 一种二维双层dj型铅溴杂化钙钛矿及制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111500005.7A CN114195705A (zh) | 2021-12-09 | 2021-12-09 | 一种二维双层dj型铅溴杂化钙钛矿及制备方法和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114195705A true CN114195705A (zh) | 2022-03-18 |
Family
ID=80651671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111500005.7A Withdrawn CN114195705A (zh) | 2021-12-09 | 2021-12-09 | 一种二维双层dj型铅溴杂化钙钛矿及制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114195705A (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105830228A (zh) * | 2013-12-23 | 2016-08-03 | 韩国化学研究院 | 无机/有机杂化钙钛矿化合物前体物质 |
US20190036030A1 (en) * | 2016-01-26 | 2019-01-31 | Nanjing Tech University | Perovskite optoelectronic device, preparation method therefor and perovskite material |
US20200287137A1 (en) * | 2019-03-06 | 2020-09-10 | Tandem PV, Inc. | Processing of perovskite films using inks with complexing agents |
CN112164752A (zh) * | 2020-09-28 | 2021-01-01 | 常州大学 | 二维钙钛矿材料作为吸光层的太阳能电池器件及其制备方法 |
WO2021108253A1 (en) * | 2019-11-26 | 2021-06-03 | Hunt Perovskite Technologies, L.L.C. | 2d perovskite tandem photovoltaic devices |
CN113571645A (zh) * | 2021-07-14 | 2021-10-29 | 山西大学 | Dj型无甲胺窄带隙二维双层杂化钙钛矿材料及制备方法 |
-
2021
- 2021-12-09 CN CN202111500005.7A patent/CN114195705A/zh not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105830228A (zh) * | 2013-12-23 | 2016-08-03 | 韩国化学研究院 | 无机/有机杂化钙钛矿化合物前体物质 |
US20190036030A1 (en) * | 2016-01-26 | 2019-01-31 | Nanjing Tech University | Perovskite optoelectronic device, preparation method therefor and perovskite material |
US20200287137A1 (en) * | 2019-03-06 | 2020-09-10 | Tandem PV, Inc. | Processing of perovskite films using inks with complexing agents |
WO2021108253A1 (en) * | 2019-11-26 | 2021-06-03 | Hunt Perovskite Technologies, L.L.C. | 2d perovskite tandem photovoltaic devices |
CN112164752A (zh) * | 2020-09-28 | 2021-01-01 | 常州大学 | 二维钙钛矿材料作为吸光层的太阳能电池器件及其制备方法 |
CN113571645A (zh) * | 2021-07-14 | 2021-10-29 | 山西大学 | Dj型无甲胺窄带隙二维双层杂化钙钛矿材料及制备方法 |
Non-Patent Citations (3)
Title |
---|
BENNY FEBRIANSYAH ET AL: "Metal coordination sphere deformation induced highly stokes-shifted, ultra broadband emission in 2D hybrid lead bromide perovskites and investigation of its origin", ANGEWANDTE CHEMIE, vol. 59, no. 27, pages 10791 - 10796 * |
LI Y等: "Synthesis, structure and optical properties of different dimensional organic-inorganic perovskites", SOLID STATE SCIENCES, vol. 9, no. 9, pages 855 - 861, XP022281795, DOI: 10.1016/j.solidstatesciences.2007.06.011 * |
ZHANG XINYUAN: "Solution-Grown Large-Sized Single-Crystalline 2D/3D Perovskite Heterostructure for Self-Powered Photodetection", ADVANCED OPTICAL MATERIALS, vol. 8, no. 19, pages 2000311 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sun et al. | 0D perovskites: unique properties, synthesis, and their applications | |
Wu et al. | From Pb to Bi: A promising family of Pb‐free optoelectronic materials and devices | |
Liu et al. | Inch-sized high-quality perovskite single crystals by suppressing phase segregation for light-powered integrated circuits | |
Zhang et al. | Formamidinium lead bromide (FAPbBr 3) perovskite microcrystals for sensitive and fast photodetectors | |
Dong et al. | Recent progress of metal halide perovskite photodetectors | |
Chen et al. | Highly efficient LiYF4: Yb3+, Er3+ upconversion single crystal under solar cell spectrum excitation and photovoltaic application | |
Wu et al. | Ultrafast study of exciton transfer in Sb (III)-doped two-dimensional [NH3 (CH2) 4NH3] CdBr4 perovskite | |
Chen et al. | Recent progress and challenges of bismuth‐based halide perovskites for emerging optoelectronic applications | |
CN109873080B (zh) | 一种钙钛矿单晶x射线探测器及其制备方法 | |
Wei et al. | Recent Progress of Bismuth Effect on All‐Inorganic Lead‐Free Metal Halide Derivatives: Crystals Structure, Luminescence Properties, and Applications | |
Li et al. | High detectivity photodetectors based on perovskite nanowires with suppressed surface defects | |
CN113571645A (zh) | Dj型无甲胺窄带隙二维双层杂化钙钛矿材料及制备方法 | |
Pan et al. | Searching for high-quality halide perovskite single crystals toward X-ray detection | |
CN113862785B (zh) | 一种双钙钛矿单晶及其制备方法和应用、双钙钛矿单晶光电探测器 | |
Li et al. | Recent progress on synthesis, intrinsic properties and optoelectronic applications of perovskite single crystals | |
Lei et al. | High-performance UV–vis photodetectors based on a lead-free hybrid perovskite crystal (MV)[SbI3Cl2] | |
CN112279876A (zh) | 一种dj型极性二维双层杂化钙钛矿材料及制备方法和应用 | |
Boopathi et al. | UV-and NIR-protective semitransparent smart windows based on metal halide solar cells | |
Zhu et al. | Discovering New Type of Lead‐Free Cluster‐Based Hybrid Double Perovskite Derivatives with Chiral Optical Activities and Low X‐Ray Detection Limit | |
Pan et al. | Epitaxial perovskite single-crystalline heterojunctions for filter-free ultra-narrowband detection with tunable spectral responses | |
Li et al. | Bulk Single Crystals of a Narrow Band Gap Three-Dimensional Hybrid Perovskitoid Enabling Ultrastable Photodetection | |
CN110054628A (zh) | 一种水稳定杂化铅碘钙钛矿材料及其应用 | |
CN114686987B (zh) | 一种二维有机-无机杂化双钙钛矿半导体晶体及其制备方法和用途 | |
CN114989020A (zh) | 一种三维有机-无机杂化钙钛矿半导体晶体及其制备方法和用途 | |
CN114195705A (zh) | 一种二维双层dj型铅溴杂化钙钛矿及制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20220318 |
|
WW01 | Invention patent application withdrawn after publication |