CN114195548B - 一种轻质电瓷的制备方法及轻质电瓷 - Google Patents

一种轻质电瓷的制备方法及轻质电瓷 Download PDF

Info

Publication number
CN114195548B
CN114195548B CN202111682774.3A CN202111682774A CN114195548B CN 114195548 B CN114195548 B CN 114195548B CN 202111682774 A CN202111682774 A CN 202111682774A CN 114195548 B CN114195548 B CN 114195548B
Authority
CN
China
Prior art keywords
electroceramics
light
powder
preparation
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111682774.3A
Other languages
English (en)
Other versions
CN114195548A (zh
Inventor
杜继实
张涛
易歆雨
范玉龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electronic Engineering of CAEP
Original Assignee
Institute of Electronic Engineering of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electronic Engineering of CAEP filed Critical Institute of Electronic Engineering of CAEP
Priority to CN202111682774.3A priority Critical patent/CN114195548B/zh
Publication of CN114195548A publication Critical patent/CN114195548A/zh
Application granted granted Critical
Publication of CN114195548B publication Critical patent/CN114195548B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种轻质电瓷的制备方法及轻质电瓷,所述制备方法具体包括如下步骤:a.将电瓷的原料与聚甲基丙烯酸甲酯(PMMA)粉末按体积百分含量混合,将混合后的粉料装入混料罐中,通过持续滚动混料罐将粉体混合均匀后取出备用;b.将混合均匀的粉料依次经过制浆、成型、烧结,获得轻质电瓷。所述轻质电瓷中植入有小尺寸气孔。该制备方法操作简单、易于在生产中大规模推广,适于制造性能优异的轻质电瓷。

Description

一种轻质电瓷的制备方法及轻质电瓷
技术领域
本发明属于电瓷领域,具体涉及一种轻质电瓷的制备方法及轻质电瓷。
背景技术
陶瓷具有机械强度高、硬度高、耐腐蚀、耐候性优异、绝缘电阻率大、耐压性能好等优异的机电性能,并且原材料来源广泛,成本较为低廉,被作为绝缘材料广泛应用于电力系统中。应用于电力系统中的陶瓷绝缘材料称为电工陶瓷,简称电瓷,在使用中兼具结构支撑和电器绝缘的作用。电瓷是电力工业的重要基础器件,电瓷制造业是国民经济的基础产业,因此,电瓷技术对电力系统的发展至关重要。
然而,密度高是电瓷的一个主要短板,极大的增加了电瓷的运输和安装成本。近年来,随着电力系统电压的提升,对高压电瓷、超高压电瓷和特高压电瓷的需求量越来越大,尤其的,在高压尤其是超高压、特高压环境中使用的电瓷体积大,这导致它们运输和安装成本很大。因此,在保持电瓷优异的介电击穿强度的前提下,减小电瓷的密度,即实现轻质电瓷的制备,是目前一个亟待解决的问题。
发明内容
基于上述问题,本发明给出了一种轻质电瓷的制备方法及轻质电瓷,该制备方法操作简单、易于在生产中大规模推广,适于制造性能优异的轻质电瓷。
为达到目的,本发明具体的技术方案如下:
一种轻质电瓷的制备方法,该方法在电瓷中植入小尺寸气孔降低电瓷的密度,所述制备方法具体包括如下步骤:
a.将电瓷的原料与聚甲基丙烯酸甲酯(PMMA)粉末按体积百分含量混合,将混合后的粉料装入混料罐中,通过持续滚动混料罐将粉体混合均匀后取出备用;
b.将混合均匀的粉料依次经过制浆、成型、烧结,等制备工艺后获得轻质电瓷。
优选地,步骤a中,PMMA粉末的粒径D应满足D<446E-1.06,其中,D的单位是μm,E是未植入小尺寸气孔的电瓷的介电击穿强度,单位是kV/mm。
优选地,步骤a中,原料中混入的PMMA粉末的体积百分含量不高于20%。
优选地,步骤b中,烧结的气氛是氧化气氛。
优选地,步骤a中,PMMA粉末的粒径D应满足D<446E-1.06,其中,D的单位是μm,E是电瓷工作环境中承受的最大电场强度,单位是kV/mm。
本发明还提供一种按照前述的轻质电瓷的制备方法制备出的轻质电瓷,所述轻质电瓷中植入有小尺寸气孔。
优选地,所述轻质电瓷的气孔率最高达15%。
具体实施方式
下面结合具体实施例来对本发明技术方案作进一步介绍。
本发明在电瓷中植入小尺寸气孔降低电瓷的密度,获得所需的轻质电瓷。通过在电瓷中植入小尺寸气孔,在降低其密度的同时可以保持其具有优异的高压绝缘性能。在电瓷内的气孔尺寸较大时,气孔内的气体会在电瓷发生介电击穿前发生局部放电,进而降低电瓷的介电击穿强度。气孔内气体局部放电的电场强度随气孔尺寸的减小而增加。通过减小气孔的尺寸,可以实现在电瓷发生介电击穿前,气孔内的气体不会发生局部击穿,进而保证不会降低电瓷的介电击穿强度。
本发明轻质电瓷制备过程中,通过电瓷粉料中混入PMMA粉末实现植入小尺寸气孔降低电瓷密度的目的,具体包括如下步骤:
a.将电瓷的原料与聚甲基丙烯酸甲酯(PMMA)粉末按体积百分含量混合,将混合后的粉料装入混料罐中,通过持续滚动混料罐将粉体混合均匀后取出备用;
b.将混合均匀的粉料依次经过制浆、成型、烧结等制备工艺后获得轻质电瓷。
通过电瓷粉料中混入PMMA粉末实现植入小尺寸气孔时,气孔尺寸随PMMA粉末粒径的增大而增大。因此,为保证植入的气孔不影响高压电瓷的介电击穿强度,本发明限定,在步骤a中,在不影响陶瓷介电击穿强度的前提下,PMMA粉末的粒径D应满足D<446E-1.06,其中,D的单位是μm,E是未植入小尺寸气孔的电瓷的介电击穿强度,单位是kV/mm。在实际生产过程中,粉末的粒径往往用筛孔的目数进行标识,筛孔目数与粒径的对应关系如下表:
表1筛孔目数与粒径的对应关系
Figure BDA0003447149450000021
Figure BDA0003447149450000031
随着PMMA粉末含量的增加,电瓷的密度逐渐下降。然而,当PMMA粉末的含量过高时,PMMA粉末的团聚严重,在电瓷中植入的气孔的尺寸增大,进而导致电瓷的介电击穿强度下降。因此,本发明限定,在步骤a中,电瓷粉料中混入的PMMA粉末的体积百分含量应不高于20%。
PMMA粉末的作用是在电瓷植入小尺寸气孔,因此必须在电瓷开始烧结前与氧气完全反应,变为气体。在电瓷开始烧结前,PMMA粉末与氧气反应,达到植入气孔的目的,植入的小尺寸气孔与外界联通,PMMA粉末与氧气的反应产物——气体,可以扩散到外界,不会造成电瓷产生开裂、鼓包等缺陷。因此,本发明限定,在步骤b中,烧结的气氛是氧化气氛。
PMMA粉末粒径的计算方法中,E也可以是电瓷工作环境中承受的最大电场强度,单位kV/mm。在实际的工作环境中,电瓷承受的最大电场强度低于其介电击穿强度,以保证电瓷的可靠使用。在高压电瓷使用的过程中,如果气孔内部的气孔不发生局部放电,它就不会导致电瓷发生击穿,也就不会影响电瓷的可靠使用。因此对高压电瓷中植入的气孔的气孔也可以参考电瓷工作环境中承受的最大电场强度。
本发明介绍的轻质电瓷较常规的电瓷具有更小的密度,而且具有和常规的电瓷相当的介电击穿强度,运输和安装的成本较常规电瓷低。因此,本发明提供的轻质电瓷的制备方法操作简单,易于在生产中大规模推广,适于制造性能优异的轻质电瓷。
实施例1
针对一种95氧化铝电瓷,原料是95氧化铝造粒粉(化学组分的百分比:93.7%Al2O3、2.1%SiO2、3.3%CaO、0.8%MgO和0.1%其他成分),采用冷等静压成型,在空气中烧结,烧结温度是1600℃。工频交流电压下,95氧化铝电瓷介电击穿强度E的测试结果是15.7±0.7kV/mm。
根据PMMA粉末粒径的D的计算方法可知,降低95氧化铝电瓷密度需要混入粒径D不大于24μm的PMMA粉末,因此,选用1000目的PMMA粉末来制备轻质95氧化铝电瓷是合适的。本实施例考察了混入体积百分含量8%和16%的1000目PMMA粉末对95氧化铝电瓷密度和介电击穿强度的影响,成型、烧结的过程和95氧化铝电瓷一直,结果列于下表:
表2实施例1实验结果
PMMA体积百分含量(%) 0 8 16
烧结后密度(g/cm3) 3.74 3.58 3.47
介电击穿强度(kV/mm) 15.7±0.7 15.9±0.9 15.5±0.6
可见,通过在95氧化铝电瓷粉料中混入1000目的PMMA粉末,95氧化铝电瓷的密度得到了有效降低,与此同时,仍保持着高的介电击穿强度。
实施例2
针对一种铝制高压电瓷,该电瓷采用挤出成型,在空气中烧结,烧结温度是1350℃。该铝制高压电瓷在直流高压下得介电击穿强度E的测试结果是21.2±1.1kV/mm。
根据PMMA粉末粒径的D的计算方法可知,降低该铝制高压电瓷密度需要混入粒径D不大于24μm的PMMA粉末,因此,选用1000目的PMMA的粉末来降低该铝制高压电瓷的密度是合适的。本次实施例考察了混入体积百分含量8%和16%的1000目PMMA粉末对该铝制高压电瓷密度和介电击穿强度的影响,成型、烧结的过程和该铝制高压电瓷一致,结果列于下表:
表3实施例2实验结果
PMMA体积百分含量(%) 0 8 16
烧结后密度(g/cm3) 3.18 2.96 3.47
介电击穿强度(kV/mm) 21.2±1.1 21.5±1.0 21.1±0.7
可见,通过在铝制高压电瓷粉料中混入1000目的PMMA粉末,该铝制高压电瓷的密度得到了有效降低,与此同时,仍保持着高的介电击穿强度。

Claims (4)

1.一种轻质电瓷的制备方法,其特征在于,所述制备方法具体包括如下步骤:
a. 将电瓷的原料与聚甲基丙烯酸甲酯粉末按体积百分含量混合,将混合后的粉料装入混料罐中,通过持续滚动混料罐将粉体混合均匀后取出备用;
b. 将混合均匀的粉料依次经过制浆、成型、烧结,获得轻质电瓷;
所述步骤a中,聚甲基丙烯酸甲酯粉末的粒径D应满足D<446E-1.06,其中,D的单位是μm,E为未植入小尺寸气孔的电瓷的介电击穿强度或者电瓷工作环境中承受的最大电场强度,单位是kV/mm;
步骤a中,原料中混入的聚甲基丙烯酸甲酯粉末的体积百分含量不高于20%。
2.根据权利要求1所述的轻质电瓷的制备方法,其特征在于,步骤b中,烧结的气氛是氧化气氛。
3.一种按照权利要求1-2任一项所述的轻质电瓷的制备方法制备出的轻质电瓷,其特征在于,所述轻质电瓷中植入有小尺寸气孔。
4.根据权利要求3所述的轻质电瓷,其特征在于,所述轻质电瓷的气孔率最高达15%。
CN202111682774.3A 2021-12-30 2021-12-30 一种轻质电瓷的制备方法及轻质电瓷 Active CN114195548B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111682774.3A CN114195548B (zh) 2021-12-30 2021-12-30 一种轻质电瓷的制备方法及轻质电瓷

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111682774.3A CN114195548B (zh) 2021-12-30 2021-12-30 一种轻质电瓷的制备方法及轻质电瓷

Publications (2)

Publication Number Publication Date
CN114195548A CN114195548A (zh) 2022-03-18
CN114195548B true CN114195548B (zh) 2023-06-09

Family

ID=80658166

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111682774.3A Active CN114195548B (zh) 2021-12-30 2021-12-30 一种轻质电瓷的制备方法及轻质电瓷

Country Status (1)

Country Link
CN (1) CN114195548B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103467072A (zh) * 2013-08-27 2013-12-25 中国科学院宁波材料技术与工程研究所 一种轻质微孔刚玉陶瓷的制备方法
CN103796973A (zh) * 2011-09-20 2014-05-14 赢创罗姆有限公司 制备轻质陶瓷材料的方法
CN105669241A (zh) * 2015-12-29 2016-06-15 西北工业大学 闭孔结构轻质耐火刚玉的制备方法
CN112624793A (zh) * 2021-01-08 2021-04-09 罗焕焕 一种氧化铝基多孔陶瓷材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103796973A (zh) * 2011-09-20 2014-05-14 赢创罗姆有限公司 制备轻质陶瓷材料的方法
CN103467072A (zh) * 2013-08-27 2013-12-25 中国科学院宁波材料技术与工程研究所 一种轻质微孔刚玉陶瓷的制备方法
CN105669241A (zh) * 2015-12-29 2016-06-15 西北工业大学 闭孔结构轻质耐火刚玉的制备方法
CN112624793A (zh) * 2021-01-08 2021-04-09 罗焕焕 一种氧化铝基多孔陶瓷材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《Effect of pores on dielectric breakdown strength of alumina ceramics via surface and volume effects》;Tao Zhang et al.;《Journal of the European Ceramic Society》;20200731;全文 *
《Fabricating a denser SiO2-CaO co-doped 95 wt% alumina ceramic to verify that small pores have no effect on the dielectric breakdown strength of alumina ceramics》;Jishi Du et al.;《Journal of the European Ceramic Society》;20201231;摘要以及2.1材料准备 *

Also Published As

Publication number Publication date
CN114195548A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
CN111423225A (zh) 一种堇青石微波介质陶瓷材料及其制备方法
CN113511890B (zh) 一种基于发泡法的焦磷酸锆多孔陶瓷材料及其制备方法
CN106830948A (zh) 基于聚碳酸亚丙酯粘结剂的陶瓷流延浆料及其制备方法和应用
CN109036852A (zh) 一种新型三维多孔铝电极箔及其制备方法
CN114195548B (zh) 一种轻质电瓷的制备方法及轻质电瓷
CN113651609A (zh) 一种微波铁氧体材料及其制备方法与应用
CN113896530B (zh) 一种温度稳定的改性NiO-Ta2O5基微波介质陶瓷材料及其制备方法
CN110885243B (zh) 一种低介电常数铝酸盐微波介质陶瓷材料及其制备方法
KR102478700B1 (ko) 임계전류밀도 특성이 향상된 In-situ 이붕화 마그네슘 초전도 선재의 제조방법
CN111747731B (zh) 一种氧化镁基超高压介质陶瓷及其制备方法
CN111517771A (zh) 一种微波介质陶瓷材料及其制备方法
CN106893303A (zh) 一种高介电常数轻质介质基材及其制备方法
KR101222867B1 (ko) 구형 기공 전구체를 이용한 고체산화물 연료전지용 연료극 지지체와 고체산화물 연료전지 및 그 제조방법
EP3950643B1 (en) Method for producing composite body
CN109354495A (zh) 镁锆铌锑系微波介质陶瓷及制备方法和应用
CN112898022B (zh) 一种超低温烧结微波介质材料Ca2V2O7-H3BO3及其制备方法
CN111348908B (zh) 一种无助烧剂低温烧结复合介电陶瓷材料及其制备方法
CN115417667B (zh) 一种Nd2O3掺杂型Na-β(β″)-Al2O3固体电解质陶瓷材料及其制备方法
CN112441830A (zh) 一种高品质因数钇掺杂氧化锆微波介质陶瓷材料及其制备方法
CN114751743B (zh) 一种多层陶瓷电容器用改性Ni-Ti-Ta介质材料及其低温制备方法
CN116589268B (zh) 一种高温透波隔热的高熵氧化物块体陶瓷气凝胶及其制备方法和应用
CN108439975B (zh) 一种具有稳定缺陷结构的钛酸锶钙基储能陶瓷及其制备方法
CN113604195B (zh) 一种x波段全频吸波的多孔膨润土复合材料及制备方法
CN114394825B (zh) 一种陶瓷材料及其制备方法和应用
CN117142849A (zh) 一种基于骨架效应生长锌镁钛微波陶瓷的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant