CN114163240B - 一种高效的硫卤化合物固态电解质制备方法 - Google Patents

一种高效的硫卤化合物固态电解质制备方法 Download PDF

Info

Publication number
CN114163240B
CN114163240B CN202111591722.5A CN202111591722A CN114163240B CN 114163240 B CN114163240 B CN 114163240B CN 202111591722 A CN202111591722 A CN 202111591722A CN 114163240 B CN114163240 B CN 114163240B
Authority
CN
China
Prior art keywords
ball milling
solid electrolyte
ball
sintering
milling tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111591722.5A
Other languages
English (en)
Other versions
CN114163240A (zh
Inventor
刘芳洋
刘汉周
张宗良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Enjie Frontier New Material Technology Co ltd
Original Assignee
Hunan Enjie Frontier New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Enjie Frontier New Material Technology Co ltd filed Critical Hunan Enjie Frontier New Material Technology Co ltd
Priority to CN202111591722.5A priority Critical patent/CN114163240B/zh
Publication of CN114163240A publication Critical patent/CN114163240A/zh
Application granted granted Critical
Publication of CN114163240B publication Critical patent/CN114163240B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/446Sulfides, tellurides or selenides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开一种高效的硫卤化合物固态电解质制备方法,包括:按所需化学计量比称取Li2S、P2S5,和含X的锂盐;称取研磨介质;将原料加入真空球磨罐中,先对球磨罐充氩气,并在正压状态下一次球磨;后将球磨罐抽真空并加热,进行二次球磨;后将球磨罐冷却后充氩气进行三次球磨,得到混合均匀的固态电解质前驱体浆料;将固态电解质前驱体浆料在惰性气氛保护下烘干;将烘干后的固态电解质前驱体进行高温烧结,冷却后进行研磨筛分,得到高离子电导率的硫卤化合物固态电解质。本发明制得的硫卤化合物固态电解质具有较高的离子电导率和较宽的电化学窗口。此外,该方法相比于传统的制备方法,更具有规模化生产的潜力。

Description

一种高效的硫卤化合物固态电解质制备方法
技术领域
本发明属于锂离子电池技术领域,具体涉及一种硫卤化合物固态电解质制备方法。
背景技术
发展电动汽车可降低我国石油对外依存度、提高能源安全,并支撑国家重大发展战略。但现阶段动力电池都为液态电池,在其电化学循环过程中形成的锂枝晶易造成液态电池的失效甚至出现短路的现象,严重可造成汽车自燃的情况。而固态电池则可以避免这种现象从而提高电池的安全性,此外固态电池的理论能量密度大于现有的液态电池,是未来发展的必然趋势。而实现高离子电导率的固态电解质的制备及大规模生产是一个尚待解决的难题。
在众多全固态锂电池的固态电解质的候选材料中,硫化物固态电解质最具研究潜力。与其他固态电解质相比,硫化物固态电解质拥有较高的离子电导率,甚至与电解液相当;同时硫化物与活性材料界面接触好,机械延展性好,便于加工。而硫化物其中的硫卤化合物由于制备相对简单、成本较低等优点有望成为工业化生产的固态电解质材料。
目前,制备硫卤化合物固态电解质的主要方法有固相法和液相法。其中,固相法的原理是通过高能球磨和其后的烧结处理使原料转化为前驱体再转化为硫卤化合物固态电解质材料。而其中的球磨过程分为两种:干法球磨和湿法球磨。在干法球磨中,原料分布不均衡,易粘在球磨罐内壁和球磨珠表面,产量较低;而在湿法球磨中,原料由于研磨介质的存在彼此的接触不够,预反应不够彻底,不能获得预期晶相。而液相法的缺点则是反应时间较长,原料较难溶解,且获得的固态电解质离子电导率普遍较低。如何高效制备硫卤化合物固态电解质材料仍然是实现全固态电池产业化的难点之一。
发明内容
本发明的主要目的在于克服现有技术的不足,提供一种高效的可以满足规模化生产条件的硫卤化合物固态电解质的制备方法。本发明结合分段湿法球磨和硫气氛烧结制备硫卤化合物固态电解质,可有效减少原料的损耗,提高原料的纯度。
为实现上述目的,所述制备方法包括以下步骤:
(1)按所需化学计量比称取Li2S、P2S5,和含X的锂盐,其中,X包括Cl、Br、I中的一种或几种;称取一定量的乙醇、乙二醇、异丙醇、环氧丙烷、乙醚、环己酮、乙酸乙酯、丙酸乙酯、庚烷、八甲基环四硅氧烷中的一种或几种作为研磨介质;
(2)将步骤(1)的原料加入真空球磨罐中,先对球磨罐充氩气,并在正压状态下一次球磨;后将球磨罐抽真空并加热,进行二次球磨;后将球磨罐冷却后充氩气进行三次球磨,得到混合均匀的固态电解质前驱体浆料;
(3)将固态电解质前驱体浆料在惰性气氛保护下烘干;
(4)将烘干后的固态电解质前驱体进行高温烧结,冷却后进行研磨筛分,得到高离子电导率的硫卤化合物固态电解质。
优选地,所述步骤(1)中的化学计量比为Li2S:P2S5:LiX=4-5:1:1.8-2.2。
优选地,所述步骤(1)中称取的Li2S、P2S5,和含X的锂盐的总质量与研磨介质的质量比为1:1-5。
优选地,所述步骤(2)中球磨罐和球磨珠材质为刚玉、玛瑙、氧化锆、聚四氟乙烯中的任意一种。
优选地,所述步骤(2)中一次球磨中球磨罐内压力为0.1-0.2Mpa,球料比20-60:1,球磨转速100-1000r/min,球磨1-15小时。
优选地,所述步骤(2)中二次球磨中球磨罐加热温度为40-150℃,球磨转速100-1200r/min,球磨1-15小时。
优选地,所述步骤(2)中三次球磨中球磨罐内压力为0.1-0.2Mpa,球磨转速100-1200r/min,球磨1-15小时。
优选地,所述步骤(3)中烘干温度为50-200℃,烘干时间为6-48h。
优选地,所述步骤(3)中固态电解质在硫气氛下烧结,烧结温度为300-1100℃,烧结时间为2-20h。
优选地,所述步骤(1)-(4)中称取、球磨、烧结及研磨筛分均在隔绝空气的条件下进行。
相对现有技术,本发明技术方案带来的有益效果如下:
(1)更为高效的分段湿法球磨既继承了湿法球磨相比干法球磨的高产出率的优势,又一定程度上解决了湿法球磨能量输入不如干法球磨的问题。在第一段湿法球磨中,球磨罐中大于大气压的压强可以有效抑制研磨介质在球磨中的蒸发,其保证了原料粉在浆料中的充分混合。在第二段湿法球磨中,真空和加热条件加速了研磨介质在球磨罐中的蒸发,液相的减少增加了原料粉颗粒在罐中的相互碰撞次数,使预反应更充分。在第三段湿法球磨中,汽化的研磨介质重新回到浆料从而降低了浆料的粘度,减少了浆料在罐中的残留,提高了出料率。
(2)硫气氛烧结可以有效促进前驱体向电解质的转化,提高硫卤化合物固态电解质产品的纯度。在烧结过程中,硫气氛可以有效抑制高温下电解质前驱体粉末中硫元素的挥发损耗,同时活泼的硫蒸气可以反应消耗前驱体粉末中残余的微量研磨介质,保护了前驱体和最终的硫卤化合物固态电解质产物。
附图说明
图1为实施例1制得的硫卤化合物固态电解质粉末的XRD图。
图2为对比例1制得的硫卤化合物固态电解质粉末的XRD图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。
实施例1:
按照5:1:2的化学计量比称取Li2S、P2S5和LiCl,然后按Li2S、P2S5和LiCl总质量与研磨介质的质量比为1:3称取适量的丙酸乙酯,将其依次装入氧化锆真空球磨罐中,同时按40:1的球料比加入氧化锆球磨珠,并充入0.15Mpa的氩气进行一次球磨,时间为4h,转速为400r/min。其后对球磨罐抽真空并加热至120℃进行二次球磨,时间为8h,转速为800r/min。其后对球磨罐进行冷却并充入0.15Mpa的氩气进行三次球磨,时间为2h,转速为300r/min。球磨结束后,将固态电解质前驱体浆料在惰性气氛保护下烘干,温度为150℃,时间为40h。将烘干后的固态电解质前驱体进行高温烧结,烧结炉中通入硫蒸气,烧结温度为650℃,烧结时间为15h。待产物冷却后进行研磨筛分,得到硫卤化合物固态电解质。全过程均在在惰性保护气氛或硫气氛下进行。室温下测得该硫卤化合物固态电解质的电导率为3.5×10-3Scm-1
实施例2:
按照5:1:0.8:1.2的化学计量比称取Li2S、P2S5、LiCl和LiBr,然后按Li2S、P2S5、LiCl和LiBr总质量与研磨介质的质量比为1:3称取适量的环氧丙烷,将其依次装入氧化锆真空球磨罐中,同时按40:1的球料比加入氧化锆球磨珠,并充入0.15Mpa的氩气进行一次球磨,时间为4h,转速为400r/min。其后对球磨罐抽真空并加热至150℃进行二次球磨,时间为8h,转速为800r/min。其后对球磨罐进行冷却并充入0.15Mpa的氩气进行三次球磨,时间为2h,转速为300r/min。球磨结束后,将固态电解质前驱体浆料在惰性气氛保护下烘干,温度为150℃,时间为48h。将烘干后的固态电解质前驱体进行高温烧结,烧结炉中通入硫蒸气,烧结温度为650℃,烧结时间为12h。待产物冷却后进行研磨筛分,得到硫卤化合物固态电解质。全过程均在在惰性保护气氛或硫气氛下进行。室温下测得该硫卤化合物固态电解质的电导率为3.1×10-3S cm-1
实施例3:
按照4.5:1:1.5:1的化学计量比称取Li2S、P2S5、LiCl和LiI,然后按Li2S、P2S5、LiCl和LiI总质量与研磨介质的质量比为1:4称取适量的八甲基环四硅氧烷,将其依次装入氧化锆真空球磨罐中,同时按40:1的球料比加入氧化锆球磨珠,并充入0.15Mpa的氩气进行一次球磨,时间为4h,转速为400r/min。其后对球磨罐抽真空并加热至150℃进行二次球磨,时间为12h,转速为800r/min。其后对球磨罐进行冷却并充入0.15Mpa的氩气进行三次球磨,时间为2h,转速为300r/min。球磨结束后,将固态电解质前驱体浆料在惰性气氛保护下烘干,温度为150℃,时间为36h。将烘干后的固态电解质前驱体进行高温烧结,烧结炉中通入硫蒸气,烧结温度为650℃,烧结时间为15h。待产物冷却后进行研磨筛分,得到硫卤化合物固态电解质。全过程均在在惰性保护气氛或硫气氛下进行。室温下测得该硫卤化合物固态电解质的电导率为2.9×10-3S cm-1
实施例4:
按照5:1:0.6:0.7:0.7的化学计量比称取Li2S、P2S5、LiCl、LiBr和LiI,然后按Li2S、P2S5、LiCl、LiBr和LiI的总质量与研磨介质的质量比为1:3称取适量的异丙醇,将其依次装入氧化锆真空球磨罐中,同时按40:1的球料比加入氧化锆球磨珠,并充入0.13Mpa的氩气进行一次球磨,时间为2h,转速为400r/min。其后对球磨罐抽真空并加热至150℃进行二次球磨,时间为15h,转速为800r/min。其后对球磨罐进行冷却并充入0.13Mpa的氩气进行三次球磨,时间为2h,转速为300r/min。球磨结束后,将固态电解质前驱体浆料在惰性气氛保护下烘干,温度为150℃,时间为30h。将烘干后的固态电解质前驱体进行高温烧结,烧结炉中通入硫蒸气,烧结温度为600℃,烧结时间为15h。待产物冷却后进行研磨筛分,得到硫卤化合物固态电解质。全过程均在在惰性保护气氛或硫气氛下进行。室温下测得该硫卤化合物固态电解质的电导率为3.2×10-3S cm-1
对比例1:
按照5:1:2的化学计量比称取Li2S、P2S5和LiCl,然后按Li2S、P2S5和LiCl的总质量与研磨介质的质量比为1:3称取适量的丙酸乙酯,将其依次装入氧化锆真空球磨罐中,同时按40:1的球料比加入氧化锆球磨珠,并充入0.1Mpa的氩气进行球磨,时间为14h,转速为800r/min。球磨结束后,将固态电解质前驱体浆料在惰性气氛保护下烘干,温度为150℃,时间为40h。将烘干后的固态电解质前驱体进行高温烧结,烧结炉中通入硫蒸气,烧结温度为650℃,烧结时间为15h。待产物冷却后进行研磨筛分,得到硫卤化合物固态电解质。全过程均在在惰性保护气氛或硫气氛下进行。室温下测得该硫卤化合物固态电解质的电导率为2.8×10-3S cm-1
对比例2:
按照5:1:0.8:1.2的化学计量比称取Li2S、P2S5、LiCl和LiBr,然后按Li2S、P2S5、LiCl和LiBr总质量与研磨介质的质量比为1:3称取适量的环氧丙烷,将其依次装入氧化锆真空球磨罐中,同时按40:1的球料比加入氧化锆球磨珠,并充入0.15Mpa的氩气进行球磨,时间为12h,转速为800r/min。球磨结束后,将固态电解质前驱体浆料在惰性气氛保护下烘干,温度为150℃,时间为48h。将烘干后的固态电解质前驱体进行高温烧结,烧结炉中通入硫蒸气,烧结温度为650℃,烧结时间为12h。待产物冷却后进行研磨筛分,得到硫卤化合物固态电解质。全过程均在在惰性保护气氛或硫气氛下进行。室温下测得该硫卤化合物固态电解质的电导率为2.6×10-3S cm-1
从上可以明显看到,实施例1中制备的硫卤化合物固态电解质离子电导率明显高于对比例1中制备的。而且从图1和图2的xrd图谱可以看出,实施例1中制得的硫卤化合物固态电解质峰强相对较高,结晶性好,证明原料反应充分,基本没有杂质产生。实验证明,采用分段湿法球磨可以有效提高硫卤化合物的品质。

Claims (5)

1.一种高效的硫卤化合物固态电解质制备方法,其特征在于,所述制备方法包括以下步骤:
(1)按所需化学计量比称取Li2S、P2S5,和含X的锂盐,其中,X包括Cl、Br、I中的一种或几种;称取一定量的乙醇、乙二醇、异丙醇、环氧丙烷、乙醚、环己酮、乙酸乙酯、丙酸乙酯、庚烷、八甲基环四硅氧烷中的一种或几种作为研磨介质;
(2)将步骤(1)的原料加入真空球磨罐中,先对球磨罐充氩气,并在正压状态下一次球磨;后将球磨罐抽真空并加热,进行二次球磨;后将球磨罐冷却后充氩气进行三次球磨,得到混合均匀的固态电解质前驱体浆料;
(3)将固态电解质前驱体浆料在惰性气氛保护下烘干;
(4)将烘干后的固态电解质前驱体进行高温烧结,冷却后进行研磨筛分,得到高离子电导率的硫卤化合物固态电解质;
所述步骤(1)中的化学计量比为Li2S:P2S5:LiX=4-5:1:1.8-2.2;
所述步骤(2)中一次球磨中球磨罐内压力为0.1-0.2Mpa,球料比20-60:1,球磨转速100-1000r/min,球磨1-15小时;
所述步骤(2)中二次球磨中球磨罐加热温度为40-150℃,球磨转速100-1200r/min,球磨1-15小时;
所述步骤(2)中三次球磨中球磨罐内压力为0.1-0.2Mpa,球磨转速100-1200r/min,球磨1-15小时;
所述步骤(4)中固态电解质在硫气氛下烧结,烧结温度为300-1100℃,烧结时间为2-20h。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中称取的Li2S、P2S5,和含X的锂盐的总质量与研磨介质的质量比为1:1-5。
3.根据权利要求1所述的制备方法,其特征在于,所述步骤(2)中球磨罐和球磨珠材质为刚玉、玛瑙、氧化锆、聚四氟乙烯中的任意一种。
4.根据权利要求1所述的制备方法,其特征在于,所述步骤(3)中烘干温度为50-200℃,烘干时间为6-48h。
5.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)-(4)中称取、球磨、烧结及研磨筛分均在隔绝空气的条件下进行。
CN202111591722.5A 2021-12-23 2021-12-23 一种高效的硫卤化合物固态电解质制备方法 Active CN114163240B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111591722.5A CN114163240B (zh) 2021-12-23 2021-12-23 一种高效的硫卤化合物固态电解质制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111591722.5A CN114163240B (zh) 2021-12-23 2021-12-23 一种高效的硫卤化合物固态电解质制备方法

Publications (2)

Publication Number Publication Date
CN114163240A CN114163240A (zh) 2022-03-11
CN114163240B true CN114163240B (zh) 2022-09-09

Family

ID=80487998

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111591722.5A Active CN114163240B (zh) 2021-12-23 2021-12-23 一种高效的硫卤化合物固态电解质制备方法

Country Status (1)

Country Link
CN (1) CN114163240B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115692830A (zh) * 2022-10-24 2023-02-03 黄冈师范学院 钠离子硫化物电解质及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101704672B (zh) * 2009-11-13 2011-11-16 北京科技大学 一种Cu-Cr-S三元热电材料及其制备方法
EP3240089B1 (en) * 2014-12-26 2019-04-24 Mitsui Mining and Smelting Co., Ltd. Sulfide-based solid electrolyte for lithium ion cell, and solid electrolyte compound
JP2016207354A (ja) * 2015-04-17 2016-12-08 出光興産株式会社 硫化物固体電解質の製造方法
CN105624535A (zh) * 2015-12-09 2016-06-01 上海大学 Fe-Al-Mn-Si合金的制备方法
JP6700486B2 (ja) * 2016-09-05 2020-05-27 トヨタ・モーター・ヨーロッパToyota Motor Europe Liti2(ps4)3のイオン伝導率を焼結により増大させる方法
CN109888377B (zh) * 2019-04-17 2022-02-22 宁波容百新能源科技股份有限公司 一种基于湿法球磨的高离子电导率硫化物固态电解质及其制备方法
CN113321485B (zh) * 2021-05-28 2022-06-24 湖南恩捷前沿新材料科技有限公司 一种硫银锗矿型硫化物固态电解质的制备方法
CN113387386B (zh) * 2021-06-11 2022-09-16 湖南恩捷前沿新材料科技有限公司 MoS2/硫化物固态电解质复合正极及电池的制备方法
CN113363568B (zh) * 2021-06-29 2022-04-19 深圳高能时代科技有限公司 一种制备硫化物固态电解质的方法

Also Published As

Publication number Publication date
CN114163240A (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
CN104617276B (zh) 锂离子二次电池多孔硅/碳复合负极材料及其制备方法
CN109713294B (zh) 一种锂离子电池氧化亚硅基负极材料的制备方法
CN109004212B (zh) 一种大倍率锰酸锂正极材料及其制备方法
CN102064324A (zh) 改性锂离子动力电池用钛酸锂负极材料及其制备方法
CN114163240B (zh) 一种高效的硫卤化合物固态电解质制备方法
CN115557483A (zh) Latp电解质粉末制备方法、电解质片及全固态电池
CN113321485A (zh) 一种硫银锗矿型硫化物固态电解质的制备方法
CN112421014A (zh) 一种高镍三元正极材料、其制备方法及锂离子电池
CN114613961B (zh) 改性预锂化硅氧材料及其制备方法、应用、负极极片、锂离子电池
CN116169347A (zh) 一种复合钠离子固态电解质及其制备方法、应用
CN115000388A (zh) 一种钠离子正极材料及其制备方法和用途
CN109301232A (zh) 一种锂离子电池硅基负极材料及制备方法
CN117393842A (zh) 卤族元素掺杂改性lzsp固态电解质材料及其制备方法和应用
CN115385398B (zh) 一种掺杂改性的三元材料及其制备方法
CN114530580A (zh) 一种高容量双包覆锂离子正极材料的制备方法
CN116364912A (zh) 一种高镍三元正极材料及其制备方法
CN113264550B (zh) 钛酸锂负极材料的制备方法
CN115377402A (zh) 一种改性普鲁士蓝类钠电正极材料的制备方法及由该方法制备的正极材料
CN116581367A (zh) 卤化物固态电解质、其制备方法及应用
CN114914431A (zh) 复合包覆改性的三元正极材料及制备方法
CN115466116A (zh) 一种多孔锂镧锆氧固体电解质片及其制备方法和应用
CN113964390A (zh) 卤素离子掺杂llzo固体电解质及制备方法
CN110739454B (zh) 一种负极材料及其制备方法
CN110112376B (zh) 一种多孔氧化亚硅/碳复合负极材料的制备方法和应用
CN117423896B (zh) 一种复合固态电解质、其制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20220525

Address after: 410000 block a, building 13, country garden wisdom Park, Xuehua village, bachelor street, Yuelu District, Changsha City, Hunan Province

Applicant after: Hunan Enjie frontier New Material Technology Co.,Ltd.

Address before: Yuelu District City, Hunan province 410083 Changsha Lushan Road No. 932

Applicant before: CENTRAL SOUTH University

GR01 Patent grant
GR01 Patent grant