CN114142463B - 基于m3c的两端柔性低频输电系统两相运行控制方法 - Google Patents

基于m3c的两端柔性低频输电系统两相运行控制方法 Download PDF

Info

Publication number
CN114142463B
CN114142463B CN202111420240.3A CN202111420240A CN114142463B CN 114142463 B CN114142463 B CN 114142463B CN 202111420240 A CN202111420240 A CN 202111420240A CN 114142463 B CN114142463 B CN 114142463B
Authority
CN
China
Prior art keywords
power
ref
frequency side
low
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111420240.3A
Other languages
English (en)
Other versions
CN114142463A (zh
Inventor
金玉琪
王凯军
冯华
宋金根
裘鹏
华文
林进钿
倪晓军
潘武略
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Zhejiang Electric Power Co Ltd
Electric Power Research Institute of State Grid Zhejiang Electric Power Co Ltd
Original Assignee
State Grid Zhejiang Electric Power Co Ltd
Electric Power Research Institute of State Grid Zhejiang Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Zhejiang Electric Power Co Ltd, Electric Power Research Institute of State Grid Zhejiang Electric Power Co Ltd filed Critical State Grid Zhejiang Electric Power Co Ltd
Priority to CN202111420240.3A priority Critical patent/CN114142463B/zh
Publication of CN114142463A publication Critical patent/CN114142463A/zh
Application granted granted Critical
Publication of CN114142463B publication Critical patent/CN114142463B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/34Arrangements for transfer of electric power between networks of substantially different frequency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种基于M3C的两端柔性低频输电系统两相运行控制方法,该控制方法针对用于城市工区互联的两端低频输电系统单相电缆故障切除场景,通过拟方波输电方式利用健全相完成故障期间功率不间断传输,可有效提升系统利用率和可靠性。本发明对设置为电压基准节点的M3C采用低频侧定电压控制方法,生成低频侧拟方波电压;对设置为功率可调节点的M3C采用低频侧定电流控制方法;两类M3C的工频侧均采用定功率控制方法,实现稳态运行期间和传输功率动态变化前后对子模块电容电压的有效控制,保证装置安全稳定运行。

Description

基于M3C的两端柔性低频输电系统两相运行控制方法
技术领域
本发明属于电力系统输配电技术领域,具体涉及一种基于M3C(modularmultilevel matrix converter,模块化多电平矩阵式变换器)的两端柔性低频输电系统两相运行控制方法。
背景技术
近年来,随着国民经济的快速增长,大型城市用电负荷快速增加,我国城市电网建设不断加强。目前,大型城市电网大都在外层形成直接与输电网相连的500kV环网,接受外部电源供电;内层220kV电网深入供电中心,构成骨干网架,给负荷中心提供电能。大型城市电网一般都采取220kV电压等级分区运行模式以限制电网短路电流和消除电磁环网,考虑到电网分区间潮流方向灵活多变,可通过柔性直流输电系统或者低频交流系统实现分区柔性互联。两种方案的系统拓扑结构比较相似,其主要差异在于线路两端所采用的换流器是分别是AC/DC换流器和AC/AC换流器。
柔性直流方案的主要缺点在于换流站占地面积大、场站投资成本较高、直流电缆存在空间电荷积累效应等缺点;当需要构建多端直流输电系统以实现更加灵活的多分区功率互济运行时,还需要考虑直流断路器等设备的研发和投资费用。尽管低频交流输电方案的所采用的AC/AC换流器比柔性直流输电系统采用的AC/DC换流器投资成本更高,但是在现有交流电缆系统两端加变频站即可完成由工频交流互联系统向低频交流互联系统的升级,减小了线路改造的难度和隧道反复开挖对城市环境造成的不良影响。此外,采用低频交流输电技术可以避免直流电网空间电荷积累效应的影响,构造低频交流多端输电系统也不存在较大的技术难度。2021年5月,位于杭州富阳区的中埠—亭山换频站完成地质勘探,标志着世界上首个柔性低频输电工程—220kV中埠—亭山柔性低频输电示范项目正式启动。
架空线路的故障大多是瞬时性故障,重合后线路可以恢复正常运行;而电缆的短路故障大部分属于永久性故障,若重合断路器,在故障点将会再次产生电弧,不仅对系统和电气设备再次造成冲击,而且会扩大电缆故障,甚至会造成爆炸事故。因此,故障电缆将在很长一段时间内处于切除状态,而常规基于三相运行方式进行设计的低频输电系统在此期间停运,造成功率传输中断。
到目前为止,已公开的绝大多数文献基本只研究低频输电系统的稳态控制策略和架空线条件下的故障穿越策略,很少有针对电缆故障情况的低频输电系统运行控制研究。单相故障是最常见的线路故障类型,剩余的两相非故障线路理论上仍可构成输电回路并完成功率传输;进一步提升基于低频输电方案的城市供区互联系统的可靠性和利用率,很有必要从对低频输电系统两相运行方法进行研究。
发明内容
鉴于上述,本发明提供了一种基于M3C的两端柔性低频输电系统两相运行控制方法,该方法针对单相电缆故障切除场景,实现故障期间低频输电系统功率不间断传输,对于提高城市供区互联系统的可靠性和利用率具有实际意义。
一种基于M3C的两端柔性低频输电系统两相运行控制方法,应用于所述系统中M3C任一相出现故障被切除的情况下,该系统利用接入送端电网的M3C与接入受端电网的M3C通过低频电缆进行电能传输,其中与送端电网连接的M3C作为电压基准节点,与受端电网连接的M3C作为功率可调节点;
所述M3C工频侧采用定功率控制策略,包含有功功率控制环节、无功功率控制环节以及输出电流跟踪控制环节,其中有功功率控制环节根据工频侧有功功率通过计算得到M3C工频侧d轴电流参考值Id,ref,无功功率控制环节根据工频侧无功功率通过计算得到M3C工频侧q轴电流参考值Iq,ref,输出电流跟踪控制环节根据Id,ref和Iq,ref通过计算得到M3C三相桥臂差模电压参考值Udiffa,ref、Udiffb,ref和Udiffc,ref
所述M3C低频侧控制策略与节点类别相关,对于电压基准节点,其低频侧采用定电压控制策略,包含拟方波电压生成环节,该环节根据预设的拟方波电压信号通过计算得到M3C桥臂共模电压参考值Ucom,ref;对于功率可调节点,其低频侧采用定电流控制策略,包含拟方波电流控制环节,该环节根据预设的拟方波电流信号通过计算得到M3C桥臂共模电压参考值Ucom,ref
最后,将Ucom,ref分别与Udiffa,ref、Udiffb,ref和Udiffc,ref相加即得到M3C上桥臂的三相调制电压,将Ucom,ref分别与Udiffa,ref、Udiffb,ref和Udiffc,ref相减即得到M3C下桥臂的三相调制电压,进而根据上下桥臂的三相调制电压通过相应调制算法生成各桥臂的开关控制信号用以对M3C进行控制。
进一步地,所述有功功率控制环节通过以下公式计算得到M3C工频侧d轴电流参考值Id,ref
其中:kpp和kpi分别为有功功率控制环节设定的比例系数和积分系数,s为拉普拉斯算子,PLF,ave为M3C低频侧输入有功功率滑动平均值,Pcvc,ref为M3C工频侧输出有功功率参考值,PPF为M3C工频侧输出有功功率实际值,t表示时刻,TLF为给定的低频周期,ULF和ILF分别为M3C低频侧的输出电压实际值和输出电流实际值,kcp和kci分别为子模块电容电压控制环节设定的比例系数和积分系数,Uc,ave为M3C的子模块电容电压平均值,Uc,ref为M3C的子模块电容电压参考值。
进一步地,所述无功功率控制环节通过以下公式计算得到M3C工频侧q轴电流参考值Iq,ref
其中:kqp和kqi分别为无功功率控制环节设定的比例系数和积分系数,s为拉普拉斯算子,QPF为M3C工频侧输出无功功率实际值,QPF,ref为M3C工频侧输出无功功率参考值。
进一步地,所述输出电流跟踪控制环节首先对M3C工频侧电压和电流进行Park变换,得到dq坐标系下工频侧电压的d轴分量实际值Ud和q轴分量实际值Uq以及dq坐标系下工频侧电流的d轴分量实际值Id和q轴分量实际值Iq;然后通过以下公式计算得到M3C桥臂差模电压d轴分量参考值Udiffd,ref和q轴分量参考值Udiffq,ref
其中:kvp和kvi分别为输出电流跟踪控制环节设定的比例系数和积分系数,Xc为给定的补偿电抗;
最后通过对M3C工频侧电压锁相得到位置角θPF,利用θPF将Udiffd,ref和Udiffq,ref通过Park反变换得到M3C三相桥臂差模电压参考值Udiffa,ref、Udiffb,ref和Udiffc,ref
进一步地,所述拟方波电压生成环节通过以下公式计算得到M3C桥臂共模电压参考值Ucom,ref
其中:ULF,ref为M3C低频侧输出电压参考值,ULFm,ref为M3C低频侧输出拟方波电压幅值参考值,Tswi为正负半波切换过程时长,TLF为给定的低频周期,tper为当前时刻与低频周期起点时刻之差。
进一步地,所述拟方波电流控制环节通过以下公式计算得到M3C桥臂共模电压参考值Ucom,ref
其中:ILF,in为M3C低频侧输入电流实际值,ILF,ref为M3C低频侧输入电流参考值,kip和kii分别为拟方波电流控制环节设定的比例系数和积分系数,s为拉普拉斯算子,ILFm,ref为M3C低频侧输出拟方波电流幅值参考值,Tswi为正负半波切换过程时长,TLF为给定的低频周期,tper为当前时刻与低频周期起点时刻之差。
基于上述技术方案,本发明具有以下有益技术效果:
1.针对城市供区互联场景,本发明提出了一种基于M3C的两端柔性低频输电系统两相运行控制方法,可维持单相电缆故障切除期间低频输电系统功率不间断传输,有利于提升系统可靠性和利用率。
2.已有文献提出了基于全桥模块化多电平换流器的两相低频输电方法,但是在进行控制系统设计将柔性低频输电系统的一端假设为纯电阻负载,与实际情况不符所提出的电容电压平衡控制策略鲁棒性较差。本发明针对低频输电系统的两端M3C均进行了控制系统设计,所提出的控制方法在系统两相运行期间能够较好地维持M3C子模块电容电压恒定。
附图说明
图1为基于M3C的两端柔性低频输电系统两相运行方式示意图。
图2为接入工频交流系统和两相低频线路的单端M3C拓扑结构示意图。
图3为本发明M3C工频侧定功率控制策略的系统框图。
图4为本发明M3C低频侧定电压和定电流控制策略的系统框图。
图5为本发明采用拟方波输电方式下有功功率、拟方波电压和电流的波形示意图。
图6为采用本发明控制方法稳态运行情况下M3C1关于低频侧输出电压和输入电流、工频侧输出功率以及子模块电容电压的仿真波形示意图。
图7为采用本发明控制方法受端电网吸收有功功率发生变化情况下M3C1关于低频侧输出电压和输入电流、工频侧输出功率以及子模块电容电压的仿真波形示意图。
具体实施方式
为了更为具体地描述本发明,下面结合附图及具体实施方式对本发明的技术方案进行详细说明。
如图2所示为两相运行方式下单端M3C的拓扑结构,假设低频侧b相电缆发生故障并被切除,则与低频侧b相电缆相连的3个M3C桥臂退出运行。图中usk为工频交流系统等效电压源k相电压(k=a,b,c,表示abc三相),Ls为工频交流系统等效串联电感,Rs为工频交流系统等效串联电阻,uk为M3C工频侧k相电压,ik为M3C工频侧k相输出电流,upk和unk分别表示上下桥臂电压,ipk和ink分别表示上下桥臂电流,R0为桥臂等效电阻,L0为桥臂电感,ULF表示M3C低频侧输出电压,ILF表示M3C低频侧输入电流。
表征两相运行方式下M3C工低频侧动态特性的数学模型如下:
式中:上标abc表示该电气量是在abc三相静止坐标系下的矢量,表示桥臂差模电压矢量,它的k相表达式为:
ucom表示桥臂共模电压矢量,可由下式表示:
从式(1)和式(2)可知,通过控制M3C桥臂差模电压分量,就可以控制M3C工频侧输出电流;通过控制M3C桥臂共模电压分量,就可以控制M3C低频侧输出电流,同时可以调节M3C低频侧输出电压。
为了得到易于控制的直流量,常用方法是对式(1)进行坐标变换,将abc三相静止坐标系下的正弦交流量变换到dq轴同步旋转坐标系下的直流量,经过坐标变换后的结果如下:
式中:上标dq表示该电气量是在dq同步坐标系下的矢量,ωPF为工频交流系统角频率。
根据式(5)设计了如图3中的输出电流跟踪控制环节,对该环节输出的dq坐标系下的桥臂差模电压参考值udiffd,ref、udiffq,ref进行反park变换即可得到abc坐标下的桥臂差模电压参考值udiffa,ref、udiffb,ref、udiffc,ref
dq同步旋转坐标系的角位置θPF由锁相环对M3C工频侧三相电压锁相得到提供,稳态下有Uq=0,Uq为M3C工频侧电压q轴分量。此时,M3C的工频侧输出有功功率PLF和工频侧输出无功功率QLF可由下式表示:
式中:Ud表示M3C工频侧电压d轴分量,Id、Iq表示M3C工频侧输出电流d、q轴分量。由式(6)可知,通过控制M3C工频侧输出电流d轴分量可以调节M3C工频侧输出有功功率,通过控制M3C工频侧输出电流q轴分量可以调节M3C工频侧输出无功功率。
图3所示的有功功率控制环节的输入功率参考值包含PLF,ave和Pcvc,ref两部分,其中PLF,ave用于跟踪M3C低频侧输入功率PLF,可以通过对PLF进行滑动平均处理得到:
式中:t为时间,TLF为低频周期。
Pcvc,ref用于维持M3C内部子模块电容电压稳定,由子模块电容电压平均值Uc,ave和子模块电容电压参考值Uc,ref之差通过子模块电容电压控制环节得到:
式中:kcp和kci为子模块电容电压控制环节设定的比例系数和积分系数,s为拉普拉斯算子。
在获得上述有功功率参考值后,通过PI控制器,就可以得到M3C工频侧输出电流d轴分量参考值Id,ref
式中:kpp和kpi分别为有功功率控制环节设定的比例系数和积分系数。
图3所示的无功功率控制环节的输入信号为无功功率实际值QPF和参考值QPF,ref,两者之差通过PI控制器生成M3C工频侧输出电流q轴分量参考值Iq,ref
其中:kqp和kqi为无功功率控制环节设定的比例系数和积分系数。
直流输电方式和正弦交流输电方式在应用于两相电缆输电场景时具有明显缺陷:直流输电引发的电缆空间电荷积累问题会对线路绝缘造成损害,直流断路器技术尚不成熟,直流故障难以穿越;正弦交流输电会导致线路传输功率波动较大,同时由低频测功率波动引发的能量波动将全部由AC/AC换流器子模块电容吸收,威胁装置安全稳定运行。而当采用图5所示的拟方波输电方式进行功率传输时,功率波动仅出现在拟方波电压和电流正负半波切换过程中,波动幅度小,持续时间短,其输电能力与直流输电方式类似。同时,拟方波输电方式具有电流电压过零点,又能够避免直流输电方式中的电缆空间电荷积累效应和直流故障难以处理等问题。
据此,我们设计了图4所示的M3C低频侧拟方波电压生成环节和低频侧拟方波电流控制环节,低频侧拟方波电压生成环节的输入信号为拟方波电压幅值参考值ULFm,ref、正负半波切换过程时长Tswi和低频周期TLF,并通过拟方波电压发生器得到以TLF为周期变换的低频侧输出电压参考信号ULF,ref
式中:tper为当前时刻与周期起点时刻之差,图5给出了一个低频周期内的拟方波电压参考波形。
然后,根据下式可以计算得到M3C桥臂共模电压参考值Ucom,ref
低频侧拟方波电流控制环节首先通过拟方波电流发生器生成低频侧电流参考信号ILF,ref
式中:ILFm,ref为M3C的低频侧输出拟方波电流幅值参考值,图5给出了一个低频周期内的拟方波电流参考波形。
然后,将M3C的低频侧输出电流实际值ILF与参考值ILF,ave之差送入PI控制器得到M3C桥臂共模电压参考值Ucom,ref
式中:kip和kii为拟方波电流控制环节设定的比例系数和积分系数。
实际运行过程中,M3C桥臂共模电压参考值的来源与所属节点类型有关,当M3C被设置为电压基准节点时,Ucom,ref由拟方波电压生成环节产生;当M3C被设置为功率可调节点时,Ucom,ref由拟方波电流控制环节产生。
在得到三相桥臂共模电压参考值与桥臂共模电压参考值之后,根据下式就可计算出触发所需要的k相上下桥臂电压指令值upk,ref和unk,ref
为验证本发明控制方法的准确性和有效性,我们在PSCAD/EMTDC仿真软件中搭建了如图1所示的两端柔性低频输电系统,与送端工频交流系统相连的M3C1被设置为电压基准节点,与受端工频交流系统相连的M3C2被设置为功率可调节点,系统详细参数如表1所示:
表1
仿真工况1:系统运行在额定运行工况,送端工频交流系统通过两相低频输电线路向受端交流系统输出450MW有功功率,从两端AC/AC换流器注入各自所连工频交流系统的无功功率均设置为0。如图6所示为稳态运行期间M3C1的低频侧输出电压和输入电流、工频侧输出功率以及子模块电容电压的仿真波形,可以看到,低频侧输出电压和输入电流均呈拟方波形状,低频侧输出电压实际值能够很好地跟踪其设定值,表明低频侧电压控制环节具有良好的稳态性能;工频侧输出有功功率为系统额定功率且保持恒定,表明低频侧有功功率波动不影响工频侧,工频侧输出无功功率能很好地跟踪其设定值保持为零。在低频侧电压切换过程中,低频侧有功功率小于工频侧,功率差额由子模块电容吸收,子模块电容电压上升;低频侧电压切换结束后,低频侧有功功率略大于工频侧,功率差额由子模块电容补偿,子模块电容电压下降,子模块电容电压仿真波形与理论分析一致,子模块电容电压控制策略是有效的。
仿真工况2:在t=3.4s,受端工频交流系统从低频输电系统中吸收的有功功率从450MW变化到300MW,从两端AC/AC换流器注入各自所连工频交流系统的无功功率仍设置为0。如图7所示为传输功率变化期间M3C1的低频侧输出电压和输入电流、工频侧输出功率以及子模块电容电压的仿真波形,可以看到,在传输功率变化后,低频侧输出电压仍很好地跟踪设定的拟方波,低频侧输入电流仍保持拟方波形状,其峰值随着传输有功功率的变化而变化;送端工频侧输出有功功率很好地跟踪受端有功功率需求,工频侧输出无功功率仍跟踪其设定值保持为零,子模块电容电压在控制系统的作用下维持在额定值附近。仿真波形表明本控制策略具有良好的暂态特性。
上述对实施例的描述是为便于本技术领域的普通技术人员能理解和应用本发明,熟悉本领域技术的人员显然可以容易地对上述实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,对于本发明做出的改进和修改都应该在本发明的保护范围之内。

Claims (6)

1.一种基于M3C的两端柔性低频输电系统两相运行控制方法,应用于所述系统中M3C任一相出现故障被切除的情况下,该系统利用接入送端电网的M3C与接入受端电网的M3C通过低频电缆进行电能传输,其中与送端电网连接的M3C作为电压基准节点,与受端电网连接的M3C作为功率可调节点;其特征在于:
所述M3C工频侧采用定功率控制策略,包含有功功率控制环节、无功功率控制环节以及输出电流跟踪控制环节,其中有功功率控制环节根据工频侧有功功率通过计算得到M3C工频侧d轴电流参考值Id,ref,无功功率控制环节根据工频侧无功功率通过计算得到M3C工频侧q轴电流参考值Iq,ref,输出电流跟踪控制环节根据Id,ref和Iq,ref通过计算得到M3C三相桥臂差模电压参考值Udiffa,ref、Udiffb,ref和Udiffc,ref
所述M3C低频侧控制策略与节点类别相关,对于电压基准节点,其低频侧采用定电压控制策略,包含拟方波电压生成环节,该环节根据预设的拟方波电压信号通过计算得到M3C桥臂共模电压参考值Ucom,ref;对于功率可调节点,其低频侧采用定电流控制策略,包含拟方波电流控制环节,该环节根据预设的拟方波电流信号通过计算得到M3C桥臂共模电压参考值Ucom,ref
最后,将Ucom,ref分别与Udiffa,ref、Udiffb,ref和Udiffc,ref相加即得到M3C上桥臂的三相调制电压,将Ucom,ref分别与Udiffa,ref、Udiffb,ref和Udiffc,ref相减即得到M3C下桥臂的三相调制电压,进而根据上下桥臂的三相调制电压通过相应调制算法生成各桥臂的开关控制信号用以对M3C进行控制。
2.根据权利要求1所述的两端柔性低频输电系统两相运行控制方法,其特征在于:所述有功功率控制环节通过以下公式计算得到M3C工频侧d轴电流参考值Id,ref
其中:kpp和kpi分别为有功功率控制环节设定的比例系数和积分系数,s为拉普拉斯算子,PLF,ave为M3C低频侧输入有功功率滑动平均值,Pcvc,ref为M3C工频侧输出有功功率参考值,PPF为M3C工频侧输出有功功率实际值,t表示时刻,TLF为给定的低频周期,ULF和ILF分别为M3C低频侧的输出电压实际值和输出电流实际值,kcp和kci分别为子模块电容电压控制环节设定的比例系数和积分系数,Uc,ave为M3C的子模块电容电压平均值,Uc,ref为M3C的子模块电容电压参考值。
3.根据权利要求1所述的两端柔性低频输电系统两相运行控制方法,其特征在于:所述无功功率控制环节通过以下公式计算得到M3C工频侧q轴电流参考值Iq,ref
其中:kqp和kqi分别为无功功率控制环节设定的比例系数和积分系数,s为拉普拉斯算子,QPF为M3C工频侧输出无功功率实际值,QPF,ref为M3C工频侧输出无功功率参考值。
4.根据权利要求1所述的两端柔性低频输电系统两相运行控制方法,其特征在于:所述输出电流跟踪控制环节首先对M3C工频侧电压和电流进行Park变换,得到dq坐标系下工频侧电压的d轴分量实际值Ud和q轴分量实际值Uq以及dq坐标系下工频侧电流的d轴分量实际值Id和q轴分量实际值Iq;然后通过以下公式计算得到M3C桥臂差模电压d轴分量参考值Udiffd,ref和q轴分量参考值Udiffq,ref
其中:kvp和kvi分别为输出电流跟踪控制环节设定的比例系数和积分系数,Xc为给定的补偿电抗;
最后通过对M3C工频侧电压锁相得到位置角θPF,利用θPF将Udiffd,ref和Udiffq,ref通过Park反变换得到M3C三相桥臂差模电压参考值Udiffa,ref、Udiffb,ref和Udiffc,ref
5.根据权利要求1所述的两端柔性低频输电系统两相运行控制方法,其特征在于:所述拟方波电压生成环节通过以下公式计算得到M3C桥臂共模电压参考值Ucom,ref
其中:ULF,ref为M3C低频侧输出电压参考值,ULFm,ref为M3C低频侧输出拟方波电压幅值参考值,Tswi为正负半波切换过程时长,TLF为给定的低频周期,tper为当前时刻与低频周期起点时刻之差。
6.根据权利要求1所述的两端柔性低频输电系统两相运行控制方法,其特征在于:所述拟方波电流控制环节通过以下公式计算得到M3C桥臂共模电压参考值Ucom,ref
其中:ILF,in为M3C低频侧输入电流实际值,ILF,ref为M3C低频侧输入电流参考值,kip和kii分别为拟方波电流控制环节设定的比例系数和积分系数,s为拉普拉斯算子,ILFm,ref为M3C低频侧输出拟方波电流幅值参考值,Tswi为正负半波切换过程时长,TLF为给定的低频周期,tper为当前时刻与低频周期起点时刻之差。
CN202111420240.3A 2021-11-26 2021-11-26 基于m3c的两端柔性低频输电系统两相运行控制方法 Active CN114142463B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111420240.3A CN114142463B (zh) 2021-11-26 2021-11-26 基于m3c的两端柔性低频输电系统两相运行控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111420240.3A CN114142463B (zh) 2021-11-26 2021-11-26 基于m3c的两端柔性低频输电系统两相运行控制方法

Publications (2)

Publication Number Publication Date
CN114142463A CN114142463A (zh) 2022-03-04
CN114142463B true CN114142463B (zh) 2023-07-25

Family

ID=80388724

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111420240.3A Active CN114142463B (zh) 2021-11-26 2021-11-26 基于m3c的两端柔性低频输电系统两相运行控制方法

Country Status (1)

Country Link
CN (1) CN114142463B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114696360A (zh) * 2022-04-08 2022-07-01 国网浙江省电力有限公司电力科学研究院 一种低频输电系统停运方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106786724A (zh) * 2017-01-23 2017-05-31 浙江大学 一种多回mmc‑hvdc馈入极弱电网的控制策略
CN107612012A (zh) * 2017-08-16 2018-01-19 国网浙江省电力公司电力科学研究院 一种无变压器的智能软开关及其交流故障穿越方法和系统
WO2020186688A1 (zh) * 2019-03-20 2020-09-24 中车青岛四方车辆研究所有限公司 单相逆变器并联控制方法、控制系统及逆变器
CN111969641A (zh) * 2020-08-24 2020-11-20 中国电建集团华东勘测设计研究院有限公司 柔性直流输电系统送端mmc故障电流抑制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9906057B2 (en) * 2014-10-09 2018-02-27 Nec Corporation Modular multilvel converter and control framework for hybrid energy storage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106786724A (zh) * 2017-01-23 2017-05-31 浙江大学 一种多回mmc‑hvdc馈入极弱电网的控制策略
CN107612012A (zh) * 2017-08-16 2018-01-19 国网浙江省电力公司电力科学研究院 一种无变压器的智能软开关及其交流故障穿越方法和系统
WO2020186688A1 (zh) * 2019-03-20 2020-09-24 中车青岛四方车辆研究所有限公司 单相逆变器并联控制方法、控制系统及逆变器
CN111969641A (zh) * 2020-08-24 2020-11-20 中国电建集团华东勘测设计研究院有限公司 柔性直流输电系统送端mmc故障电流抑制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
向无源网络供电的LCC-MMC混合直流输电系统控制策略;许烽;宣晓华;陆翌;裘鹏;黄晓明;虞海泓;江道灼;;电力系统自动化(第15期);全文 *
基于双dq坐标变换的M3C变换器的数学模型及控制策略研究;孟永庆;王健;李磊;王秀丽;罗辉勇;白森戈;;中国电机工程学报(第17期);全文 *

Also Published As

Publication number Publication date
CN114142463A (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
CN108280271B (zh) 基于开关周期平均原理的统一潮流控制器等效建模方法
CN108418226B (zh) 开绕组双逆变器光伏发电系统的无功补偿控制方法
CN103296700B (zh) 微电网谐波和无功电流的无互联线补偿控制的方法
CN105978038A (zh) 一种基于虚拟阻抗的预同步控制方法
CN107732959B (zh) 用于分布式光储并网系统的非线性微分平滑前馈控制方法
CN105406484A (zh) 一种角型级联同步补偿器的电网电压调节方法
CN112467785A (zh) 一种利用虚拟阻抗提高光伏故障电压支撑能力方法
CN114142463B (zh) 基于m3c的两端柔性低频输电系统两相运行控制方法
CN103366053B (zh) 一种电压定向矢量控制策略的改进及数学建模方法
Feng et al. Experimental study on black-start capability of VSC-HVDC for passive networks
Zhang et al. A comprehensive suppression strategy for common ground circulating current caused by grounding fault in PV modules
Ge et al. Inverter control based on virtual impedance under unbalanced load
Zheng et al. Technology and engineering application of cross area HVDC interconnection system high-precision simulation modeling based on ADPSS
Jing et al. Network topology and operation control of DC distribution network with AC DC converter
Djehaf et al. Modeling of a multi-level converter based VSC HVDC supplying a dead load
Gong et al. Fast coordinated power control for improving inertial and voltage support capability of battery energy storage systems
Liu et al. Research on LVRT Control Combination Strategy of PV Station
Sun et al. Application Analysis of MMC-HVDC AC Tie Line Transmission in New Energy Power Generation
Jiang et al. Small-signal modeling and interaction analysis of LCC-HVDC systems based on harmonic state space theory
CN111293715A (zh) 一种三相并网逆变器不同工况下的控制方法
Shao et al. Analysis on IIDG's negative-sequence current upon asymmetric fault
CN114696320B (zh) 一种新能源发电装备自同步电压源控制及低电压穿越控制双模式切换控制方法
CN113346779B (zh) 一种模块化多电平变换器并网电流无源控制方法
CN113346781B (zh) 一种模块化多电平变换器并网电流无源一致性控制方法
CN103001256B (zh) 一种永磁直驱型风力发电系统低电压穿越时网侧变流器的控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant