CN113346779B - 一种模块化多电平变换器并网电流无源控制方法 - Google Patents

一种模块化多电平变换器并网电流无源控制方法 Download PDF

Info

Publication number
CN113346779B
CN113346779B CN202110571153.1A CN202110571153A CN113346779B CN 113346779 B CN113346779 B CN 113346779B CN 202110571153 A CN202110571153 A CN 202110571153A CN 113346779 B CN113346779 B CN 113346779B
Authority
CN
China
Prior art keywords
grid
mmc
dual
matrix
pchd model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110571153.1A
Other languages
English (en)
Other versions
CN113346779A (zh
Inventor
薛花
王育飞
田广平
扈增辉
陈程
杨兴武
刘波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Electric Power University
Original Assignee
Shanghai Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Electric Power University filed Critical Shanghai Electric Power University
Priority to CN202110571153.1A priority Critical patent/CN113346779B/zh
Publication of CN113346779A publication Critical patent/CN113346779A/zh
Application granted granted Critical
Publication of CN113346779B publication Critical patent/CN113346779B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明涉及一种模块化多电平变换器并网电流无源控制方法,包括以下步骤:通过设计交互矩阵,结合基于PCHD模型的MMC并网电流状态方程,以建立得到电网电压不平衡条件下MMC并网系统Dual‑PCHD模型;基于建立的MMC并网系统Dual‑PCHD模型,进一步构建得到电网电压不平衡条件下基于Dual‑PCHD模型的MMC并网无源控制器,以得到控制量;采用脉冲调制方法对控制量进行处理,得到相应的触发脉冲信号;根据触发脉冲信号对MMC各相桥臂子模块的变换器开关状态进行控制。与现有技术相比,本发明将基于Dual‑PCHD模型的无源控制方法用于电网电压不平衡下MMC并网电流控制,具有控制律形式简单、无奇异点、稳定性好的优点,能够有效提高并网电流同步跟踪效果,可靠实现并网电流平衡。

Description

一种模块化多电平变换器并网电流无源控制方法
技术领域
本发明涉及模块化多电平变换器控制技术领域,尤其是涉及一种模块化多电平变换器并网电流无源控制方法。
背景技术
模块化多电平变换器(Modular Multilevel Converter,MMC)凭借其谐波含量少、开关损耗低、故障穿越能力强、便于模块化扩容和工业化生产等优点,目前已被广泛应用于大规模可再生能源并网领域。然而当电网发生单相短路时,系统交流电流会产生负序分量,引发功率振荡,最终影响MMC并网系统稳定运行,严重时还会导致系统失稳。
为此,有必要对MMC并网电流进行控制,以实现MMC并网电流平衡,传统大多采用矢量控制方法进行控制,这种方法是针对MMC并网电流系统的非线性本质进行控制器设计,未从能量角度出发,因此当存在不确定性扰动情况时,矢量控制器的抗扰性和鲁棒性面临挑战;相比于传统矢量控制方法,现有技术基于非线性控制方法,以从能量角度出发,设计能够反映MMC并网电流系统非线性本质的控制器,这种方法能够在一定程度上提升闭环控制系统稳定性和鲁棒性方面控制性能,但计算较复杂,而且无法解决正序和负序电流子系统内在关联性影响无源性控制动态跟踪性能的问题,也就无法确保正、负序独立子系统控制的同步性。因此,如何在不增加控制器设计复杂度的前提下,实现正负序双系统同步渐进稳定跟踪,是进一步增强无源性控制方法工程适应性必须解决的关键问题。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种模块化多电平变换器并网电流无源控制方法,以有效实现MMC并网电流平衡。
本发明的目的可以通过以下技术方案来实现:一种模块化多电平变换器并网电流无源控制方法,包括以下步骤:
S1、通过设计交互矩阵,结合基于PCHD(port controlled Hamiltonian withdissipation,端口受控耗散哈密顿)模型的MMC并网电流状态方程,以建立得到电网电压不平衡条件下MMC并网系统Dual-PCHD(Dual-port controlled Hamiltonian withdissipation,双端口受控耗散哈密顿)模型;
S2、基于步骤S1建立的MMC并网系统Dual-PCHD模型,进一步构建得到电网电压不平衡条件下基于Dual-PCHD模型的MMC并网无源控制器,以得到控制量;
S3、采用脉冲调制方法对控制量进行处理,得到相应的触发脉冲信号;
S4、根据触发脉冲信号对MMC各相桥臂子模块的变换器开关状态进行控制。
进一步地,所述步骤S1具体包括以下步骤:
S11、在dq旋转坐标系下,分别定义正、负序子系统对应的状态变量、输入变量和输出变量,以建立得到基于PCHD模型的MMC并网电流状态方程;
S12、设计交互矩阵,以将正、负序子系统相互联系,之后引入输出反馈控制律,并结合MMC并网电流状态方程,建立得到电网电压不平衡条件下MMC并网系统Dual-PCHD模型。
进一步地,所述步骤S11具体包括以下步骤:
S111、在dq旋转坐标系下,定义状态变量为
Figure BDA0003082735140000021
定义输入变量为
Figure BDA0003082735140000022
定义输出变量为
Figure BDA0003082735140000023
其中,正序子系统状态变量为
Figure BDA0003082735140000024
负序子系统状态变量为
Figure BDA0003082735140000025
Figure BDA0003082735140000026
正序子系统输入变量为
Figure BDA0003082735140000027
负序子系统输入变量为
Figure BDA0003082735140000028
Figure BDA0003082735140000029
正序子系统输出变量为
Figure BDA00030827351400000210
负序子系统输出变量为
Figure BDA00030827351400000211
Leq为桥臂电感,
Figure BDA00030827351400000212
分别为交流侧输出电压的dq轴正、负序分量,
Figure BDA00030827351400000213
分别为交流侧电源电流的dq轴正、负序分量,
Figure BDA00030827351400000214
分别为交流侧电源电压的dq轴正、负序分量;
S112、基于步骤S111中的状态变量、输入变量和输出变量,建立基于PCHD模型的MMC并网电流状态方程。
进一步地,所述MMC并网电流状态方程具体为:
Figure BDA0003082735140000031
Figure BDA0003082735140000032
Figure BDA0003082735140000033
Figure BDA0003082735140000034
Figure BDA0003082735140000035
Figure BDA0003082735140000036
Figure BDA0003082735140000037
Figure BDA0003082735140000038
Figure BDA0003082735140000039
其中,J′(X)为互联矩阵,R′(X)为阻尼矩阵,g(X)为端口矩阵,H(x)为能量函数,ω为基波角频率,R为桥臂电阻,
Figure BDA00030827351400000310
为微分算子。
进一步地,所述步骤S12具体包括以下步骤:
S121、设计交互矩阵Kij,以实现正、负序子系统联系,交互矩阵Kij为:
Figure BDA00030827351400000311
Figure BDA00030827351400000312
其中,K为对称矩阵,满足k12=k21
S122、引入形式简单的输出反馈控制律:
u1=-K(y1-y2)
u2=-K(y1-y2)
S123、将步骤S121中的交互矩阵与步骤S122中的输出反馈控制律代入MMC并网电流状态方程,得到电网电压不平衡条件下MMC并网系统Dual-PCHD模型为:
Figure BDA0003082735140000041
Figure BDA0003082735140000042
Figure BDA0003082735140000043
Figure BDA0003082735140000044
进一步地,所述步骤S2具体包括以下步骤:
S21、设定MMC并网系统的期望平衡点;
S22、以状态变量与期望平衡点之差为零作为控制目标,结合MMC并网系统Dual-PCHD模型,得到MMC并网系统闭环状态方程;
S23、结合MMC并网系统闭环状态方程以及MMC并网电流状态方程,得到基于Dual-PCHD模型的无源控制律,即可得到控制量。
进一步地,所述步骤S22具体包括以下步骤:
S221、根据控制目标X-X*=0,设计对应的MMC并网系统期望能量函数,其中,X*为期望平衡点;
S222、基于期望能量函数,结合MMC并网系统Dual-PCHD模型,得到MMC并网系统闭环状态方程。
进一步地,所述期望能量函数具体为:
Figure BDA0003082735140000045
Figure BDA0003082735140000046
其中,D为桥臂电感矩阵。
进一步地,所述MMC并网系统闭环状态方程具体为:
Figure BDA0003082735140000047
Jd(X)=J(X)+Ja(X)
Rd(X)=R(X)+Ra(X)
其中,Jd(X)为系统期望的互联矩阵,Rd(X)为系统期望的阻尼矩阵,Ja(X)、Ra(X)分别为注入的耗散矩阵、阻尼矩阵。
进一步地,所述基于Dual-PCHD模型的无源控制律具体为:
Figure BDA0003082735140000051
Figure BDA0003082735140000052
Figure BDA0003082735140000053
Figure BDA0003082735140000054
其中,
Figure BDA0003082735140000055
分别为交流侧电源电压的dq轴正、负序分量,即为得到的控制量,ra1、ra2、ra3、ra4为无源控制器系数,E、F分别为正序、负序控制变量。
与现有技术相比,本发明基于Dual-PCHD特性以及无源性理论,通过设计交互矩阵,能够实现并网正序电流的渐进跟踪以及负序电流的快速抑制,从而保证同步效果;基于建立的MMC并网系统Dual-PCHD模型,通过能量函数整形,以使控制目标能够在期望平衡点取得最小值,利用PCHD系统的输入输出映射,能够有效确保系统全局渐进稳定,从而保证后续控制量求取的准确性、可靠实现MMC并网电流平衡;
此外,本发明构建的基于Dual-PCHD模型的MMC并网系统无源控制器,在确保系统的全局稳定性的同时,能够实现并网电流的可靠平衡,其控制律形式简单、计算量小,且具有较好的暂态性能和稳定性能。
附图说明
图1为本发明的方法流程示意图;
图2为实施例应用本发明方法的过程示意图;
图3为三相MMC电路结构及其子模块拓扑示意图;
图4a为实施例中MMC正序d轴电流波形示意图;
图4b为实施例中MMC正序q轴电流波形示意图;
图4c为实施例中MMC负序d轴电流波形示意图;
图4d为实施例中MMC负序q轴电流波形示意图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例
如图1所示,一种模块化多电平变换器并网电流无源控制方法,包括以下步骤:
S1、通过设计交互矩阵,结合基于PCHD模型的MMC并网电流状态方程,以建立得到电网电压不平衡条件下MMC并网系统Dual-PCHD模型,具体的:
S11、在dq旋转坐标系下,分别定义正、负序子系统对应的状态变量、输入变量和输出变量,以建立得到基于PCHD模型的MMC并网电流状态方程,其中,定义状态变量为
Figure BDA0003082735140000061
定义输入变量为
Figure BDA0003082735140000062
定义输出变量为
Figure BDA0003082735140000063
其中,正序子系统状态变量为
Figure BDA0003082735140000064
负序子系统状态变量为
Figure BDA0003082735140000065
正序子系统输入变量为
Figure BDA0003082735140000066
负序子系统输入变量为
Figure BDA0003082735140000067
Figure BDA0003082735140000068
正序子系统输出变量为
Figure BDA0003082735140000069
负序子系统输出变量为
Figure BDA00030827351400000610
Leq为桥臂电感,
Figure BDA00030827351400000611
分别为交流侧输出电压的dq轴正、负序分量,
Figure BDA00030827351400000612
分别为交流侧电源电流的dq轴正、负序分量,
Figure BDA00030827351400000613
分别为交流侧电源电压的dq轴正、负序分量;
MMC并网电流状态方程具体为:
Figure BDA00030827351400000614
Figure BDA00030827351400000615
Figure BDA00030827351400000616
Figure BDA00030827351400000617
Figure BDA00030827351400000618
Figure BDA00030827351400000619
Figure BDA00030827351400000620
Figure BDA00030827351400000621
Figure BDA0003082735140000071
其中,J′(X)为互联矩阵,R′(X)为阻尼矩阵,g(X)为端口矩阵,H(x)为能量函数,ω为基波角频率,R为桥臂电阻,
Figure BDA0003082735140000072
为微分算子;
S12、设计交互矩阵,以将正、负序子系统相互联系,之后引入输出反馈控制律,并结合MMC并网电流状态方程,建立得到电网电压不平衡条件下MMC并网系统Dual-PCHD模型,其中,交互矩阵Kij为:
Figure BDA0003082735140000073
Figure BDA0003082735140000074
式中,K为对称矩阵,满足k12=k21
引入的输出反馈控制律为:
u1=-K(y1-y2)
u2=-K(y1-y2)
交互矩阵与输出反馈控制律共同代入MMC并网电流状态方程,即得到电网电压不平衡条件下MMC并网系统Dual-PCHD模型为:
Figure BDA0003082735140000075
Figure BDA0003082735140000076
Figure BDA0003082735140000077
Figure BDA0003082735140000078
S2、基于步骤S1建立的MMC并网系统Dual-PCHD模型,进一步构建得到电网电压不平衡条件下基于Dual-PCHD模型的MMC并网无源控制器,以得到控制量,具体的:
S21、设定MMC并网系统的期望平衡点;
S22、以状态变量与期望平衡点之差为零作为控制目标,结合MMC并网系统Dual-PCHD模型,得到MMC并网系统闭环状态方程,首先根据控制目标X-X*=0,设计对应的MMC并网系统期望能量函数,其中,X*为期望平衡点,期望能量函数具体为:
Figure BDA0003082735140000081
Figure BDA0003082735140000082
其中,D为桥臂电感矩阵;
之后基于期望能量函数,结合MMC并网系统Dual-PCHD模型,得到MMC并网系统闭环状态方程:
Figure BDA0003082735140000083
Jd(X)=J(X)+Ja(X)
Rd(X)=R(X)+Ra(X)
其中,Jd(X)为系统期望的互联矩阵,Rd(X)为系统期望的阻尼矩阵,Ja(X)、Ra(X)分别为注入的耗散矩阵、阻尼矩阵;
S23、结合MMC并网系统闭环状态方程以及MMC并网电流状态方程,得到基于Dual-PCHD模型的无源控制律,即可得到控制量,基于Dual-PCHD模型的无源控制律具体为:
Figure BDA0003082735140000084
Figure BDA0003082735140000085
Figure BDA0003082735140000086
Figure BDA0003082735140000087
其中,
Figure BDA0003082735140000088
分别为交流侧电源电压的dq轴正、负序分量,即为得到的控制量,ra1、ra2、ra3、ra4为无源控制器系数,E、F分别为正序、负序控制变量;
S3、采用脉冲调制方法对控制量进行处理,得到相应的触发脉冲信号;
S4、根据触发脉冲信号对MMC各相桥臂子模块的变换器开关状态进行控制。
本实施例应用上述方法,如图2所示,包括以下内容:
步骤1:三相MMC电路结构及子模块拓扑图如图3所示,由图3可得dq旋转坐标系下MMC并网电流正、负序子系统动态方程式分别为
Figure BDA0003082735140000091
Figure BDA0003082735140000092
其中,ω为基波角频率,Leq为桥臂电感,R为桥臂电阻,
Figure BDA0003082735140000093
分别为交流侧输出电压urj(j=a,b,c)dq轴正、负序分量,
Figure BDA0003082735140000094
分别为交流侧电源电流ij(j=a,b,c)dq轴正、负序分量,
Figure BDA0003082735140000095
分别为交流侧电源电压uj(j=a,b,c)dq轴正、负序分量,
Figure BDA0003082735140000096
为微分算子,t为时间。
选取状态变量x、输入变量u、输出变量y为:
Figure BDA0003082735140000097
其中,
Figure BDA0003082735140000098
Figure BDA0003082735140000099
Figure BDA00030827351400000910
设计正定二次型能量函数H(x)为
Figure BDA00030827351400000911
对MMC并网电流正、负序子系统动态方程式(1)、式(2)进行等效变换,得到MMC并网系统PCHD模型:
Figure BDA00030827351400000912
互联矩阵
Figure BDA00030827351400000913
阻尼矩阵
Figure BDA00030827351400000914
端口矩阵
Figure BDA00030827351400000915
式中,
Figure BDA00030827351400000916
为微分算子。
设计交互矩阵Kij,实现正、负序子系统的有机联系,交互矩阵Kij为:
Figure BDA0003082735140000101
式中,
Figure BDA0003082735140000102
为对称矩阵,满足k12=k21
引入形式简单的输出反馈控制律:
u1=-K(y1-y2) (5)
u2=-K(y1-y2) (6)
将式(5)和式(6)分别代入式(4),可得电网不平衡条件下MMC并网系统Dual-PCHD模型为:
Figure BDA0003082735140000103
其中,
X=[x1 x2]T
Figure BDA0003082735140000104
Figure BDA0003082735140000105
由式(3)和式(7)可得耗散不等式:
Figure BDA0003082735140000106
式(8)左边是整个MMC波动电容电压系统的增量,右边是外部供给能量,由无源性理论可知:映射u→x为输出严格无源的,MMC波动电容电压系统具有无源特性。
步骤2:根据系统控制性能目标,设置MMC并网系统期望平衡点为
Figure BDA0003082735140000107
根据控制目标X-X*=0,设计MMC并网系统期望能量函数
Figure BDA0003082735140000108
Figure BDA0003082735140000109
其中,D为桥臂电感矩阵。
由式(4)、式(9),可得MMC并网系统闭环状态方程为
Figure BDA00030827351400001010
式中,Jd(X)=J(X)+Ja(X)为系统期望的互联矩阵,Rd(X)=R(X)+Ra(X)为系统期望的阻尼矩阵,Ja(X)、Ra(X)分别为注入的耗散矩阵、阻尼矩阵。
联立式(1)和式(10)可得基于Dual-PCHD模型的无源控制律为
Figure BDA0003082735140000111
Figure BDA0003082735140000112
式中,
Figure BDA0003082735140000113
Figure BDA0003082735140000114
式(11)、式(12)可确保闭环控制系统在全局渐进稳定前提下实现MMC正、负序子系统期望目标的同步渐进跟踪。
在MATLAB/Simulink中搭建MMC电容电压波动控制系统的仿真模型,对本发明的有效性进行验证,本实施例的仿真参数如表1所示。
表1
仿真模型参数与单位 数值
子模块数量n/个 36
子模块电容C/mF 9
桥臂电感L/mH 60
桥臂电阻R/Ω 6
交流侧额定电压u<sub>k</sub>/V 100
交流系统频率f/Hz 50
直流侧电压U<sub>dc</sub>/kV 180
交流侧电感L<sub>g</sub>/mH 25.5
额定有功功率P/MW 180
在电网电压不平衡下采用基于Dual-PCHD模型的MMC并网电流无源性控制方法进行仿真测试。设置t=0.2s时MMC交流侧发生a相接地故障,t=0.3s时系统恢复平稳,MMC正序和负序d轴、q轴电流仿真结果如图4a~4d所示。图4a为正序d轴电流波形;图4b为正序q轴电流波形;图4c为负序d轴电流波形;图4d负序q轴电流波形。分析可知,在t=0.3s前未采用子模块电容电压波动抑制时,MMC子模块电容电压波动较大,在t=0.3s实施基于PCHD模型的无源控制方法后,暂态过渡时间段,动态响应快速,实现了MMC子模块电容电压波动的有效抑制,提升了系统的稳定性。

Claims (6)

1.一种模块化多电平变换器并网电流无源控制方法,其特征在于,包括以下步骤:
S1、通过设计交互矩阵,结合基于PCHD模型的MMC并网电流状态方程,以建立得到电网电压不平衡条件下MMC并网系统Dual-PCHD模型;
S2、基于步骤S1建立的MMC并网系统Dual-PCHD模型,进一步构建得到电网电压不平衡条件下基于Dual-PCHD模型的MMC并网无源控制器,以得到控制量;
S3、采用脉冲调制方法对控制量进行处理,得到相应的触发脉冲信号;
S4、根据触发脉冲信号对MMC各相桥臂子模块的变换器开关状态进行控制;
所述步骤S1具体包括以下步骤:
S11、在dq旋转坐标系下,分别定义正、负序子系统对应的状态变量、输入变量和输出变量,以建立得到基于PCHD模型的MMC并网电流状态方程;
S12、设计交互矩阵,以将正、负序子系统相互联系,之后引入输出反馈控制律,并结合MMC并网电流状态方程,建立得到电网电压不平衡条件下MMC并网系统Dual-PCHD模型;
所述步骤S11具体包括以下步骤:
S111、在dq旋转坐标系下,定义状态变量为
Figure FDA0003843901570000011
定义输入变量为
Figure FDA0003843901570000012
定义输出变量为
Figure FDA0003843901570000013
其中,正序子系统状态变量为
Figure FDA0003843901570000014
负序子系统状态变量为
Figure FDA0003843901570000015
Figure FDA0003843901570000016
正序子系统输入变量为
Figure FDA0003843901570000017
负序子系统输入变量为
Figure FDA0003843901570000018
Figure FDA0003843901570000019
正序子系统输出变量为
Figure FDA00038439015700000110
负序子系统输出变量为
Figure FDA00038439015700000111
Leq为桥臂电感,
Figure FDA00038439015700000112
分别为交流侧输出电压的dq轴正、负序分量,
Figure FDA00038439015700000113
分别为交流侧电源电流的dq轴正、负序分量,
Figure FDA00038439015700000114
分别为交流侧电源电压的dq轴正、负序分量;
S112、基于步骤S111中的状态变量、输入变量和输出变量,建立基于PCHD模型的MMC并网电流状态方程:
Figure FDA0003843901570000021
Figure FDA0003843901570000022
Figure FDA0003843901570000023
Figure FDA0003843901570000024
Figure FDA0003843901570000025
Figure FDA0003843901570000026
Figure FDA0003843901570000027
Figure FDA0003843901570000028
Figure FDA0003843901570000029
其中,J′(X)为互联矩阵,R′(X)为阻尼矩阵,g(X)为端口矩阵,H(x)为能量函数,ω为基波角频率,R为桥臂电阻,
Figure FDA00038439015700000210
为微分算子;
所述步骤S12具体包括以下步骤:
S121、设计交互矩阵Kij,以实现正、负序子系统联系,交互矩阵Kij为:
Figure FDA00038439015700000211
i,j=1,2
Figure FDA00038439015700000212
其中,K为对称矩阵,满足k12=k21
S122、引入形式简单的输出反馈控制律:
u1=-K(y1-y2)
u2=-K(y1-y2)
S123、将步骤S121中的交互矩阵与步骤S122中的输出反馈控制律代入MMC并网电流状态方程,得到电网电压不平衡条件下MMC并网系统Dual-PCHD模型为:
Figure FDA0003843901570000031
Figure FDA0003843901570000032
Figure FDA0003843901570000033
Figure FDA0003843901570000034
2.根据权利要求1所述的一种模块化多电平变换器并网电流无源控制方法,其特征在于,所述步骤S2具体包括以下步骤:
S21、设定MMC并网系统的期望平衡点;
S22、以状态变量与期望平衡点之差为零作为控制目标,结合MMC并网系统Dual-PCHD模型,得到MMC并网系统闭环状态方程;
S23、结合MMC并网系统闭环状态方程以及MMC并网电流状态方程,得到基于Dual-PCHD模型的无源控制律,即可得到控制量。
3.根据权利要求2所述的一种模块化多电平变换器并网电流无源控制方法,其特征在于,所述步骤S22具体包括以下步骤:
S221、根据控制目标X-X*=0,设计对应的MMC并网系统期望能量函数,其中,X*为期望平衡点;
S222、基于期望能量函数,结合MMC并网系统Dual-PCHD模型,得到MMC并网系统闭环状态方程。
4.根据权利要求3所述的一种模块化多电平变换器并网电流无源控制方法,其特征在于,所述期望能量函数具体为:
Figure FDA0003843901570000035
Figure FDA0003843901570000036
其中,D为桥臂电感矩阵。
5.根据权利要求4所述的一种模块化多电平变换器并网电流无源控制方法,其特征在于,所述MMC并网系统闭环状态方程具体为:
Figure FDA0003843901570000037
Jd(X)=J(X)+Ja(X)
Rd(X)=R(X)+Ra(X)
其中,Jd(X)为系统期望的互联矩阵,Rd(X)为系统期望的阻尼矩阵,Ja(X)、Ra(X)分别为注入的耗散矩阵、阻尼矩阵。
6.根据权利要求5所述的一种模块化多电平变换器并网电流无源控制方法,其特征在于,所述基于Dual-PCHD模型的无源控制律具体为:
Figure FDA0003843901570000041
Figure FDA0003843901570000042
Figure FDA0003843901570000043
Figure FDA0003843901570000044
其中,
Figure FDA0003843901570000045
分别为交流侧电源电压的dq轴正、负序分量,即为得到的控制量,ra1、ra2、ra3、ra4为无源控制器系数,E、F分别为正序、负序控制变量。
CN202110571153.1A 2021-05-25 2021-05-25 一种模块化多电平变换器并网电流无源控制方法 Active CN113346779B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110571153.1A CN113346779B (zh) 2021-05-25 2021-05-25 一种模块化多电平变换器并网电流无源控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110571153.1A CN113346779B (zh) 2021-05-25 2021-05-25 一种模块化多电平变换器并网电流无源控制方法

Publications (2)

Publication Number Publication Date
CN113346779A CN113346779A (zh) 2021-09-03
CN113346779B true CN113346779B (zh) 2022-11-18

Family

ID=77471269

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110571153.1A Active CN113346779B (zh) 2021-05-25 2021-05-25 一种模块化多电平变换器并网电流无源控制方法

Country Status (1)

Country Link
CN (1) CN113346779B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212798A (zh) * 2019-06-24 2019-09-06 上海电力学院 一种模块化多电平变换器的环流抑制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10204199B2 (en) * 2016-11-29 2019-02-12 The Trustees Of Dartmouth College Emulation of quantum and quantum-inspired spectrum analysis and superposition with classical transconductor-capacitor circuits
CN106451470B (zh) * 2016-12-05 2019-06-28 上海电力学院 电网电压不平衡时双馈电机的网侧变流器控制方法
CN110601201B (zh) * 2019-08-23 2021-06-22 国网福建省电力有限公司经济技术研究院 一种基于直接交-交换流器h-mmc的upfc系统及其无源化控制方法
CN110829406B (zh) * 2019-12-06 2023-04-18 燕山大学 一种基于哈密顿观测器的直流微电网母线电压控制方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212798A (zh) * 2019-06-24 2019-09-06 上海电力学院 一种模块化多电平变换器的环流抑制方法

Also Published As

Publication number Publication date
CN113346779A (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
CN107123981B (zh) 基于mmc的柔性直流及直流电网机电暂态仿真方法及系统
Song et al. Analysis of middle frequency resonance in DFIG system considering phase-locked loop
CN110707958B (zh) 一种基于调制波区间划分的中点电压控制方法
CN111541262B (zh) 模型预测定交流电压控制下mmc频率耦合阻抗建模方法
Zhou et al. Control strategy research of D-STATCOM using active disturbance rejection control based on total disturbance error compensation
CN107276091B (zh) Npc型三电平三相四线制sapf非线性无源控制方法
CN107611971A (zh) 针对电网电压谐波畸变工况的网侧逆变器谐振全阶滑模控制方法
CN113285583A (zh) 非隔离型光伏逆变器漏电流抑制方法及系统
CN112448407A (zh) 一种提高双向功率流动下恒功率控制的并网系统稳定性的阻抗优化控制策略
CN114696334A (zh) 基于前馈补偿量计算的级联h桥statcom相间电压平衡控制方法
CN110048442B (zh) 模块化多电平变换器微分平滑非线性控制方法及装置
CN113346779B (zh) 一种模块化多电平变换器并网电流无源控制方法
CN115912489A (zh) 一种适用于非理想电网的lms-sogi三相锁相环设计方法及系统
CN113346781B (zh) 一种模块化多电平变换器并网电流无源一致性控制方法
CN111525567B (zh) 一种光伏并网逆变器故障电流的计算方法和装置
CN110011322B (zh) 一种二极管箝位三电平逆变器混合无源控制系统及方法
CN111969643A (zh) 不对称故障下的对无源网络供电的mmc-hvdc的微分平坦控制方法
CN113765345B (zh) 一种模块化多电平变换器电容电压波动抑制方法
Liu et al. Research on LVRT Control Combination Strategy of PV Station
CN113328644B (zh) 一种模块化多电平变换器电容电压波动无源控制方法
Wang et al. Active disturbance rejection control of three-phase LCL power conversion system under non-ideal grid conditions
Han et al. Quasi Proportional Resonant Controller Based MMC Grid Side Harmonic Suppression Research
Lv et al. Multi-harmonic Linearization Based Small-Signal Impedance Modeling of a Modular Multilevel Converter With DSOGI-PLL
Jia et al. A New Control Strategy Based on Capacitor Current Feedback Source Damping for LCL Three-Phase Public Electric Network Inverter
Zhang et al. Passive Sliding Mode Control Strategy for Modular Multilevel Matrix Converters

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant